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The problem of the renormalization of gauge-invariant operators in the non-Abelian Yang-Mills theory
is tackled through the study of a specific example, P„„',for which the explicit solution can be derived
from renormalization-group considerations. It is shown that the operator 0„„'mixes with

non-gauge-invariant operators and that this mixing must be taken into account for the computation of
the anomalous dimension of the renormalized gauge-invariant operator. The explicit solution is examined
with the help of Ward identities derived from a new type of gauge transformations which appear very
convenient from a technical point of view. The multiplicatively renormalizable gauge-invariant operator
is shown to satisfy Ward identities and to possess an a-independent anomalous dimension. As a
by-product, we analyze the gauge dependence of the Callan-Symanzik function P.

I, INTRODUCTION

Since the first observation of scaling in electro-
production, much effort has been devoted to under-
standing this phenomenon in the framework of
field theory, which was the indication of a, vanish-
ing strong interaction in the deep Euclidean region,
A major success in this respect was the discovery'
that gauge theories, at the exclusion of other La.-
grangian theories, exhibit "asymptotic freedom"
in the absence of scalar fields; in gauge theories
for strong interactions, the effective coupling con-
stant vanishes logarithmically in the deep Eucli-
dean region. For leptoproduction, the moments
of structure functions depend logarithmically on
the square of the momentum transfer from inci-
dent to outgoing lepton. ' The success of the quark-
parton model as a qualitative description of deep-
inelastic experiments has made the idea of quarks
as elementary fields quite attractive, in spite of
the lack of experimental observation of quark par-
ticles; Weinberg' has suggested the possibility of
an unbroken gauge symmetry which would prohibit
the existence of physical states corresponding to
quantum numbers of the quarks a.nd of the gauge
fields. However, for such a theory, the absence
of an S matrix, at least in the conventional sense,
obscures our understanding of gauge invariance.
In fact, results4 concerning gauge invariance were
derived for S-matrix elements in spontaneously
broken theories. The latter are shown to be in-
dependent of the gauge parameter cx which is in-
troduced through the gauge-fixing term
-(l/2a)(8& A")' necessary for quantization. For
quantum electrodynamics, probability a,mplitudes
evaluated at a given order of perturbation theory
are themselves a-independent; furthermore, it
was conjectured and shown on some examples
that any operator invariant under a gauge trans-
formation leaves the physical subspace invariant

and for suitable normalization possesses a-inde-
pendent matrix elements between physical states. '
No properties of this sort are established for non-
Abelian unbroken gauge theories.

The study of asymptotic properties in leptopro-
duction requires two tools: Wilson's expansion of
the product of two currents, weak or electromag-
netic, which are invariant under transformations
of the strong gauge group, and the renormaliza-
tion group which gives the behavior of the coeffi-
cients occurring in this expansion in the deep
Euclidean region (q'&0 and large). We do not
deal with the important problem of the possible
occurrence of non-gauge-invariant operators in
the Wilson expansion. Instead we have sta, rted to
treat the questions of gauge invariance connected
with the renormalization group which were init-
ially pointed out by Gross and Wilczek' in the con-
text of a one-loop computation of the high-energy
behavior in leptoproduction": the renormaliza-
tion of a bare operator invariant under gauge
transformations, the dependence of the Callan-
Symanzik function P on the gauge parameter n,
and the study of the Ward identities satisfied by
a renormalized gauge-invariant operator. As an
example we have picked the operator F„„'at zero
momentum; the renormalization of this operator,
which does not give a dominant contribution to the
light cone, is simply related to the counterterms
of the Lagrangian. In Sec. II we prove that this
operator is coupled by renormalization to non-
gauge-invariant operators; from the renormaliza-
tion-group equations for ordinary Green's func-
tions we derive the expression of the multiplica-
tively renormalizable operator associated with an
a-independent anomalous dimension. The study
of the properties of this operator is postponed
until we introduce Ward identities. Section III
is devoted to the study of a new kind of Ward-
Slavnov identities derived from a supergauge
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transformation introduced by Becchi, Rouet, and
Stora. ' These Ward identities, more tractable,
are equivalent to the conventional ones; the deri-
vation of the usual relations between counterterms
of the Lagrangian is carried out in Appendix A,
and the introduction of matter fields is briefly
discussed in Appendix B. With the help of differ-
ent Ward identities, we examine in Sec. IV the
dependence of the P function on the gauge parame-
ter a which is determined by the detailed renor-
malization prescription and for which the infrared
divergences due to the absence of a mass scale
are crucial. For a pure Yang-Mills theory we
derive a result first established by Caswell and
Wilczek' under specific assumptions: The func-
tion P can be chosen to be n-independent by pro-
per renormalization conditions. Finally in Sec.
V we show that the renormalized operator derived
in Sec. II and corresponding to an n-independent
anomalous dimension satisfies Ward identities
analogous to those of the gauge-invariant bare op-
erator Fpv2

II. RENORMALIZATION OF A GAUGE-INVARIANT
OPERATOR

We call a formally gauge-invariant operator a
bare operator which is invariant under convention-
al gauge transformations of the vector-meson or
fermion field. The renormalization of these op-
erators raises two questions:

Are the counterterms also formally gauge-in-
variant?

If not, is it legitimate to neglect the coupling to
formally non-gauge-invariant operators when one
computes anomalous dimensions of gauge-invari-
ant operators?

The answer to both questions is negative. An ex-

A. Definition of renormalized operators

We define the generating functional for bare
Green's functions,

Z(g„, F„, f;)

xexp i (f'x(Z+q„A" (- (;C, +C;$;),
(2.1)

for the Yang-Mills Lagrangian, 2,

0

where C& and C; are the well-known Faddeev-
Popov ghosts" and where M;,. denotes

M;~ (x, y, A, ) = &„D,",5 (x —y),

D,",C) = (s" C+g, .A" x C),

= s"C(+gof ),z&y" Cz .

Fpp =~p Av &vAp+gA p+Av '

(2.2)

(2.2)

According to established results" "the renor-
malized generating functional reads

plicit counterexample is given by the study of the
renormalization of operators of dimension four
and spin zero, such as F»z(x), in a pure Yang-
Mills theory. We first define our renormalized
operators and derive the renormalization matrix
Z, the results at the one-loop level are then dis-
cussed, and finally, we derive to all orders in
perturbation theory the expression of a multipli-
catively renormalizable operator with an o.-in-
dependent anomalous dimension.

Z (ee, e, ()= fdddCZC exp 'f —-Z, (e A, —e„A„)'——,'Z, Z(e„A„—e„A„)~ (A xA')

—'
dz~g '( A „xA„)' ——(S„A")' + Z, C;S'C; + Z, gC;&„(A" & C);

+q„A"+g(C, +C;]( (2.4}

where the counterterms satisfy the Ward identities (WI)

~l ~l Z Zl Z~ (2.5)
3

Let us perform in the generating functional Z of (2.1}the following change of variables g„a„and q„:

Z(r)I)e $(, $(,g(')e (x(')) = Z()) ))(1 —z e)e g;, $(;go(1 —z &), o()( + e))

Z 'go o!o)+& o(o —
2

— (f x)) (x);, , Z(i)„, 1((, $(,'g, o( )+O(ez) .

A further change of variable, A„-A„(1+-,e), shows that the term linear in e in the above expression is
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just the generating functional with one insertion of the operator F»' at zero momentum:

(2 7)

Thus in the tree approximation (o., = a, g, =g) the
insertion of the operator 0, = —&Jd'x F„„'(x)in a
one-particle irreducible Green's function (I PI)
I'(n p', with n external vector-meson legs and p
ghost and antighost external legs, can be ex-
pressed as

(2.8)

correspond respectively to the operators

l 52(x)4 xg

d~x C(M(i C~(x),

because the insertion of the operator J q'„(5/5q&)d'x
in a graph just counts the number of external
A„ legs. The renormalized operator 0, may be
defined according to Eg. (2.8}, where I' t" ~1 and
I"(",'~' should be replaced by the renormalized func-
tions F"(n P' and F~ n P, provided we impose on it
the corresponding renormalization conditions":
for example,

apAP x d4x,

according to

I R(n,p) I R(n, p)8
02 Qg

pR(n, p) I pR(n, p)

and
(2.11)

where Io and I denote
1

(2.10)

Similarly we define the renormalized operators
02, O„and 0, which in the tree approximation

I'R("»» = ~ j R(".p)8
04

As a consequence of the equations of motion of the
ghost field, the insertion of 0, in a graph simply
counts the number of external ghost lines of the
graph. ""Operator 0 which is not needed for
the renormalization of F„„', is introduced for con-
venience. With these definitions (2.8) and (2.11)
the counterterms for the insertion of this operator
are easily related to those of the Lagrangian:

—[ —,
'

Z, (g', ~')(I+g)(s A„—s„A„)' —2g Z, (g', a')(I+a)(s„A, —s,A„) (A "xA")

——,'g'Z~(g', a')( I+)eA(„xA, ) +Z, (g', o")C,s C(+gZ, (g', o")C&s„(A"xC)&]

1+ a ————InZ~ 0, + a ————ln —02 + o, ————lnZ 0, (2 12))R
~ g ~ ~j. (R

8+ 2 8g 8+ 2 Bg g3 BQ 2 Bg

where an intermediate renormalization was performed for 0&,

0,'" = ——' Z, (&„A,—s, A „)' ——gZ, (s& A„—&,A „)~ ( A" x A") ——' g 2Z ( A „xA,)',

0,'" = --,' gZ, (S„A„—B,A „) ~ ( A ~ x A") ——g 'Z, ( A „xA, ) + g Z C; 8„(A ~ x C), ,

0,'" =ZSC, e'C, +Z,gC, a„(A~xC), ,

(2.13)

and where use has been made of WI (2.5). The expression of the matrix {Z;,.),
pR(np) g n/2 g p g /(np) ~ ~ ] 2

Og 3 3 cJ 0)

is readily obtained:

(2.14)



4VO H. KLUBE RG-STE RN AND J. B. Z UBE R 12

8 g 8 8 g 8 Z 8 g 81+ e ————lnZ, e ————ln ~ e ————lnZ,
2 8g 8e 2 8g Z3 8e 2 8g

(z„}= 8
g —lnZ

8g 3
8 Z1+g —ln~

8g Zs
g —lnZ

8g 3 (2.15)

We are now in position to discuss the renormalization of F„„atthe one-loop level.

B.One-loop computation

The result for (Z&&} in this approximation is

1+~3 A

(Z, }= —2(ta — )A

where A stands for

.(G)Z'l„eA=
1

--A —A3 3
2 2

1+(3+ a)A -(3 —o.)A

o

(2.16)

(2.1'j)

with the conventions of Ref. 6:

(2.18)f a, f)„=C,(G)5&( .

Thus, the anomalous-dimension matrix fy;,}reads

13 C,(G)g'
3 16m'

This procedure where one neglects non-gauge-
invariant operators was followed by Georgi and
Politzer' and by Gross and Wilczek' in their com-
putation of anomalous dimensions of twist-two op-
erators. In this case, however, the result for the
anomalous dimension of the operators

calculation in another gauge, the so-called axial-
vector gauge: n„A" =0, where n„ is some con-
stant four-vector. When the gauge-fixing term
in the Lagrangian takes the form —(1/2a)(s„A")',
the ghosts are believed to decouple in the limit
a-0."'" However, the gauge -(1/2u)(n„A")',
a0, is not renormalizable and no consistent pre-
scription for computation in the axial-vector gauge
exists, except at the one-loop level, "where one
finds that all counterterms coincide:

Zj Z3 (2.20)

(see also Ref. 21 for an approach in a different
spirit). The operator F„,', defined in this gauge
as

(2.19)
j 2 8g

(2.21}

and possesses the following eigenvalues: (0, +',
and a) x [C,(G)g'/16m'].

This example exhibits all the above-mentioned
properties. First, the operator 0, mixes through
renormalization with non-formally-gauge-invari-
ant operators like the operator 0, . Second, the
anomalous-dimension matrix y has, apart from
the trivial zero eigenvalue, one e-independent
and one e-dependent eigenvalue. As expected,
the e-independent anomalous dimension belongs
to a multiplicatively renormalizable gauge-invari-
ant operator which is derived and discussed in the
sections which follow: It is a combination of 0„
O„and 0, . However, it should be noticed that a
naive calculation of this anomalous dimension,
where one ignores the coupling of 0, to the non-
formally-gauge-invariant operator O„gives a
wrong value, although it is still e-independent:

is

Z, =1-~2, A+O(g'),

8Z„=1-pg —lnZ,
8g

=1+ ~A+0(g') . (2.22)

Thus a calculation in the axial-vector gauge leads
to the correct answer for the gauge-independent
anomalous dimension. Our discussion concerning
renormalization of F„„'will now be extended to
all orders in perturbation theory.

is multiplicatively renormalizable; and its renor-
malization factor computed from the result of
Gross and Wilczek, '
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C. General considerations

Let us write the renormalization-group equa-
tions in the form

8 8 8 pg

l
—+p —+5 ———y-py 5 —y r[""=O

Bg 8 2 c 4) fy ) )

and

8
y= p, —lnZ,

ao~o

8
yc = p, —lnZ3

8 a oig0

(2.24)

(2.23)

where y, ye, and 5 are defined as (our conventions
for y and yc differ by a factor of 2 from those of
Ref. 22}

ao,go

and y&~ was defined in Eq. (2.19). According to a
well-known result, a' 5 is related to y: 5 = —ey.
It is then a matter of simple algebra to derive the
expression for the matrix (y,&} from Eq. (2.15):

b~,}= 8

gag
8

yc
Bg

(2.25)

We are looking for linear combinations of oper-
ators diagonal under renormalization:

u, (n, g)ro " ~'(n, g) = ZZ, " ' Z, u, (n„g,)

~ r"""(n„g,)
or equivalently

The fact that 0, =C&M&&C, has a zero anomalous
dimension is a consequence of the equation of
motion for the ghost field. For the eigenvalue y,
the solution of (2.26) can be guessed from the re-
normalization-group equations for ordinary
Green's functions:

DpR(n, p) p

(D —y) &,.(n, g )r"&"' (n, g) = o,
8 lnZ

o.~o

where D denotes

(2.26) which implies

pR(n, p) p
8

Bp

or equivalently

By (2.2 t)

8 8 8 pgD= ~ —+P —+~ —- - y-Pyc.
Bp, Bg B~

In general, Z and y are not eigenvalues of the
matrices (Z„}and (y;,}, respectively, neither
a.re u, the eigenvectors; the solution of Eqs. (2.26)
can only be computed order by order in perturba-
tion theory. However, in Sec. IV we shall show
that P can be chosen independent of u. For this
choice, which is assumed in the following, the
matrix (Z&,}can be cast in a triangular form by
a change of basis independent of g and Qt, namely
the basis Oy Oy + z 02 and 0, . Theref ore Z and

y are indeed eigenvalues of (Z;&}and (y,&}:

D P —-y n —+ — -Pyo I' ~ ' =O. (2.28)
8 Rnp)

Bg BQ 2

The equation of motion for the vector field"'"
leads to a counting identity:

2I' (" p)+I' (n p) 2j"R(" p) =gZ' (2.29)

Finally, using this identity together with Eqs.
(2.11), we rewrite equation (2.28) as

1

D ~ I(,p) (Z ( p)+ —I ( p)} IR( .p) —O0,' —y( 0, ' + 0, —yc 0, '

(2.3O}

which upon multiplication by g/2P yields the solu-
tion rot" ' of Eq. (2.26) relative to the n-indepen-

1
dent value y, = -g(S/Sg)(P/g):

There exists also a trivial solution of Eq. (2.26)
for y, =0:

R(n, p) O03

I R(n, p) — yg
Z R(nP) + yg

g gR(n. p)
0~ 0 + 02P i 2 2P

ycg I R(n, p)+
2p 0 s (2.31)
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P- —=gp. —lnrg
2 ~p, Zj

in view of E(l. (2.20) (Ref. 21), and ro is easily
computed to be equal to y, . This result is rather
surprising, since it shows that the axial-vector
gauge gives a sensible answer at all orders in
perturbation theory. A priori, apart from the
problem of a correct computational prescription,
one might have expected that the operator F„,'
would couple through renormalization with non-
Lorentz-invariant operators. This result gives
an indication that it should be possible to quantize
Yang-Mills theory in the axial gauge. This would
avoid considering spurious operators, such as 0,
and 0, in the usual gauges —(1/2a)(s„A")', for
the study of gauge-invariant operators.

As a final comment let us note that the introduc-
tion of fermions does not alter our previous con-
siderations, since T(,P,(, ()), at zero momentum is
a multiplicatively renormalizable operator.

The operator 0,' corresponding to an o.-indepen-
dent anomalous dimension satisfies the same kind
of Ward identities as the bare operator 0, : To
show this, we will now introduce Ward identities
first for ordinary Green's functions and then for
the insertion of the bare operator 0, .

=0

III. THE USE OF SUPERGAUGE TRANSFORMATIONS

FOR WARD IDENTITIES

Ward identities are usually obta. ined by applica-
tion of a nonlocal gauge transformation, "'"

5A'„(x) =D'~ (x)M '„(x,y, A)5(u"(y), (3.1)

which leaves the generating functional Z(0) invari-
ant. The nonlocal character of this transformation
is a technical complication when one performs the
Legendre transform, which leads to the 1PI
Green's functions. But noting that

The normalization of this operator is chosen to be
finite atg =0.

A blind generalization of our one-loop considera-
tions in the axial gauge leads to the correct eigen-
value y, to all orders in perturbation theory. In-
deed, in this gauge P and y are not independent,

1
M ', ) x, y, —. Z(q„)= —i dA dC dCC, (x)C)(y)

2 5g~

5A„'(x) = (D„"C')(x}5~,

5C'(x) = —.
'
g,f"C'(x)C'(x)5~

= &g,(cxc) (x)5A. ,

(3.3a)

(3.3b)

5 C '(x) = ——Sq A "'(x) 5A, ,
p

(3.3c)

where 5A. is the x-independent anticommuting in-
finitesimal parameter of the transformation. "
With the help of the identity

Ex(CxC) =2(BxC)xC, (3.4)

which holds as a trivial consequence of the Jacobi
identity for an anticommuting variable C (x}, in-
dependently of the fermionic or bosonic nature of
B, one can see that the Lagrangian Z is indeed in-
variant under the transformation (3.3):

5[D,', C~]=O, 5(CxC}=0,

(eC),e„D(C, ~ d (- p
(e„A")') P. =

2Qp

(3.5)

(3.6)

The Jacobian of the transformation (3.3) reduces
to unity due to the antisymmetry of the structure
constants f;» As usual, """W.l relate ordin-
ary Green's functions and Green's functions where
two external legs, a vector-meson leg, and a ghost
C& leg have been contracted; the latter functions
are in fact insertions of composite operators for
which we find it more convenient to introduce new
sources; we thus consider the generating function-
al Z (of course, the sources („$&, and J„are
antic ommuting objects),

x exp i (2+q„~ A")

(3.2)

Becchi, Rouet, and Stora' have derived the WI
from a gauge transformation containing only the
local part of the transformation (3.1}. For non-
Abelian gauge theories, these supergauge trans-
formations read

X(P)„, („J„jK)=)dCdCdde p ( (d x[D ~ P) "(x) A„( x)$, ( )Cx, (*)~C)(e(*), ,

d„'tx)D(C'(x) ~ -', d, K(x) ~ (CxC)(x)(I,

and the generating functional for connected Green's
functions 8' = ilnZ. We suppose that a gauge-in-
variant regularization has been introduced to de-
fine properly the generating functional Z; this

refers either to the regularization proposed by
Lee and Zinn-Justin, ' which makes use of higher
covariant derivatives and auxiliary fields, or to
the more tractable dimensional regularization of
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't Hooft and Veltman, "for which, however, the

proof of an unambiguous gauge-invariant prescrip-
tion valid to all orders is lacking at present. The
invariance of the integral (3.7) under any local
change of the variable C, (x) and under the trans-
formations (3.3) is expressed by the following
identities:

and

or
5Jp 5Jp ' 5Kj Mj

(3.14)

Our Ward identity and equation of motion then
read

(3.8}
~r or

" 5J„'(x) 5C;(x)
(3.15)

ldCdCdA d4x qj x D,C' x)+-g, , x) CxC, x)

1 ~
+ —$(x) S„A"(x) exp(iS) =0,

+0
(3.9)

where exp(iS) denotes the integrand in Eq. (3.'l).
Note that in contradistinction with the usual Ward-
Slavnov identities, ""identity (3.9) is not local in

x. Equations (3.8) and (3.9) can be reexpressed in

terms of S' as

and

fd. — ~ —a A, *)

6F 5F
5C(x) 5X(x)

(3.16}

5W
() 5T (

}-7(x) (3.10)

The introduction of an auxiliary functional F,

I'(A„, C„C,J„,K) =I'(A„, C„C,, J„,K)

l 6W 5Wd'x q„(x) -
(

)+pi(x)
( )

+ —g(x) 5„=0.1 5$'
a, " 5i}„(x)

(3.11)

The Legendre transform F of W with respect to
$„and $, is the generating functional for the

1PI Green's functions:

W( jq, (;, (;,Jq, K)+I'(Aq, Ci, C„J„,K)

+
2

~"A x ~~x

(3.17)

and the use of Eq. (3.15) allows to reduce Eq.
(3.16) to

l 5f' 5i 5f'
5A' (x) 5P„(x) 5C'(x) 5K'(x)

(3.18)

5W
i (3.13)

+ d'xq„x) A~x)+C,. x g, x)+, x)C, x) =O,

(3.12)
where

5S'
A 5q„'

Equations (3.15) and (3.18) are derived with
respect to A„, C, J&, . . . and yield relations be-
tween regularized form factors appearing in the
parametrization of various superficially divergent
1PI Green's functions; these relations give the
usual information about renormalization of ordin-
ary Green's functions" ' and imply, furthermore,
that the insertions of operators associated with
sources J„and K are multiplicatively renormali-
zable; this derivation is performed in Appendix A.
The renormalized generating functional Z" reads

z"(a„,~„i,, z„,R)= fdddcdce p) i d'* -'z(a„A„-ad„l' ——,'z z(a„A„—a A„) (A" AA )

——.
'

Z,g'(A „xA„}' —(s„A~)'+ Z,V,s'C,

+Z, gp(S„(A&x C) i+„)}A& +g, C, +C;g; +ZJz& S C

+Z, g J„'(A)'x C), +Z, zgK, (CxC), (3.19)
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where the counterterms Z& and Z& satisfy the WI
(2.5). The counterterms, which are determined
up to finite renormalizations, are fixed

(a) by imposing renormalization conditions at
some Euclidean point —p' (Ref. 12) in agreement
with WI on the superficially divergent 1PI Green's
functions,

(b) or by imposing in the framework of a specific
gauge-jnvarjant regularjzatjon ' a "mjnjmal re-
normalization" for which the counterterms are de-
fined according to Z; =1+singular pieces only.

More precisely, for a regularization involving a
dimensional cutoff A (Ref. 12), the counterterms
take the form

(+pa„(z', a))n" (—,
)

(g is an arbitrary mass scale),

whereas for the dimensional regularization" they
have the expression

~ a„()P, a}
~tf

(d is the dimension of space-time) .

Let us recall that in the latter regularization, the
mass scale p. enters the theory via the dimension
of the coupling constant g which is & e (Ref. 26):
g2 ~E'y2

This derivation of Ward identities is immediately
extended to the case where matter fields are intro-
duced (see Appendix B}.

The previous Ward identities (3.18) give no in-

formation about the variation of Green's functions

with respect to the parameter u. We extract this
information from another type of Ward identities
which we will now derive.

IV. VARIATIONS OF GREEN'S FUNCTIONS

WITH RESPECT TO THE GAUGE PARAMETER

The nondependence of p on a was discussed by a
number of authors. The arguments were based on
S-matrix gauge invariance and neglected infrared
divergences, which are important to the issue.
The first correct discussion was given by Caswell
and Wilczek'; however, they suppose the existence
of multiplicatively renormaljzable gauge-invariant
operators, which is hard to establish (see Sec. V}
and which is in fact irrelevant to the issue: As
we shall show in this section, Ward identities con-
tain all the information relative to the dependence
on the gauge parameter n.

Let us recall that Lee and Zinn-Justin have
computed, in the absence of the ghost sources F„.

and $;, the effect of a change of parameter nc;
only the source term q„ is affected:

q„'A]'-q„'(x) A]'(x)

(4.1)

We notice that this change can be obtained by a
simultaneous insertion of the operator D„'~C~ and
of the operator C,a„A]' for which we introduce a
new scalar source L:

z(q„, 4, (, , z„zz)= zzzczc~zz~ (Jz'~fz+Z)(~) A(~)+('()c t )+c( )4(») z„(*l»c (*)

(4.2)

L is an x-independent ' anticommuting source and the supplementary term LJ„A" is introduced for con-
venience as we shall see. The WI satisfied by Z then reads

4
~

!~ ~
~ ~

0 ~
~

6
I ~

»

~~
~ ~

~ ~
~

~

~

~ ~6Q' 6S' 6W 1 6g(f'x (q„+LJ„)~ +I +$, + —a„~( exp(

dC dC dA L d x C)~~D,")C) ——eqA")' exp iS}=0,
Qfp

(4.3)

where iS denotes the exponent in (4.2). Applying
the operator fd'x[5/5(;(x)] to the equation of mo-
tion of C,

dC d C dA[a„D]',.C,. (x) + g, (x) —fz)„A]'(x)]exp(iS) = 0,

(4.4)
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we obtain the counting identity"" Equations (4.3), (4.5), and (4.6) yield the WI

dA dC d C d'xC, (x)8+I'iC, (x) /exp(iS)

6W' 5%' 6$'
d'x((i(x)

(
)+L L

—LJ„(x)
( )

xexp(- iW). (4.5)

The change ~Z of Z under a variation &u, of the

gauge parameter is given by the functional for one
insertion of the operator —(1/a, )(S„AP)':

b Z = —i b W exp( iW-)

dAdCdC — ~ d g

2a,L ~ = d'x (i}„+LS„)~ +L,&8', - 6g 6'
6q„

6W 1, 6W 6W-
+Ei5~+ „5 i(i L45]

i ™0 Ou i

(4 7)

We perform the Legendre transformation, take the
derivative of Eq. (4.7) with respect to L, set L
equal to zero, and introduce the transverse func-
tional r defined in (3.17). This leads to the Ward
identity which expresses the variation of 1PI
Green's functions under a change of the parameter

x exp(iS ) . (4.6)

5r- ~- 5r 51, 5f' 51' 5r 5r
eo - u 6Au

' 6C; u 6Ju 6L 6Au 6Ju 6K 6C (4.8)

The Green's functions for two- and three-vectors satisfy the equations

62F 62I" ~- 62F 63l
5 p 5A„'5A~ 5A pi5A~~ 5A'„5A» 5A$5LLT4

8 6F 6F 6I' 63F
' 5, 5A&„5Ai5A» 5Ai„5A~5A»

'
5A&„aV5Ai 5A;5LeZi '("

6'I' 6'F'
5A»5A! 5Ai„5AyL~i'"

(4.9a)

(4.9b)

where all sources are set equal to zero after differentiating. Let us parametrize the Green's functions
involved in Eqs. (4.9) (see Fig. 1) as

6'F
5Ai„5Ai

= 5(y(P pPv -g „,P')f (P'} i

6'I'
5A, 5L~, = —5,&[g,„x,(P')+P„P„x,(P'}),

(4,10a)

(4.10b)

and at the symmetric point p =q'=z

i)a (
5A' 5&5A»

u & p

= iZ.f i,» CZ„.(e-P}p+if.p(« —e}p+gp„(P -«}.j~(P')+(e -«)„(« P).(P if}p&,(P')--
+ («„P.ifp -«,P p if„}G.(P') f, (4.10c}

5A, ~ 5L~»
= iifof

u»[happ(e

-P}py'i(P'}+[ifpp(P -«},-S.p(~ -«}p]~»(P*)+" ). (4.10d)
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With this parametrization, Eqs. (4.9a) and (4.9b)
for p = q =y yield

—2~0
B

I(p') =2I(p'}[1-X1(p')J,
0

(4.11a)

a
G, (p'} =3G (p'}[1-X(p'}J

-p'[y, (p')». (p')J I(p'),

P &iP

I'I('n(((P, q, 2') = p+q+l' = 0

(4.11b)
where the terms omitted in the parametrization
(4.10d) do not contribute to (4.lib) and where only
I, G, and X, are superficially divergent and
(1-X,)=O(g'). The variation of a0 gives rise
only to one new superficially divergent Green's
function, namely X& Gauge invariance connects
the insertion of (B„A")2, which is of dimension
four, and the insertion of DJ'C~(x)(V,B„A()(y),
which, for power counting, acts as an operator
of dimension one. Thus due to Ward identities
(4.11) only one new renormalization, the wave-
function renormalization, is necessary: This is
achieved by the "minimal" renormalization. In
the usual renormalization scheme supplementary
counterterms arise: The relation between these
counterterms yields a differential equation for P.

The minimal" renormalization leads to a bare
coupling constant g, independent of e. This can be
seen by a recursive proof. Suppose that we have
introduced all counterterms, including those for
the source L, needed for the renormalization of
graphs with number of loops less than or equal to
n, and that the bare coupling constant relative to
order n satisfies Bg[0"]/Ba =Bg/B a[0"]=0. The equa-
tion of motion for C (3.15) implies that I, is multi-
plicatively renormalizable [in fact another inde-
pendent counterterm, ZLK ~ t, is needed; how-
ever, this extra term brings no change in Eqs.
(4.9}J;thus the bare Green's functions obey Eqs.
(4.11), where all functions I, G, 1';, and X, are
understood to be bare functions and depend on Qp

and g, . We introduce the renormalized functions
up to order n:

(4.12a)

(4»b)
X„2(p',g, o(}= Z["]X', 2(p2, g„(20), (4.12c)

8 (p2 + ~) + Z[n](Z[n])1/2 yn (p2 + ~ )

(4.12d)

where the same counterterm Z appears in Eq.
(4.12c) and (4.12d}. Taking into account Bg/B(2[0"]

=0 and eliminating (20Ba/Ban between Eqs. (4.11a)
and (4.11b), we obtain the following identity:

(B/B~)] [[G"/(I")"'J P'I'(&', +».')
(B/B a) lna I 2X", G"

jv kp

~'r
[]A'„[]I.BZ'„(P) =

jc

M f gag gLg Jk
p+q+r =0

FIG. 1. Graphical representation of the Green's func-
tions involved in Eqs. (4.9).

is of order (n+2) and can be set equal to zero.
This completes our proof: Bg["+ ']/B(2 = 0. The
"minimal" renormalization of 't Hooft and Velt-
man" yields in a, natural way

8$—=0
Cj Q

What happens in other renormalization schemes'P
Suppose that we impose the following renormaliza-
tion conditions:

I ( l2') = (]((g,a)-
= 1+0(g2),

G'(-] ', - }]',- ] ') = 0(g, ~)

=1+0(g2) .

(4.14)

The divergences of functions I", G", and X, ap-
pear only at order n+1, whereas Y, and Y, a,re
divergent only at order (n+ 2); I, G", and X~1

have an expansion 1+O(g'), in contradistinction
to Y, and Y„which are of order g'. In the "mini-
mal" renormalization, the counterterms gZ, and

Z3 are identified order by order in perturbation
theory with the singular part of the superficially
divergent Green's functions -gG and —I", re-
spectively. Thus Eq. (4.13) says that the quantity

(n+ 1)
go (Z(n+ () 2 Z(n+1))
8+ BQ



12 WARD IDENTITIES AND SOME CLUES TO THE. . .

Equations (4.11) tell us that the expression

(a ja~, ) In(gq/y' '), tP(Y", +2Y', )

(a jao.,) Ino. p 2X,"g (4.15}

is finite, or equivalently that the function p, de-
fined by Caswell and 5'ilczek, ' is finite:

ag/ac. ,
a (y/a(yo

' (4.16)

This is the only information relevant to our dis-
cussion which we extract from WI (4.15); Caswell
and Wilczek derive it from the renormalization-
group equation satisfied by a postulated gauge-in-
variant and multiplicatively renormalizable oper-
ator. The identity

8 8 =0
f)t p, gp

8 QP

expressed in terms of the functions p, P, and 5,
with 5 = p, ao.jap)„, yields the result of Ref. 9:

BP BP BP 8 2 85
=P ———p —+ —[ap]+p'—

8Q Bg Bg BQ g
(4.17)

Let us make a comment about infrared divergen-
ces. The choice of p2 =0 would trivially realize
the independence of P with respect to a [Eq. (4.15)].
However, the functions Y, and Y„which have di-
mension —2, are inf rared-diver gent. The condi-
tion aP/ao, = 0 holds if and only if p = 0; at the two-

loop level Eq. (4.1 I) reduces to

[pi' i15t i l]
~Q ~Q

~r, - gr ~r - or
-2Qp ~

= ~~x A0«0 - " eA„

gr - er+a C ——K
5C 5K

or ~r ~r ~r
+ 0

&A p 6J„5K
(4.18)

In terms of the functions X, and X„

Explicit computation for the renormalization con-
ditions

G =I =1 at P2=- p, 2,

yields a nonzero value of p~'~
~

At last, let us consider the Ward identity (4.8)
for Green's functions with external ghost legs. As
noted above, we are faced with a new divergence;
we must introduce a counterterm aLKC which

allows us to ensure the multiplicative renormaliz-
ability of the source L and which modifies Eq.
(4.8) according to

+ ~ 0 0 (4.19)

where the dots denote less-divergent terms irrele-
vant to the "minimal" renormalization. This equa-
tion gives no new information concerning the varia-
tion with respect to o, of Z, /Z, in view of identity
(2.5). However, we shall need it for the study of
the properties of our gauge-invariant operator 0,'.

V. WARD IDENTITIES FOR THE OPERATOR 01

In this section we fir st derive the Ward identi-
ties satisfied by the bare Green's functions with
one insertion of Ol = F pv2. Then the bare operators
0, and 0, are shown to satisfy the same Ward
identities as 0, . Finally, the expression of the
multiplicatively renormalizable operator 0', der-
ived in Sec. II is used in connection with Ward
identities of the second type (Sec. IV) to recover
the result of Sec. II that the anomalous dimension
of 0,' is Q-independent.

A. Ward identities for 0,
The bare operator 0, is invariant under gauge

transformations (3.3); thus the Ward identity
(3.18), as well as the equation of motion of the
ghost (3.15), are unaltered by the presence of the
source term N, for operator 0, :

53r
" 5A'„5A&50

(5.1)

which implies the transversality of this function

a'r
5+$50 IJ(P A JV P„PV) 0 (P

j/ 9 1

and at the symmetric point (P' = q' =r')

(5.2)

Io G+IGo =Io G+IGo + (5.3)
1 l. 1 1

where the amplitudes I, G, 7, and G are the super-
ficially divergent form factors involved in the vec-
tor and ghost propagators and vertices (see Ap-
pendix A for precise definitions) and where the
index 0, refers to the same functions with one in-
sertion of 0, . Here and in the following, we work
with the "minimal" renormalization and neglect
in the identities all less-singular terms denoted

by dots. Similarly, another Ward identity con-
nects the functions with four vector legs to the

previous amplitudes. All the previous identities

O'I'

GC;5K)5L

the identity (4.18}for Green's functions evaluated at
at the symmetric point reads

( +
2

r'""=
2 X, +p 1 —X, + X, —a r&"'~

0
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will be referred to as identities of the first type.
Identities of the second type constrain the vari-

ation with respect to a of the Green's functions;
they are obtained from Eq. (4.19) by derivation
with respect to the source 0,. We eliminate
among the equations for different values n and p
the unknown form factors corresponding to the in-
sertion of operators I and J„. Let us quote for
n =2, 3 and p =0 and p =1 the identities

I'g'» IP"
o 8 I (3,0) 2 r(2, 0) + ~ ~ =0,

ao
(5.4)

~(o. ) ~( )
~ ~(2,0)

01
0 ea P(0, 1) P(1,1) 2 p(2 ~ 0)

0
(5.5)

B.Ward identities for 02 and 03

We show here that the bare insertions of oper-
ators 0, and O„which are coupled by renormaliza-
tion to operator O„satisfy the same type of Ward
identities as those for 0, [Eqs. (5.1), (5.3), (5.4),
and (5.5)] (we emphasize that the latter identities
contain no more reference to operators I and J„).
To see this, we take advantage of the equations of
motion introduced in Sec. II [(2.11}and (2.29)]:

I (n.&) —*I'(n &)
03

rl," '& = (» ~ 2&&, r&" '& —mrl,
" '&.a

2 0 ga 1

(5.6)

The functions I'$" ~' trivially satisfy Eqs. (5.3) and

(5.5). Since 0, satisfies identities (5.1), (5.3),
(5.4), and (5.5) we consider instead of operator
0~ the operator (n 2a+B/OBa )1'o~" ~~, which reduces
to the following expression in view of the WI for
I'~" ~& [Eq. (4.19)]:

C. Ward identities for the renormalized operator 0',

We take for granted the result of Sec. II that op-
erator 0,',

0', =0, +4'(0, + a 0~) + $0~, (5.8)

is multiplicatively renormalizable for 4=yg /2P -1

(n,P)
(n p) n+2ao I'

=fnX, +2P[1 -X, +(X, —a))j+ ~ ~ ~ . (5.7)

The linearity in n and p ensures trivially Eqs. (5.1)
and (5.3) and the vanishing of the terms in paren-
theses in Eqs. (5.4) and (5.5). It is important to
note that the operators 0, and O„although they
satisfy WI, are not invariant under the transfor-
mations (3.3).

and Q = yog/2P. The Ward identities of the first
type [Eqs. (5.1}and (5.3)] are obviously satisfied
by the renormalized Green's functions with one in-
sertion of 0,'. Again the linearity in n and P of the
bare insertions of 0, + 20, and of 0, implies the
vanishing of the contribution of the derivatives
BC'(a„g,)/B a, and B P(o.„g,)/B o., to the WI (5.4)
and (5.5) for the bare insertion of 0,'. Thus the
bare operator 0,' satisfies the same identities as
the bare operator 0, . Equation (5.4) can be used
to show that the counterterm Z for the multiplica-
tively renormalizable operator 0,' is a-indepen-
dent in the minimal" renormalization scheme.
We introduce the counterterms Z„Z„and Z "l

and assume a(B/Ba)Z "i=0. Then the Green's
functions for 0,' renormalized to order n satisfy

~(3.0) ~(2,O)ro;' 3 ro;'
(3 ~ 0) 2 P (2,0) (5 9)

The divergences of these functions at order (n+ I)
are

VI. CONCLUSION

The gauge transformations introduced by
Becchi, Rouet, and Stora' appeared to be ex-
tremely useful for the study of various properties
related to gauge invariance. In particular we have

obtained by this method the results derived other-
wise by Caswell and Wilczek, ' namely, the a in-
dependence of the P function for a specific choice
of renormalization prescription. " This tool was
also well suited for the study of the renormaliza-
tion of the bare gauge-invariant operator F„„', for
which a direct method allowed an immediate com-
putation of the corresponding multiplicatively re-
normalizable operator. All operators coupled
through renormalization to F„„'satisfy the same
Ward identities as F„„', where all terms referring
to auxiliary ghostlike operators were eliminated,
although they are not invariant under gauge trans-
formations. Furthermore, it was shown that there
exists one multiplicatively renormalizable oper-

R(3 0) S(2,O)

div. part p (3 ) 2 p„(, ,)
= —Z (1 ——,}.

Thus it follows that (B/Bo. )Z =0 to all orders.
Let us note that there exists another multiplica-

tively renormalizable operator (0, + 2 0, + P'0, )
whose bare functions satisfy WI (5.4). However,
this identity says nothing about the a dependence
of its counterterm because (0, + ~ 0, + &P'0, ) in the
tree approximation gives a vanishing contribution
to (5.4). Indeed, the corresponding anomalous di-
mension (2.27), y, =o.sy/Ba, depends explicitly on

a ~
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ator whose anomalous dimension is a-independent
due to Ward identities. Finally, this example
shows that the non-gauge-invariant operators
coupled to Fpv2 by renormallzatlon cannot be
ignored for the computation of this a-independent
anomalous dimension, even at the one-loop level.

We conjecture that the same conclusions hold
for any gauge-invariant operator: A bare gauge-
invariant operator couples by renormalization to
all operators which satisfy the same Ward identi-
ties; to each bare gauge-invariant operator cor-
responds a multiplicatively renormalizable oper-
ator which satisfies similar Ward identities and
which possesses an a-independent anomalous di-
mension. It seems hard, however, to derive the
expression of this operator on the basis of Ward
identities only. For the present, we feel that our
analysis through Ward identities could be success-
fully applied to the study of the renormalization of
twist-two gauge-invariant operators. Qn the other
hand, it might be simpler for the study of matrix
elements of gauge-invariant operators between
physical states to consider Green's functions with
insertions of such operators and without external
legs." An alternative and attractive approach is
provided by the axial gauge: In the example stud-
ied here, and in this gauge, F„,' is coupled by re-
normalization only to itself, and the correct gauge-
invariant anomalous dimension is obtained to all
orders in perturbation theory; the complications
due to the mixing with non-gauge-invariant oper-
ators are thus avoided. Both from the fundamen-
tal and computational point of view, it would be of
great interest to understand the quantization in the
axial gauge.

Finally there remains another tough problem:
the possible occurrence of non-gauge-invariant
operators in the Wilson expansion and, eventually,
the vanishing of their matrix elements between
physical states. Intuitively, any operator corre-
sponding to an a-dependent anomalous dimension
should not be observable; this calls for a clean
proof.
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are exploited for the renormalization procedure:

ar ~r
" hT'(x) 5C'(x) (Al)

and

- 8r 8r Vr sf' -„,
&&'(x) 5&'(x) &C&(x) MC~(x)

A

where I' denotes

(A2)

r"=r+ — [8 A ( )]'d' .2a

We introduce the following parametrization (Fig.
2):

(A4)

g2p p ~ p
~ . ... .~ J )%- " J

~C'~Z&
(—~P(L)

$2I.

51
5Aq 5C'&C'

. 0 O.
I J

g3p

&A.„&C'~J~'

where P„ is the incoming momentum of the ghost.
Here and in the following, the arguments of the
functional F are set equal to zero after differentia-
tion. Then differentiating equation (Al) with re-
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APPENDIX A: USE OF WARD IDENTITIES
FOR RENORMALIZATION PROCEDURE

5 I"

5C„5C,&K;

0
k

This appendix is intended to show how easily
the WI [Eq. (3.18)] and equation of motion (3.15)

FIG. 2. Graphical representation of the Green's func-
tions involved in Eqs. (A4), (A5) and (A7).
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spect to C gives

2-
5C(5P,

— P-i(P )5~y, {A5)

which tells us that no ghost mass counterterm is
needed. Qn the other hand, by differentiating Eq.
(A2) with respect to both A„and C, we obtain

gsz5,5,5~,
= gf;)~[g „A-(P')+P „PRi(P')

+P „e&.(P')+P.4 „H.(P')

+ 4 „q~,(P')], (A7b)

5 I'
(A6)

Thus the two-vector Green's function 5'I'/5A'„5A'„
remains transverse and no counterterm of the
form (s„A~)' is introduced in the Lagrangian.

We now have to introduce further parametriza-
tions. For the sake of simplicity, and because it
is sufficient for the purpose of renormalization,
we parametrize the three-leg Green's functions
at the symmetric point p' =q' =r'. Besides the
functions defined in (4.10), we shaD use the follow-
ing notations (see Fig. 2):

APPENDIX 8: WARD IDENTITIES IN THE PRESENCE

OF MATTER FIELDS

The derivation of Ward identities by means of
gauge transformations developed in Sec. III is
immediately extended to the case where matter
fields are introduced. Suppose for example that
we consider spinor fields, which transform like
some irreducible representation of the gauge
group; the infinitesimal transformations of the
fields read

5g, (x) =ig,T,',5&v'( )gx, (x),

5g. (x) = ig, it, (x}T-'„5&v'(x) .
(Bl)

divergent amplitudes, namely I or I, by super-
ficially convergent amplitudes, of order O(g'),
such as G, or H, . In the "minimal" renormaliza-
tion procedure described in the end of Sec. 0,
these terms are of no importance for the deter-
mination of the counterterms. In contradistinction,
if one chooses to impose some renormalization
conditions at a fixed Euclidean point, one then has
to take these terms into account in order to have
constraints consistent with gauge invariance.

For the sake of completeness, we should also
derive the relation between three-vector and four-
vector vertices. This is simply obtained by fur-
ther differentiation of Eq. (Al).

Finally, we obtain the renormalized generating
functional of Eq. (3.19).

~Sr
5C,5C,5', =gf "'NP'} (A7c) The Hermitian matrices T form a representation

of the Lie algebra:

+p Hl+p 'qHs =G

p'&'+p ~ qH =G„with p q = —2p' .

(A8a)

(A8b)

Thus G, is superficially convergent, and the re-
normalizations of G and H are related.

Similarly, by differentiation of Eq. (A2), we ob-
tain

Apart from the four-vector Green's function, only

the Green's functions involved in Eqs. (4.10), (A4),

(A5}, and (A7) are superficially divergent. From

(Al), one now easily derives the relations

[T', T~]=if,,~
T~. (B2)

We now want to use the special gauge transforma-
tion (Bl) where

5~'(x) = C'(x)5a

as studied in Sec. III.
Besides the Lagrangian of the g field and source

terms for the g and g fields, we also introduce,
as in Sec. III for the A and C fields, source terms
for the variations of g and g; we thus add to the
action of Eq. (3.7) the term

{0+G) I=~ i

and the important relation

[H+ ~P'(H, +H )] I =[6 —aP'G, ] I .

In view of Eq. (A8a), we write it as

6 I =G I+ ~ ~ .

(A9)

(A10}

'x t}',(x) (Q ™),~i', (x) + g, (x) it, (x) + i', (x) K,(x)

+ ig, g, (x) T,',C'(x)M, (x)

+ ig, fi.(x)Z",,C'(x) q, (x)

(B4)

The dots denote a sum of products of superficially where D'„'g, denotes the covariant derivativ«f 0:
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It is easy to see that under gauge transformations
(3.3), (Bl), and (BS), the terms $,T',~C' and

T,',C'$, are invariant. The new Ward identity sat-
isfied by the 1PI generating functional is then
readily derived:

and the usual relation" "between charge and
wave-function renormalization for the g, field fol-
lows immediately.
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