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The Rarita-Schwinger equation for a spin-3 particle with minimal electromagnetic coupling is solved
2

completely in the case when a constant homogeneous external magnetic field K is present. It is shown
that the spectrum of energy eigenvalues includes complex values if X is such that q = (2eÃ/3m') & 1,
and further that the norm of the Rarita-Schwinger wave function (i.e., the total "charge" integral
defined from the Lagrangian) which is positive definite for g & 1 becomes indefinite (even after taking
account of the constraints) when q exceeds unity. These results confirm that the diAiculties in

quantization first discovered by Johnson and Sudarshan are a reflection of the indefiniteness of the
norm which appears already at the c-number level, and suggest that the nature of the energy spectrum
(whether or not complex values are present) in the presence of very large magnetic fields would

provide a quick means of predicting whether such diHiculties would arise in quantization.

l. INTRODUCTION

Relativistic wave equations for particles of
arbitrary spin have been under investigation for
nearly four decades now, ' but the question of con-
sistency of higher-spin theories in the presence
of interactions still remains a live problem.
Though one learned long ago to formulate equa-
tions free of algebraic inconsistencies' by de-
riving them (including constraints necessary to
ensure uniqueness of mass and spin} from a suit-
able Lagrangian, more subtle types of incon-
sistencies have come to light in recent years.
The earliest of these was the demonstration by
Johnson and Sudarshan' that in certain manifestly
covariant spin-~ theories with minimal electro-
magnetic coupling, quantization via Schwinger's
procedure4 leads to an indefinite sign for certain
formally positive-definite quantities (anticom-
mutators of fields) and to apparent violation of
Lorentz invariance. ' A similar result has since
been shown by Hagen' to hold in the case of a spin-
—,
' field coupled linearly to a spinor field and a
scalar field. ' Another surprising type of difficulty
which manifests itself even in the context of c-tm. —

mber theory was brought out by Velo and

Zwanziger, ' who showed by using the method of
characteristics' that the propagation of the Rarita-
Schwinger field" for spin--,' minimally coupled to
the electromagnetic field is noncausal. Extensive
work" following this discovery has led to the iden-
tification of a variety of higher-spin theories
wherein this type of difficulty occurs and a couple
of spin--, theories which are free of it."'" Yet
another type of inconsistency is the appearance of
"normal modes" (or "stationary states" in the
quantum particie picture' ) whose frequencies

cease to be real when the magnitude of the ex-
ternal fields exceeds some critical value. This
had been shown earlier to happen in the case of
spin-1 particles with anomalous magnetic moment
moving in a homogeneous magnetic field""
(h. m. f). The method developed by one of us" for
tackling that problem is easily extended to higher
spins, and one of our objectives in this paper is
to make a systematic analysis of the behavior of
spin--, particles (described by the Rarita-Schwinger
equation with minimal electromagnetic coupling)
in homogeneous magnetic fields. Apart from its
intrinsic interest (especially as the first non-
trivial example of an explicit solution for spin&l}
the analysis is of value in that it sheds a great deal
of light on the circumstances with which the vari-
ous types of inconsistencies are associated. In
particular, it brings out the fact that the Johnson-
Sudarshan inconsistency, the indefiniteness of the
norm of the c-number wave functions, and the ap-
pearance of complex energy eigenvalues in the c-
number theory —all occurring for g & 1—are all
closely interrelated phenomena. The relation be-
tween the first two was shown by Velo and
Zwanziger' and is confirmed by our explicit
analysis. The connection between these and the
occurrence of complex energy modes, demon-
strated in this paper, does not seem to have been
known so far." Our results reinforce the inference
from the work of Velo and Zwanziger that valuable
insights into possible inconsistencies in quantiza-
tion can be gained from appropriate studies of the
c-number theory. "

The presentation of the material of this paper
is as follows. We consider first, in Sec. II, the
problem of a Dirac particle with anomalous mag-
netic moment in a h. m. f. This section serves to
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display the method of solution clearly in a rela-
tively simple context before we go to the main
problem. We reduce the solution of the equation
to that of an eigenvalue problem for a 4 &4 matrix
by exploiting the intimate connection of the prob-
lem of a charged particle in a magnetic field to
that of a harmonic oscillator. The energy eigen-
values found do coincide with earlier determina-
tions, ' ' ' but our treatment is vastly simpler.
In Sec. III we take up the Rarita-Schwinger equa-
tion for spin--„with minimal coupling. Observing
that the equations for certain components de-
couple from the others (in the case of a h.m. f.}we
reduce these equations to a matrix eigenvalue
problem, and solve it to find the stationary-state
wave functions and energies E of the spin- —,

' par-
ticle. The matrix in this case turns out to be non-
Hermitian, and its eigenvalues E are found to be
all real if and only if K is below a critical value
R, = (2m'/2e). Above K, complex eigenvalues ap-
pear (besides the crossing over of positive eigen-
values to the negative side and vice versa in the
case of some states). At the same time, the
Lorentz-invariant norm (the total 'charge") of the
Rarita-Schwinger field ceases to be positive defi-
nite. This fact is demonstrated in Sec. IV, where
we first consider the norm of energy eigenfunc-
tions, taking due account of the constraints which
cause some components of the wave function to be
expressible in terms of the others. It is pointed
out that though any state corresponding to a com-
plex value of E has zero norm, its scalar product
with a state belonging to E* is nonzero, and such
pairs of states do contribute to physical quantities
(the contribution to the total charge is of indefi-
nite sign). The final section (Sec. V) is devoted to
a discussion of the results.

II ~ DIRAC PARTICLE WITH ANOMALOUS
MACvNETIC MOMENT IN A H.M.F.

We consider first the Dirac equation with an
anomalous magnetic moment coupling"

where

Since we are seeking stationary-state solutions
characterized by the time dependence e '~', we
replace n'=-P' by E. Then writing f in the parti-
tioned form

~=i") (6)

we can write (3) as the following pair of equations
for Q and y:

1
e —1+ —& P ——(o"s)y =0

2 3 m
(6a)

c —1+ —o, —2$)~' &~g++ ae ++@3 =0,

(10a)

where

e = (E/m) and $ = (eX/m~) .

As indicated in the Introduction, we shall solve
the (partial differential) equations (6) by convert-
ing them into an ordinary matrix eigenvalue equa-
tion. This is done by exploiting the fact that ~, and m

(&, = v, +i &,) obey an algebra equivalent to that of
a simple harmonic oscillator. In fact, with

a=(2m*() ~'v, at=(2m'&) ~'v, N=ata

(6)

we have

[a, a"]=1, [a, s,]=0, [at, v, ]=0,

[Wa]=-a, [&, a"]=a'.
Since n, commutes with all other operators ap-
pearing in (6), we can replace it by its eigenvalue

p, =(2m'$)~'a„where a, is any real number. In
terms of a and at, Eqs. (6) may then be written as

E~ =-E» =X (a constant), (2)

with all the other components of Eu„vanishing.
Equation (1) then reduces to

~

~
~

u&
y m+m- —e I' „&=0,

4m

where v„=P„+eA„=B/Sx"+eA„; A„ is the elec-
tromagnetic potential and K is the strength of the
Pauli interaction. We are interested in solving
this equation in the particular case of a constant
h.m. f. along the z direction, so we set

with a, = —,'(a, + ur, ) .
Let us now define states ~n, u& and (n, P) by

X(n, a& = n[n, a&,

a, ]n, o& = )n, a&, o, )n, @= )n, P&, -
m=0, 1, 2, . . ..

(10b)

ed'
n+m — Z, /=0,

2m 3 If we imagine Q and g to be expanded in terms of
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these states, it is readily seen by inspection that
Eqs. (10) couple any state I&z, @ to In+1, o&

(n = 0, 1, 2, . . . ), while the state IO, cz& is decoupled
from all others. So the solutions of (10) are found
to be of the general form

P =c In+1, z»&+c In P&

X=c,In+1, n&+ cIn, P

III. THE SPIN-2 (RARITA-SCHWINGER) PARTICLE
IN A H.M.F.

The Rarita-Schwinger equation for spin--,' par-
ticles employs a 16-component vector-spinor g„
for the wave function. In the presence of minimal
coupling to an external electromagnetic field F „,,

the Lagrangian density is given by

n=0, 1, 2, . . .

apart from the special solution

X=c,'10, a& . (12b)

(15)q"-(r v+mB)„"q„.

Here &J„&=/ zy&' and the matrices (r )„and B„are
given by

The c's here are constants which are as yet un-
determinedd.

Substituting (12) in (10) and separately equating
the coefficients of In+1, n& and In, g on the two

sides we obtain four linear algebraic equations for
the c, which may be written as

with

If = --,'(3Wz+2W+ I),
T = (3W'+ 3W+ 1),

(16}

1 ——
2

(2&}z"a,

Hc =6c,
with c=column vector (c„c„c„c,) and

pn+y

where W is arbitrary (except that Wt --,'). Since
the parameter W is without physical significance'"
and can be chosen at will, we shall henceforth set
W =Q.'4 With this choice, the Euler-Lagrange
equations obtained from (15) by variation with re-
spect to g" are

1+—
2 p„„(2))'~'a, (y z& —m)&I&»+zy»(y»+2m)y &I&=0 . (1'I)

(2l)"'a. p n+ ].
—1-—

2

On contracting (17) successively with y" and z&"

and comparing the resulting expressions, one gets
the constraint relation

P n+z -(2()"'a 2 ie 2 je
(18}

(13b)

where p„= (2t'n)'~ . Since H is Hermitian its eigen-
values are all real, and they may be obtained from
the characteristic equation

[(e' —2&a,') —(-,'$'&z'+ I +p„„')P= ('~'(I +p~, z) .

We get

e'=2)a, '+ [(I +p„„')z&'+-,'tw]', n=0, 1, 2, . . . .

(14a)

Feeding (18) into (17), we obtain the true equation
of motion:

1 ie
(y z& —m)&t„+ 3

—,y„(y &&+ 2m)y F &) =0.
(19)

It is a simple matter to verify that (19) and (18)
are together equivalent to (17).

When the externa, l field is a homogeneous mag-
netic field, Eq. (19) reduces to the form

(r »- m)0& —w'r&b"' »2+m)( ,y4-y y, )=0,

In the special case (12b), the value of e' turns out

to be where

(20)

e'=2)a, '+ (1 ——,'$~)', (14b) (21)

which is the same as (14a) but with n =-1 and the
lower sign taken in +. Clearly e'&0 for all n and

(, as it must be. Our results agree with those
given in the earlier literature, "' ' ' but the deriva-
tion here is far simpler.

and

It is easy to see from (20) that the equations for
p, do not involve g, and go. The coupled equations



12 R AR IT A —S C H%'I NGE R P AR TI C L E S I N HOM OGE NE OU S. . . 461

I',-'v, y =y, (y x+n~)q

-my (r v-2~)(r, t r0-. ),

where

(22b)

for the former may be seen to be

(+) ~
~r, v.~.=r.(y v+m)y.

q-y,y, (y n —2m)(y, g y-g+} (22a)

(23a)

(23b)

The solution of Eqs. (22) is facilitated by partition-
ing each of the g, into two-component entities P,
and g, :

(24}

Introducing this in Eqs. (22} one obtains

[(E -m)+-'t)(& —2~}(1+a )jp.—[o'x t}o.-(o x)o ']X. -t)o. (o ~}o.X =o,
[(E — ) —~(E —2 )(1 —,)]p +t)o (v w)o X„—[a w+7)cr (o w)o, ]X =0,
[ ' -t} .(

' }a j0.+n .( ' ) .0 —[(E+ )+W(E+2 )(1+,)]X.=o,

(
' }o Q —[ ' +'q ( ' S,jp +[(E+ ) —~(E+2 )(1 —,)]X =0 .

(25a)

(25b)

(25c )

(25d)

In writing Eqs. (25), we have replaced vo by E.
As in the Dirac case, P, and g, can be expanded
in terms of ln, n) and ln, P) . Knowledge of the ef-
fect of the operators a and at, Eq. (8), and of o,
and 0, on these states enables us to infer from
Eqs. (25) that the following admixtures of the
states ln, n), ln, P) occur in Q, and X, :

Hu =E'u (e =E/m ),
where u =col. (u„u„u„u,) and

1+2'
1 +'g

P n+2
(28b}

y, =u, ln, n)+ v, ln —1, p)

=u, in+2, n)+ v, in+1, P)

x, =u, ln —1, p)+ v, ln, n)

=u in+1, P)+ v in+2, n)

(n=1, 2, . . . ) .

(26)

Besides the above expressions for general n, the
following special cases also exist:

y, =u, lO, n&, tt =u, l2, n&+v, ll, p&,

x, =v, lo, n), x =u, ll, P)+v, l2, n);

g+-—0, g =u, ll, n)+ v, lo, P)

X. =o, X =u. lO, t3'+v. ll, n&;

@,=0, Q =u lo n),
x.= o, x = v. lo, n& .

(27a)

(27b)

(27c)

On substituting (26) [or (2'I}] into (25) a.nd equating
coefficients of ln, n), etc. , we get a set of linear
equations for the u's and v's. If P, =0 the u's and
v's get completely decoupled in the equations.
Considering now only the equations for the u, 's,
obtained by substituting (26) in (25) with P, taken
to be zero, we find that they can be put in the
form

~P n+I P n+g

1 —g

-2q(1+p„„'}a+(1+p„„')(1+p„„'-g') =0 .

(29)

Though the solutions of this quartic equation
could in principle be given in a closed form from
general theory, "their expressions would be so
complicated as to be of little use. So we shall
content ourselves with determining whether any
of the roots of (29) are complex. It is known"
that for a general quartic of the form

ax +4&x'+6cx'+4dx+e=0 (3o)

all the four roots will be real if and only if the

with p„= (3nt))'~'.
It is important to note that, in contrast with the

spin--, case, this matrix is &0~ Hermitian and
hence its eigenvalues are not constrained to be
real. In fact, when g&1, complex eigenvalues c
do occur for some n. To see this let us consider
the characteristic equation for 0, which may be
verified to be

(1 —q')e + 2qe 3 -[2(1+p „„)+ q (1 —p„„~)je'
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inequalities

5 & 0, a 'I —12K' & 0, and K & 0 (31)

(1 —3}')e'+ (1+23}—3}3)e' -(1+43}+23}'—33}3}e

—(I +63) +83) —33}')=0, (34a)

hold simultaneously, where K, I, and b are func-
tions of the coefficients &, 6, c, d, and e, defined

by

(1 —3}}e2 -3}e —(I +3I ) = 0,
e —1=0,

(34b)

(34c)

K = ac —b', l = &e —4bd+ Sc',
(32)

b, =I' —2'' with J = ~ce+2bcd —+d' —eb' —c3 .

respectively. Equation (34c) shows that for the
state given by (27c), e is independent of 3C. From
(34b) we find that for states of the type (27b),

Calculating these for the case of the quartic equa-
tion (29), we find after some labor that

3) + (4 —3312)'~2

2(1 -3)) (35)

(33}1»—I, (33)v2+ I
K= — 'g +

4
7l

—p„„'(1-3}')(2 3)')- (33a)

a2I 12K' = 44-)2 [(-16+20g2 —83}4+33)')

+ 2p „„'(-8+173I2 —123)'+ 3313)

and

—p.„'n'(I -n')'], (33b)

(33c}

where

A0= (-16+81}'+33})

A, = (1024 —1216@'+4323i —1323} + 453i'},

A, = (1536 —20963)'+ 11603}'—4433}3+ 663}3},

A, = 2(512 —7763}2+4343i' —1313}3+93l3), (33d)

A4 = (25 6 —400' + 1453}4 + 123I3 —113}')

A, =3)2(16 —263)'+ 10' +3)3),

A3=3)4(I —3)2) .

These quantities are seen to be linear combina-
tions of polynomials in 3} (with p's as coefficients}.
It is easy to verify that each of these polynomials
has a unique sign throughout the interval q' &1 and

to show therefrom that the conditions (31) are
satisfied for g'&1. On the other hand, one sees
from (33a) that the condition K& 0 fails for 1&3}2

& 2 if n is sufficiently large, so that some of the
eigenvalues & are complex under these conditions.
Further, for any 3I' & ~3 the special solutions (27b)
are associated with complex e [see Eq. (35) below].
Thus, the eigenvalues e will be real for all the
eigenstates if and only if g'&1, i.e., the magnetic
field X has a value less than a critical value X,,
=2(m2/e). In the special cases (27a)-(27c), the
equations for & are found to be

Inspection of Eqs. (36) shows that expansions
analogous to (26}exist for g0 and 1)13 in the follow-
ing forms:

(x. / (x.f
y3=u, in, p) + v, in+1, a),
X3=u3in+I, o)+ v. ln, p),

=u, in+1, a) + v, in, @

}t0=u, in, g + v, in+1, 42}

(n=1, 2, . . . ) .

(38)

On substituting these in (36) one obtains the coef-
ficients u„.. . , &, explicitly in terms of u„. . . , u, :

Both of these values of e are real for 3} & 2/W,
though one of them crosses over from the positive
to the negative side (passing through infinity) as
3} increases through the value 3I =1. Finally, one

can convince oneself with the aid of the theory of
cubic equations that all the roots of (34a) a,re also
real if g &1.

The equations for the coefficients v, in (26) and

(2'I) can be set up in an entirely analogous manner
and solved. The energy'eigenvalues obtained are
found to be just the negatives of those discussed
above.

Returning to the wave function g„, we observe
that the spinors P, and It}, can be expressed corn-
pletely in terms of P„tt}„and their space deriva-
tives. In fact, by manipulating (20) and (18), one
can readily show that (with v3 = 0)

(y1 1 y2 2 ™y0~0 ( li 1 2~2)+ 2 7m(y '4 y 'II1)

(36a)

(y 1 I y 2v2 m }y343

=3}Z3(v,g, +v2$2)+i (3}+Z3)(n,'1I12 —312f1,)

+m (1 —23)Z3)(y, p, +y2$2) . (36b)

(1+Pn+1 }u3 [(1+21)) + 2pn+1 (1 + 21l)1 u1 2pn+1pn+2 u2+ 2pnu3+ 2'(1 1}}pn+1u4 &
(39a)
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(1 +Pn+1 )un 2( ))P 4+1 u( 2pn+2u2 2Ptlp n+1 3 [2( 1)pn+1 ( 2 7)]u4

2 1 1 1 1 2(1 + pn+1 )u7 2(1 + ))) pn+ 1 u1+ 2pn+2 u2+ 2pn pn+1un+ 2(g +pn41 )u4 t

2 1 2 1 1 1
( +Pn+1 )un 2(3) Pn+1 )u1+ 2Pn+1pn+2u2 2Pnu3 2( )))Pn+ 1 u4 '

(39b)

(39c)

(39d)

which may be rewritten as the pair of equations

o )t )(, -o 3(, )t + —,'m(1-o3)@ =0

o v (t), -o w, Q ——,'m(1-o3))t =0.
(41a)

(4 1b)

On substituting (26) in these equations one obtains

Pn+1~1 Pn+2 N2 (42)

and a similar relation involving v„v4, and v, .
These seem to lead to the paradoxical situation of
there being only three instead of foux independent
spinors for the spin-2 particle (and an equal num-
ber for antiparticles) at )) = 1. What actually hap-
pens is that the eigenvalue ~ corresponding to one
of the four states (for any given n) tends to infinity
as g- l; this may be seen from inspection of Eq.

The solutions for 4)3 a,nd (I)2 corresponding to the
special cases (27) as well as the expressions for
v„.. ., v, in terms of v„.. . , v4 can be obtained in
an analogous way. These expressions together
with Eqs. (39), (28), (26), and (38) determine, for
each n, a solution of the wave equation (20) for
p3=0. The set of all solutions for all n Iincluding
the special solutions (27)] form a complete set of
eigensolutions of the problem.

The above discussion holds good for any pc l.
When g = 1 something peculiar happens: I', in
(22b) reduces to the singular matrix 2(1+Z3), so
that on projecting Eq. (22b) to the singular sub-
space of this matrix by applying the projection
operator —,'(1 —Z3), one gets a constraint relation

(1 —z3)(y v +m)(I)

-(1 -E,)x (y ~ 3( —2m)(y+(I) -1' 0+) =0

(40)

(29). Simultaneously the norm of this state tends
to zero, as we shall see in the next section, but

its contribution to the energy of the spin-& field
remains finite.

IV. THE SCALAR PRODUCT AND INDEFINITE METRIC

The calculations of the previous section show
that the spectrum of values of E for the Rarita-
Schwinger particle in a h. m.f. cannot be purely
real for arbitrary values of the external field.
However, for X &X„ the energy spectrum is real
for all n. This behavior of H is closely paralleled
by the behavior of the scalar product in the theory:
For X &X„ the scalar product is positive, while
it becomes indefinite if X exceeds K,. This will
now be demonstrated.

The scalar product in the Rarita-Schwinger the-
ory is

(t, t)=- fn'*(4'"t. ~ ltt 4)'(t t)l . (43)

The expression on the right-hand side can be re-
duced to a sum of contributions from the eigensolu-
tions determined in the preceding section. (There
are no cross terms involving eigensolutions char-
acterized by different values of n. ) The contribu-
tion from a typical eigensolution is

—. (Iu, l +lu, l )+ (21 3))(lu, l'-+Iu. l')

+(lu, l'+ lu. l'- lu, l'- lu, l'), (44)

plus an expression of identical form involving the
v's. We can rewrite this, after eliminating
u„. . . , u, using (39), as

(u, u) =u Mu, , u = column vector(u„u„u„u, )2 l+p„„ (45a)

where

(1+)7)'(3+p...')
Pn+ 1 Pn+ 2 ( 1 + rl)

P.(1+v)

—P„„P„„(1+ rl)

(1+P.„')
p.(1+)))

(1+p„„')

—P.„(1—3))

—p. p...(1 —rt)
(45b)

—P..2(1 n)——p. P...(1 rt) (1 —)7)'(3—+p: ')
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u~ Mu8 =OfOr e 8 (47)

This result is obtained directly from Eq. (46) by

multiplying on the left and right by u and u 8',

respectively, and using (28a} and its Hermitian
conjugate. In particular, the "norm" of u ", i.e. ,
u ' Mu ', is zero if e is not real. But

m =-u' "Mu' *'
an* =" (48)

is always nonzero. (Here a* is used as a label
for the eigenvector belonging to e„*). If we now

expand u as

CC= 1

(49)

we get

u Mu= pa*„a + 3R (50)

For q & 1, the quantity (50) need not be positive,
as already noted. Indefinite contributions arise
from terms corresponding to any complex con-
jugate pair of eigenvalues which H may have. Also,
any mode for which e at the particular value of
q (& 1) has a sign opposite to that at rt = 0 can make
a negative contribution to (50}. These facts are
easiest to see explicitly in the case of the special
solutions characterized by Eqs. (27b) and (34b}
where H and M reduce to 2 X2 matrices [consist-
ing of the second and fourth rows and columns
in (28b) and (45b), with s set equal to —1]. If u"
belongs to one of the eigenvalues (35}of this H,

This "metric matrix" is real and symmetric
(so that all its eigenvalues are real), and further,
the matrix H of Eq. (28b) is Hermitian with respect
to the metric M, i.e.,

(46)

However, M is not, in general, positive definite.
A necessary and sufficient condition for a matrix
to be positive definite is" that all its leading prin-
cipal minors be positive. In the case of the matrix
(45b) it is easy to see, by computing the leading
principal minors, that all of them are positive for
g & 1, while for any g & 1 this is not true. We see
thus that the scalar product is positive definite
for g&1 and indefinite for g&1. For g&1, the
positive definiteness of M enables us to express
it in the form M=8 R. It follows then from Eq.
(46) that the matrix H' =RHIf ' is Hermitian. This
means that the eigenvalues of II are all real for
q & 1„which is what we have shown in the preceding
section.

It is useful to note here that if u~ ' is an eigen-
vector belonging to an eigenvalue e of H as de-
fined in Eqs. (28), then

one can readily see that

u'~ M u"' = e(1 - q) (q —2) + 2(1 —g') + q (51)

V. DISCUSSION

It may be useful to summarize here the salient
points of what is known about inconsistencies in

higher-spin theories, taking the results of this
paper in conjunction with those of earlier inves-
tigations. When relativistic wave equations for
spin &1 were first formulated in manifestly co-
variant form, the supplementary conditions needed
to eliminate redundant components and ensure a
unique spin were found, on introduction of inter-
action with external electromagnetic fields, to lead
to inadmissible restrictions on the external fields.
One learned" to overcome such difficulties
through a Lagrangian approach wherein both the
equations of motion and constraints were derived
from a Lorentz-invariant Lagrangian density.
After eliminating algebraic inconsistencies in this
fashion, it came as a surprise when Johnson and
Sudarshan' showed that there is no possibility of
consistent quantization in the case of certain
spin-& theories with minimal electromagnetic in-
teraction. The difficulty they encountered, namely
failure of the positivity of the anticommutator of
field components, has now been shown to have its
roots in the c-number theory itself where, as seen
in Sec. IV, the sign of the Lorentz-invariant norm
of the wave function becomes indefinite when the
external field is made sufficiently large. Though
in early work the positivity of the norm has been
considered an essential requirement of free-Par-
ticle wave equations (and in fact has led to the re-
jection or modification of certain theories'9'o), it
does not seem to be known widely that even in

theories satisfying the above requirement the pos-
itivity might fail in the presence of interactions.
Efforts to devise simple criteria for checking
positivity in the presence of interactions (in the
c-number context) should therefore be an essential
part of any program to construct theories which
are consistently quantizable with a positive-defi-
nite metric. The observation in the present work
that breakdown of positivity goes hand in hand with
the appearance of complex energies" constitutes

(to within a positive normalization factor). This
quantity is negative (for 1&@'&—,') is e is taken with

the upper sign in (35). At q = 1 this value of e is
infinite, while the norm (51) becomes zero —a fact
which has been referred to in the preceding section.
As noted there, despite the vanishing norm, the
contribution of this state to the energy (which can
be shown to be u" MHu" = eu' Mu' } remains
nonzero and finite as g - 1.
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partial progress in this direction: It is very easy
to set up the equations in the presence of a homo-
geneous magnetic field and to check, in the limit
of large X, whether any of the eigenvalues become
complex. Theories which pass this test (no com-
plex energies) may, however, be unsatisfactory
for other reasons.

It may be noted incidentally that the existence
(or the nonexistence) of the type of difficulty dis-
cussed here does not affect the Heisenberg equa-
tion of motion, as has been shown by Mainland
and Sudarshan" for spin & and noted by Hagen"
for spin 1. It is also unrelated to the fact that Eq.
(20) ceases to be hyperbolic when q exceeds unity:
This may be inferred from the parallel case of
spin-1 particles with anomalous magnetic moment,
where also imaginary energies appear for mag-
netic fields exceeding a certain value, but the
equation remains not only hyperbolic but also
causal for all X. It would be useful to remember
in this connection that the question of causality is
determined by the behavior of waves with wave
numbers tending to infinity (infinite-momentum
limit) while the appearance of complex energies
(as the external field is increased) starts with

levels at the I,oozier end of the energy spectrum.
Finally, we wish to call attention to the fact that

the only half-integer higher-spin theories now
known (as far as we are aware) in which causality
problems do not arise in the presence of electro-
magnetic interaction are theories in which the
norm of wave functions is indefinite even in the
free case and states of more than one mass or
spin are present. The Bhabha equation, "'"the
Bhabha-Gupta equation"'" (with a choice of free
parameters which makes the norm indefinite), and
the Fisk-Tait equation"'" are examples. In the
last of these cases we have verified also" that
complex energies do not appear even with arbi-
trarily high magnetic fields. In view of these
advantages, such theories would appear to deserve
serious consideration, especially since quantiza-
tion with an indefinite metric is no longer as un-
acceptable as it used to be."
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