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Renorma»»tion of non-Abelian gauge theories in a background-field gauge.
I. Green's functions
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The renormalization of non-Abelian gauge theories is studied in the background-field gauge by means

of Ward-Slavnov identities derived from supergauge transformations and with use of 't Hooft and
Veltman's renormalization. As a result, the counterterm depending on the background field only is shown
to be (g ~g 0)'~(A").

1. INTRODUCTION

DeWitt' suggested replacing the study of the
generating functional of Green's functions Z(g),

Z(i„(=f dAexp (([('(X„)+q„A„]~,

with the study of the functional Z[q(A")], where
the background field A" (x) satisfies the classical
equation of motion: t)Z(A~ )/5A„+q„=0. The two
approaches are in fact equivalent except for gauge
theories, for which DeWitt quantizes in a gauge
specified by the classical background field A„"(x).
The interesting feature of this method is the fact
that this gauge-fixing term does not break gauge
invariance relative to the transformations of the
background field A„"; it fixes only the gauge of
the quantized field. This property should simplify
the discussion of renormalization in these gauges.
Nevertheless, since A„" simultaneously denotes the
source of quantized fields and fixes the gauge of
the latter, the equivalence between the Green's
functions derived in this way and the usual Green's
functions is not clear. DeWitt argued that on the
mass shell, the functional Z(A„") is gauge-inde-
pendent and provides the same S-matrix elements
as in Fermi-type gauges. These arguments were
developed for similar source-dependent gauges
by Honerkamp, ' Kallosh, ' and by Arefieva, Fad-
deev, and Slavnov, ~ who claim that the formal in-
variance property of Z(A„") can be preserved by
renormalization, and were supported in the one-
loop approximation by effective computations of
Honerkarnp, ' 't Hooft, ' and Crewther. In our view,
the problems raised by this quantization are three-
fold. First, the solution of the classical equation
of motion for A„" in terms of the source g„re-
quires a constraint equation for g„(Ref. 2) and is,
furthermore, nonunique. Second, mass-shell
arguments are very dangerous in nonbroken gauge

theories and do not exhibit the symmetries of the
problem. Third, the graphs with only external
A„" legs cannot be renormalized by themselves,
since subgraphs of the latter are graphs with ex-
ternal quantum legs A„. Thus for the purpose of
renormalization one must introduce an auxiliary
functional Z(A„",ri„) where q„ is an A„"-independent
source for the quantum field A„and one cannot re-
strict the discussion as in Refs. 1-4 to the func-
tional Z(A(( ).

In this paper we study the renormalization of the
functional Z(A~, rl„), which is obviously renormal-
izable by power counting, and we show that the
renormalized functional Z"(A„",j„)exhibits the
same symmetry properties as the bare functional,
This is achieved by investigation of Slavnov iden-
tities, which are derived from supergauge trans-
formations introduced first by Becchi, Rouet, and
Stora. ' This method has been extended by the
authors to derive Slavnov identities relating
Green's functions in different gauges. A gauge-
invariant regularization and subtraction pro-
cedure, for which we can use the dimensional reg-
ularization and the "minimal subtraction" of
't Hooft and Veltman, ' implies that the Slavnov
identities hold for the renormalized functional.
To derive the symmetry properties of the renor-
malized action from the Slavnov identities satis-
fied by this action, a very elegant method has
been developed by Zinn-Justin'; it avoids the
investigation of the divergences of each individual
superficially divergent Green's function. Thus we
shall adopt this method here.

We also prove that the counterterm depending
on the background field only is (g/g, )'2(A„"); this
result is lI;nown in the one-loop approximation. '
In the last section, we investigate the dependence
of the Green's functions with respect to the gauge
parameter o. and discuss its implication for the
practical computation of g/g, at higher orders.
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II. WARD-SLAVNOV IDENTITIES AND THE RENORMALIZATION OF THE GREEN'S FUNCTIONS

A. Properties of the bare functional

After a change of variable, A„=A„"+tp}„, the generating functional for Green's functions in the co-
variant gauge reads

Z(A„, X„,(,7)=f dQdCdC p(if Z(A ~ Q) ——[ D'(A) 'Q[]~ C Dx(A)(dx (A+Q)C ~ X„~Q $ C,. ~ C ( Ij,
(2.1)

where we suppress from now on the superscript
of A" and where we introduce the following nota-
tions:

2(V) =- ,'(s„—V„—BDV„+gV„xV,)',
D~&& (V)C& = s „C'+g(V~ xC)'

(2.2)

(2.3)=8 [)C[+gf(ZDVQC

Q„denotes the quantized gauge field and the
Faddeev-Popov ghosts C, and C, are associated
with the gauge transformation of Q„ for fixed A„.

5Q'„=D'„~(A+ Q)5[d)',
(2.4)

5C =gfgyDC 5(d)

5C' =gf C~5(g)~

(2.6)

One must also notice that for vanishing sources
of quantized fields, j„=$, =P, =0, the change in

Z(A„, 0, 0, 0} due to a small variation 5A„of the
background field reads

5A'„= 0 (type II transformation),

which leaves Z(A„+Q„}invariant. The peculiarity
of this gauge is that the gauge-fixing term intro-
duced for quantization, -(I/2a)[D„"(A)Q" ]', is
invariant for gauge transformations of A„:

5A~(x) =D„' (A)5(L)~(x) (type I transformation),

(2.5a)
provided that one also performs a homogeneous
transformation of Q„:

5[p}q(x) =gQ„(x) x 5((()(x) . (2.5b)

Notice that Z(A„+Q„), as well as the Faddeev-
Popov term, detD„'~(A}D&Q(A+Q), is invariant
under the type I transformation. Thus we assign
the ghosts to the adjoint representation of the

type I group:

Ilz (A, , P, P, P) = ] —D'„'(A )Q'„D,"(A ~ Q)PA,'

+f(D, C 5A~Dqi(A+Q)Ci

x exp(iS)(fQ dC (IV (2.7)

after a translation of the variable Q„: [p}&=[p}„
—6A„. In this formula S denotes the action:

S= a4x ZA+q —D„"aq~'

~ C, D '(A)px'(A'„Q)C,I.

Ry the gauge transformation on Q„(Ref. 11),

XQ„(x)=J d ~X(D. A) QM(*, )X
x D„'„(A+ Q) 5A„' ( y), (2.8)

where M denotes

M[~(x, y) =D'D (A)D"„i,(A+Q)5(x —y), (2.9)

one shows that 5Z j5AQ=0 in the absence of sources
This property turns out to be essential for

the study of the counterterms associated with
Z(A" }.

Let us remark that for A„=O the functional Z
reduces to the usual generating functional in

Fermi-type gauges. Much information concerning
renormalization can be obtained from this simple
fact and from the power counting of A„. A„ap-
pears as a source term for various composite
operators constructed from Q„; for power count-
ing, A„ is of dimension one. Thus, as for an
operator j4' in X@4 theory, the counterterms will
be of degree less than or equal to 4 in A„. Final-
ly, we emphasize that A„and q„are independent
variables and that the source for (p}„ is t}„.

B. Derivation of the Slavnov identities

We introduce the generating functional Z(A„, [I„,$ [, p(, J„,K, L„):

Z(d„, il„, l, , j, , J„,K, L„)=f d CdQCAxxpd[x'x)Z(A Q) ——[Il'„'(A)Q,"]'+C, ' ()OX(AA DQ[)CC). ,.2(v

+ p[C;+ C, g +J'Q[D",i(A+ Q)C~+ zgK C x C

+ L'„[D'„i(A+Q)Cq —'J'„]f (2.10)
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The use of sources J„and K is explained in Ref. 8: they allow us to linearize the Slavnov identities rela-
tive to type II transformations. The anticommuting source L&(x) serves as a generating device for the

change of gauge due to a change OA„of the background field A„. Namely, the gauge transformation of

Q„[Eq. (2.8)] is obtained by simultaneous insertions of the operators associated with J„and L„:

dQdCdC d yD„'~ A+Q) x)M '» xy D, ' A+Q)(y)5A,' y) exp (iS)

dQSC C(dD,"( ~AQ )C]t*l }d'1 C (p)C."(A Q)SA'(1) p(id) . (1.11)

The functional Z(A„, t}„,$„P„J„,K, L„) is clear-
ly invariant under type I transformations [Eqs.
(2.5}, (2.6)], if all sources, except A„, belong to
the adjoint representation

This leads to the identity for Z,

4
" '5J' ' 5K

5])„(x)=g]I„(x)&&5(d)(x},

5$(x) = g$(x) x 5(d)(x),
(type I) . (2.12)

(2 16)

5L„(x)=gL„(x)x G(x}~

We introduce the Legendre transform
I'(A„, Q„, C, , C„J„,K, L„) of W =i lnZ with respect
to q„, (;, and f;, with the same conventions as
in Ref. 8:

This identity is integrated over space because the
parameter 6X of the transformation is x-indepen-
dent. As in Ref. 8, we also need the equation of
motion of the ghost field obtained by a change
6C;:

r+W+ d'x q„. +,.C,. +C,.~, =0. (2.13}
g jJ x

(2.17)

Type I invariance of the IPI (one-particle irre-
ducible} functional is then expressed by the follow-
ing Ward identity:ar,„,. aI, Or, ar
DQ'(A) A~ +gf Q~& Q

+C' ~+V

, 5I, 5I', 5I
+~a gg~

+K'
5K" + L„~L~ = 0 .

(2.14)

Under the following change of variables, which
is in fact the combination of an infinitesimal type
II gauge transformation, associated with an anti-
commuting parameter, "' and of a variation of
the background field, the change of the functional
Z arises only through the source terms j„.tp)",

$,C;, and C&$&.
'

5Aq(x) = —I,„'(x)5X,

5Q'„(x) = D''( A+Q) C( )xX5+ I.t(x)5]). ,

The Slavnov identity and the ghost equation of
motion for I' read

&I' DI' Dl &I'

qadi g C gKf

+ —,. Dq'(A)Q," Lq d
. = 0, (2.18)1 5I „ „ , 5I~

(2.18)

I =r+ d'x —D„'~ A)Q~~ '. (2.20)

Then I'satisfies Eq. (2.19) and the identity

I' 5l' I' 5l"; l
5Q„' 5J~„5C' 5Ki I' 5A'

Equation (2.18) can be simplified further by intro-
ducing

5C(x) = -Vx C5X,

~C, (x) =- —D„' (A)Q, (x)~~.

(2.15) (2.21)

Reciprocally, if we start with a functional I'

satisfying Eqs. (2.14), (2.18), and (2.1S), we can
show immediately that the associated action S,
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exp[iS(A„, Q„, C&, C;, J„,K, L~)]=exp iS+ —t [D„"(A}Q,"]'d'x

dq d&„d( exp —'

H'(A„, j„,[„f„J„,K, L„)+ f d (j*Q„+$,C; C;5,)

satisfies corresponding identities:

6$;)k ) 6$ ) 6$ ~6$ ) 6$,. 6$,. 6$"( )»' + Q4Q' fc' fc' &fP ()z'' 4Lp
P

&S &S 5S &8, 5S
6q~ ~f

(2.22)

(2.23a)

(2.23b)

(2.23c)

C. Slavnov identities for renormalized Green's functions

(2.24)

We recall that we use the gauge-invariant regularization of Ref. 9 (or eventually that of Ref. 12}; there-
fore the identities (2.14), (2.19), and (2.21) are valid for the bare regularized functional Z'~. The recur
sive proof on the number of loops starts with the renormalized functional F" "j", for Green's functions
associated with graphs containing k loops, which is supposed to be finite for k 4n and which is assumed to
verify identities (2.14), (2.19), and (2.21) to all orders. The first step of our renormalization procedure'
consists of subtracting the pole part at d=4, denoted by Fd~" ~t""' arising from graphs with (n+ 1) loops;
this may be summarized by the formula

~Ln+17(k) pRI n j (k) pRLft) (k)
div

with the convention I „~„"~ k' =0 for k &n+1.
The linear identities (2.14) and (2.19) are automatically preserved by this renormalization procedure.

For identity (2.18), introducing

1'""= I " + —d'x[D' (A)Q" ]'
2A f

we obtain the identity

6S 6$6&E X + ~ 6&1~~~ ~ 6$ 6S 6+LffXft+&~ 6+t.ff3ft+&~
d4 [ div div div div Ii( )

div 0
L 5Q'„(x} &Jj(x) 5Qj (x) 5Z„'(x) 5C'(x) 5K'(x) 5C'(x) 5K(x) ~ fA~&(x)

where S denotes the bare transverse action
S= I "X '. Thus the functional I""" satisfies
identity (2.21) up to order (n+1), and the corre-
sponding equation for Ssf""~, Eq. (2.23), also
holds to the same order.

The second step of the proof is the adjustment
of the counterterms of S"~""~atorder k ~&+2 in
a way which ensures the validity of identity (2.21)
for T f""~at all orders. This program is per-
formed in Sec. IID by imposing the validity of
Eqs. (2.23) for $ ~""~at all orders.

D. Solution of the Slavnov identities for the action

To simplify notations, we delete the superscripts
[n+ 1],which play no role in the argument, and we
are now about to derive the constraints on the
structure of the counterterms of S" implied by
Eqs. (2.23}. The subsequent discussion follows
exactly the analysis performed by Zinn-Justin'

6$"
, =Z,D„"(A)C~+ Y,g(Q„XC), + F,L'„,

6$" g Z, f&,~C'C

(2.25)

(2.26)

The counterterms in J „and K being linear in
these sources, we may write

SR

(2.27}

for Fermi-type gauges. By power counting and
ghost-number conservation, the counterterms in
J„can only take the forms J„s C, J„~CpxC,
J .A" XC, J .L", and those in K can only take
the form K ~ VxV. Owing to invariance of S with
respect to type I transformations, these counter-
terms must be type-I-invariant:
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The dependence of S" on C is given by the equation
of motion (2.23b}:

6Z Z 6Z
5A'„'(x) Z, 5Q'„(x}

(2.31)

The identity (2.29c) for Z yields two equations:

(2.28)

62$R 6SR

5C'(y)5K'(x) 5K (y)
(2.29a)

+ Z(A„, Q„) .
In fact Z cannot depend on C, or on L„due to
power counting and ghost-number conservation.
Inserting the expression for S" in the Slavnov
identity (2.23c), we obtain the following system:

6Z;, g
dy5@, ( )

D("(&}+gg f(a&@'( C'.
Ql Y 3

(2.32)

6Q'=D'~ A + ~Q 6u~.
P g3

Thus Z takes the form

(2.33)

These equations imply that Z is a function of the
variable A„+ (Z, /Z~)Q„, invariant under the gauge
transformation

l 62SR 6$R 62SR 6$R
dY

Q5'(
y) P5( x)5J'(y) 5C'(y)5dli(x) 5K"(y)a +

62$8
l( ),

(
. =o, ( ) which can also be cast as

(2.34)

6Z 6$", 6Z
5Q'.(y) 5&'.(y) ' 5&".(y)

(2.29c)

Z=g g3'~ u+ ~A
0

where g, denotes the bare coupling constant

(2.35)

(2.30}

Equation (2.29a) is trivially satisfied by 5S"/5K,
since it is the Jacobi identity for the structure
constants f;». Similarly, Eq. (2.29b) gives

Y, =Z, and Y2 = ~~.
1

1
go gg 1)2g

3 3
(2.38)

In conclusion, the renormalized action takes
the expression

$ =g g Q + —A, g~ ——D~~ A Q~~ +gC) „xL„)+-g Q) Cx{

+ [z„'+c'D'„'(A)] z,D'„'(&)c'+ QL,t+gz, (Q„xc)' .
1

After a wave-function renormalization of the quantized fields,

QI Z 1/2Q Pd g I/Qc Cd Z I/2C

and the renormalization of parameters g and a,

1g
g'0 =g g g 1/2 y &0 = &g3 y

3 3

the renormalization boils down to a multiplicative renormalization of all other sources:

(2.37)

(2.38)

(2.39)

JI g 1/2J g ~ ~ ~ g~1/2I'=L 3 K'=g '~K, A'= —A .
g y 3

1
g'0

(2.40)

The action as a function of these new variables takes on the form of the bare action, and the renormalized
action is clearly invariant under type I and type II transformations with parameter g,.

This discussion can be readily extended to the case where matter fields are introduced. "
E. Dependence of the Green's functions on the gauge parameter a

To study the variation of the Green's functions with respect to the gauge parameter e, we introduce as
in Ref. 8 a new source L for the insertion of the operator J d'x C, (x}D„'~(A)Qi . Let us consider the gen-
erating functional

d(A„, j„,(, , (;, T„,K, L„,C( =f d((dCAVdxd['(d ~ d,'((„' ~ (;C, +C(,)], (2.41)
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where the bare action S now denotes

S = d x g(A+Q) [D s(A')Qu] + CiD (A')Du (A+Q)C, + —K. (C xC)

+8„' Dt, (A+Q)C'+ L„'[D,",(A+.Q)C, —J",]+L[C,D'„'(A. )Q,"+d„'Q", +aK ~ C] (2.42)

We recall that L is an x-independent anticommuting source and possesses no group index; thus it satisfies
L'=0. As we discuss below, the operators LJ„'Q& and LK C are needed as counterterms of the operator
C,D'„'(A)Qq .

As one can see by mere computation, the action S in Eq. (2.42) is invariant:
(a) under type I transformations [Eqs. (2.5), (2.6), and (2.12)];
(b) under the following change of variables which is a combination of a type II transformation, of a

change of gauge 5A„, and of a change of gauge parameter a:
6~ = 2aLQ. , 6A„'= L„'6l, -6Q'„= D~~(A+Q)C, .6lw. +L'„6l,

6C = -CxC6a, 6C,. =- —[D'„'(A)Q,"]6k-C,L6&, . (2.43)

5J'„= -J„'L5A. , 5K, = -aK,.L5A. , 5L„'=6L =0.

The 1PI functional still obeys the type I Ward identity (2.14). The invariance under the transformation
(2.43) is expressed by the following Ward-Slavnov identity:si, -

. 6r,. 6r &,
. 6r,. 6r . 6r. ..q„„, .„„, c„... '„,

, -er ~I OI. ~r 1 ~r,. „,eI. -

6Q' 6J' 6C' 6K' 6C' " ' " 6A'

We make use of the ghost equation of motion (2.19) which remains unchanged in the presence of the source
L The ty.pe II Slavnov identity (2.44) for the functional I' defined in Eq. (2.20) then takes the expression

er „„-,~r, ~r, r, r ~r „, -~i ~I ~r ~i,. ~r-
" 5Q' " 5J' 6C' 5C' 5K' 5Q' M' 5C' 5K' " 6A'

(2.45)

The minimal renormalization procedure pre-
serves the identities (2.14) and (2.45) and the ghost
equation of motion (2.19). The renormalized ac-
tion S satisfies thus the identities (2.23a), (2.23b),
and (2.45) (I"-S ). Owing to type I invariance and
to ghost number conservation, the counterterms
linear in L are of the form

S =S (L=O)

+ L[Z„C;Dq'(A)Q," +Z,', J„' Q,
"+Z„K'C'].

The ghost equation of motion (2.23b) implies Z,',
Z„, and by power counting the operator L K C

is multiplicatively renor malizable. Consequently
a can be chosen to ensure L to be multiplicatively
re norm aliz able:

$s = $&(L = 0)+ LZ ~ 2Z ~~2 Z [C, iy~(A)Q& ~j~ Q".

+a (g„oo)K' C' ] .

(2.46)

The insertion of this expression in identity (2.45)

immediately shows

(2.47)

and relates the coupling matrix (Z, ,}of the opera-
tors [C, D'„'(A) Q,

" +P„Q,"] and K C to the variation
with respect to n of 8, and Z„ the wave-function
renormalizations of the fields Q„and C,

The result (2.47), already derived in Ref. 8, im-
plies that the counterterms in S depending only
on the field A„, namely (g/g, )'Z(A„), are n-inde-
pendent. From identity (2.45) for $" it is evident
that the o. dependence of the counterterms Z(A„)
can arise only through a counterterm L3„~A"

which is not type-I-invariant. However, one can
construct many nonlocal functions linear in L and
Z„which possess this invariance, as for example

dxdy Lj'q(x)[Dp (A)D~ (A)] '„.(x, y)D',~„(A)

x(a„A, s„A„+gA„XA„),(y) . (2.48)
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Thus the function O' F/OA'„OJ'„OL is finite but non-
vanishing, and its contribution to the following
identity derived from Eq. (2.45) implies that the
finite part of the Green's functions with external
A legs only depends on the gauge parameter cr:

2a —(A) = d'x, . (A.), (A).sr, ~r 0'r

Indeed an explicit one-loop computation shows that
O' F/OLO j'„OA', does not vanish.

The dependence on e of the Green's functions
with external A fields only has a practical impli-
cation for the computation of g/go. To compute
the latter to order 2n, one must know to order
(2n —2) both g/go and the renormalized two-point
A„" function Fs . (g/g, )'" receives contributions
from the primitive divergences of I,"' at order n
and contributions from the divergences at order
n of the renormalized function Fs' [" ' . This
method seems to avoid the computation of non-
gauge-invariant counterterms such as Z„Z3,
and Z, . However, the renormalized function l",
needed to order (2s —2), is a finite a-dependent
function and thus the renormaliza ion of o. , namely
Z„ is also needed:

Ln -yj
F(a)[n-0 g F(a)[n-&](g ~ )

(2.49)
[n-g j Zt:n-y J
0 3 ~

The contribution of e~" ' to the divergence at

order n of I'„'" " ' vanishes only in the Landau
gauge a =0.

III. CONCLUSION

It was shown that the renormalized generating
functional in the background-field gauge is invari-
ant under type I and type II transformations, con-
firming or generalizing thereby the conclusions
of Refs. 1-5. The interest of this gauge seems
obvious: For the computation of g/g, to order n,
it seems possible to avoid the calculation of non-
gauge-invariant counterterms. However, we
have shown that it is true only in the Landau gauge.

It seems that this "background field" approach
can be applied usefully to the study of the renor-
malization of gauge-invariant operators, as is
shown by a one-loop computation for operators
of twist-two performed by Crewther' and by an
explicit verification to all orders on our favorite
operator F„„'.' This will be the topic of a forth-
coming paper.
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