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Recent angular momentum analyses of the three-pion system produced in the reaction m p ~m m+n p have been
criticized because the three-pion states used in the analysis do not satisfy unitarity. In order to answer this
criticism we develop a set of unitarity equations which can be solved to yield a set of three-pion states which

explicitly satisfy both three-particle unitarity and two-particle unitarity (Watson s theorem). A numerical
method for solving the equations is given. When the unitary states are used to reanalyze the data for the
reaction m p ~@. m+m p we find some changes in the detailed numerical fits but no change in the general
conclusions. In particular, the phase of the amplitude for the A, state varies only slightly in the A, mass

region, in contrast with the behavior expected for a resonant state.

I. INTRODUCTION

In the past four years a large-scale effort' ' has
been made to perform a complete angular momen-
tum analysis for the three-pion system produced
in the reaction

We can recapitulate some of the major points of
this analysis here. The distribution in angles and
energies of the three pions on the right-hand side
of reaction (1.1) is described by a formula of the
type

between these different sets of variables is given
in Appendix A. The four angles necessary are
illustrated in Fig. 1; Q, =(e„y,) are the polar and
azimuthal angles locating the dipion 23 in the
three-pion center-of-mass system, and 0, =(O„P,)
are the polar and azimuthal angles locating pion 3,
the m', in the dipion center-of-mass system rela-
tive to the same set of axes. An appropriate com-
plete set of angular momentum states for the
three-pion system is the set of functions

Z,"(~„f1n,) = g &Zm
~
I.SM,MJ 1;"&(n,) r, ~(a,).

MI, , M

~ J'N'P' Po'N'P', OMP JNP'
JMP J M'P '

Here p J M P J» is a density matrix describing
the production of a state with quantum numbers
J = total angular momentum, M=z projection of
angular momentum, and P=parity.

The matrix element KJ» describes the decay
of this state into three pions. In order to write
down an explicit formula for KJ» we shall work
in the center-of-mass system of coordinates for
the three pions with the z axis along the direction
of motion of the incoming pion as viewed in this
system. The three-pion states can be described
in the old Dalitz terminology of a pion 1 plus a
dipion 23. We take particle 3 to be the m' and par-
ticles 1 and 2 to be the n 's. The Bose symmetry
will be taken account of by symmetrizing 1 —2.
The analysis of the experimental data was per-
formed in terms of Dalitz-plot variables (s „s,)
and Euler angles (o., J3, y) describing the orienta-
tion of the three-pion system —see Hefs. 1 and 5

for details. For our purposes here it is more con-
venient to use the ma, ss of the dipion v s, and two
sets of polar and azimuthal angles. The relation

Here S is the angular momentum of the dipion 23
and L is the orbital angular momentum of the di-
pion relative to the other pion 1. The spherical

4

FIG. 1. Angular coordinates used to describe the ori-
entation of the three pions.
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harmonics are coupled with a Clebsch-Gordan co-
efficient (JM~LSM+Mz) to obtain a state of total
angular momentum J and z projection M. If in-
stead of 23 as the dipion we take 13 as the dipion
we will have a different set of angles Q, = (O„y,),
Q, =(8„P,) and a different complete set of angular
momentum states Z~~z (Q„Q,) —Z~~ss(Q„Q, ).

What has been said so far is unexceptionable.
Some plausible but not completely general assump-
tions are now made about the matrix element RJ»
for the decay of the state with quantum numbers
JMI':

+J3CP g LS(w) II S
L, S

(1.4a)

W'=(P, +P. +P,)'. (1.5)

6tz z(s „W) is independent of J and M and is a func-
tion of W and the dipion ma, ss v s„

s, =(p, + p, )' . (1.8)

As written in Eq. (1.4) it is assumed that the state
with quantum numbers ZMP decays coherently (like
a resonant state with these quantum numbers).
This assumption can be eliminated by treating the
states with different L, S separately, i.e., by
transferring the Qzz in (1.4) to (1.2) and using an
enlarged density matrix p J~gLs, J'g'p'L'

In practice L and S are restricted to low values
S = 0, 1, 2, L = 0, 1, 2, 3, and a Breit-Wigner form
with appropriate threshold factors is used for
6I~ ~(s „W):

(1.7)

(1.8)

Here P, is the relative momentum in the pion 1

+dlplon 23 system,

(1.9)

q, is the relative momentum in the dipion 23 sys-
tem,

g~ = 2(sq —4m ) (1.10)

and M~ and I'~ are the mass and width of one or
the other of the three well-known dipion resonances
(see Table I). qs in (1.8) is q, [(1.10)] evaluated

%i~ =41~~(s„w) Zi~(Q„Q, ) +(1 2) . (1.4b)

Thus, it is assumed that KJ» can be written in a
suitably Bose-symmetrized factorizable product
form. Czz(w) is independent of M and is a function
only of the three-pion invariant mass 8",

TABLE I. Resonance parameters employed in Eq.
(1.7) .

M~ (GeV) F (Ge V)

p

f
0.765
0.765
1.269

0.400
0.135
0.154

at s, =Ms'. The formula (1.7) corresponds to a
cascade decay process. The system first decays
into a pion plus a dipion resonance of spin S. The
Breit-Wigner denominator describes the propaga-
tion of the resonant state. Finally the dipion reso-
nance decays into two pions. The threshold fac-
tors in the numerator are the simplest possible
approximations to the matrix elements for the
successive two-particle decay processes.

The angular momentum analysis of the experi-
mental data for the reaction (1) is performed by
fitting the data with the functions described above
using a maximum-likelihood method. " The fitting
procedure determines the density-matrix elements
p~s~ ~ „~ [(1.2)] and the parameters C~~s(w) which
appear in (1.4), or at least bilinear combinations
C~g(W) Cf;~i(w)* of them.

When the analysis was performed some unexpect-
ed and puzzling features appeared. ""It was
found, for example, that the absolute magnitude
of the amplitude C,', corresponding to the L =0, $=1
(pw S-wave) component of the Z = 1+ state had a
nice Breit-Wigner-shaped bump as a function of
the three-pion mass 8', corresponding to the A,
meson. However, the phase of this state turned
out to be nearly constant (relative to the phases of
several other states where no resonant behavior
was detected). If the A, is a true meson, one would
expect the characteristic Breit-Wigner variation
of phase. A similar behavior was found for the A3, '
a peak in the magnitude of the I.= 0, S = 2 (f n S-
wave) amplitude with no corresponding phase vari-
ation. The A, peak, on the other hand, behaved
in a normal fashion, 4 both magnitude and phase
exhibiting the characteristic Breit-Wigner varia-
tion. Another puzzling feature was the relative
phase difference of 90 found between the L = 0,
S = 1 (pm S-wave) and L = 1, S = 0 (en P-wave) con-
tributions to the J =1+A, peak. One might expect
these tmo contributions to be relatively real.

Since these results were puzzling and since they
contradict the generally successful quark model
in which the A, is a perfectly mell-defined resonant
state, criticism" has been made of the procedure
for analysis described above, in particular of the
structure of Eqs. (1.4) and (1.7). Perhaps some
error has been introduced, because the three-pion
states described by (1.4) and (1.7) do not satisfy
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either three-particle or two-particle unitarity.
In this paper we attempt to answer this criticism

by developing a set of unitarity equations which can
be solved to yield a set of three-pion states which
explicitly satisfy both three-particle unitarity and
two-particle unitarity. In Sec. II we write down
the three-particle unitarity equations in the form
of a Heitler equation relating the T matrix for
three-particle scattering to a real K matrix. The
K matrix is then chosen as the form corresponding
to Eqs. (1.4) and (1.'I) above. The solutions of the
resulting Faddeev-type integral equations yield
the simplest possible unitary generalization of
(1.4) and (I.V). In Sec. III the threshold behavior
of the equations is discussed and it is shown that
two-particle unitarity (Watson's theorem) is also
satisfied. In Sec. IV a numerical procedure for
solving the integral equations is discussed and
some results are displayed for a typical case. In
Sec. V we discuss what differences appeared rela-
tive to the original nonunitary analysis when the

experimental data were reanalyzed with the unitary
three-pion states. Two appendixes are devoted
to the recoupling operators for orbital and isospin
states used in the integral equations. A prelim-
inary account of this work has already appeared. "

II, THREE-PARTKLE UNITARITY

The S matrix for three-particle - three-particle
scattering can be written in terms of a I.orentz-
inval lant 7 matl lx as

S;,= &;J +I (2 m)' &'(P;, + P;,, + P;, —PJ, —Pq, —PJ,)

Tf

2 (d &A;., '0; QP uV~ iPJ j

Elastic unitarity for the S matrix,

g S;»Sf» =5;y,

then yields for the T matrix the relation

ImT;~ = —.(T;,—Tf;)

(2w)' r, ,r,*,
(Pt 1 12 + Pis P»1 P»R P»s)l

(dp ~(dy~ COg~

(2.3)

where we have also used the symmetry of the I' matrix, T,
&

= I'&, , which follows from parity conservation
and time-reversal invariance. In Eq. (2.3) the summation over intermediate states k involves three-
particle phase space and can be written in the following way:

~ 5'(P —P»i P». —P»~)—
8 ~»i ~»2 ~»S

1
8(2w)9W

54(P P P P )»1 »~ »». . .
2(o 2~ 2(d01 k2 ks

Q, dQ, d(v~8, ) f1,q, ~ (2.4)

The kinematic variables in the last line of (2.4)
have all been defined in the Introduction and in

Fig ]
The T matrix discussed above describes a tran-

sition with three particles in the initial state and
three particles in the final state. We can describe
both the initial and the final states with the pion 1
+dipion 23 set of variables introduced in the Intro-
duction. Suppose the initial state is described by
variables s„Q„Q, and the final state by variables
ls' I Q] 0] From rotational invarianc e it fallow s
that the 3-3 T matrix can be expanded as

T = g g g T,', „(8;,.-,)
J L8 L'8'

x gz,'",.(n,', n,') z,'," (n„n,),
(2.5)

Im IJ lgl j 8(8 pl 8 () g d((8 ) ) Tglgl g ll8ll (8 8 )

- -( „ l'), (2.~)

p II@II

(4~)' W (2.7)

We note in passing that p is uniquely determined
by the relativistic kinematics. There is no ambig-
uity of the sort encountered in trying to write down
the propagators for a relativistic three-particle

where the angular momentum functions ZL z are
given in Eq. (1.3). Substituting (2.5) and (2.4) in
(2.3) and using the orthogonality properties of the
Z~,z, we find the angular momentum decomposition
of the unitarity relation,
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Schrodinger equation.
We can ensure that (2.6) is satisfied by intro-

ducing a suitable real K matrix. The argument is
essentially the same as in the two-particle case.
(We apologize for writing down for the sake of the
nonexpert all these things so well known to experts
on the three-particle problem. ) Write (2.6) in an
abbreviated notation as

(T ) ' —T '=2ip,

we see that if we define the K matrix by

(2.10)

T '=K ' —ip (2.11)

is a symmetric matrix with one continuous index
and p is a diagonal matrix. Rewriting (2.8) in the
form

ImT= —.(T —T ) = TpT (2.8)
then K will be a real symmetric matrix. We can
now rewrite (2.11) as

where

T = TI,'s'. I, z(s,', s,) = Ti~s, r, 'si(s» s,') (2.9)

T =E+iKpT;

expanding the notation again, we find

(2.12)

W-m

Tz s I(ss,', s,) =K& s. Is(s,', s,)+a P d((si')' ') I~Is'. s."s"(si, si') pTI, "s",cs(»si), (2.13)

Z=k, +k, +k, . (2.14)

This is illustrated in Fig. 2. Note that k$ kp k3
represent the interactions of the particle pairs 23,
13, and 12, respectively. We hasten to add that
the assumed form of (2.14) as the sum of three
two-body terms is an approximation. An exact
expression for K would include in addition to the
terms in (2.14) other "connected" terms which
cannot be separated into a two-body interaction
with the third particle a spectator. For example,
a three-particle resonance would be described by
a connected term of this sort. We do not include
such three-particle resonance terms here, be-

with p again given by (2.7).
As long as K is chosen to be a real symmetric

matrix, the T which results from solving (2.13)
will be a symmetric matrix satisfying the three-
particle unitarity relation (2.6). In order to obtain
the simplest possible generalization of the scheme
described in the Introduction, Eqs. (1.4) and (1.7),
we shall take K to be the sum of three terms, each
of these being a two-particle E matrix with the
third particle a spectator:

T T] + TQ + T3

where

T, =k, +ik,p(T, + T, + T,),
T, = k, +ik, p(T, + T., + T,),
T, =k, +ik, p(T, +T, +T,) .

(2.15)

(2.16)

The terms T„T„and T, are the contributions in
which the particle pairs 23, 13, and 12, respec-
tively, interacted last in the final state. (No cor-
responding decomposition is made for the initial
state. ) We can rearrange (2.16) to obtain

cause we expect the three-particle resonances to
appear as suitable bumps in the coefficients
C~&(W) [see Eq. (1.4)] used to fit the data. We
repeat that our aim is to obtain the minimal gen-
eralization which satisfies unitarity of the scheme
described in the Introduction.

With the assumed approximate form (2.14) for K
we can perform certain algebraic simplifications
of (2.12) reminiscent of the manipulations made
by Faddeev for the three-particle Schrodinger
equation. Thus T will have the form

T, =t, +it,p(T, +T,),
T, = t, +imp(T, + T,),
T, = t, +it,p(T, + T,),

where

f; =(1 —ik; p) 'k;

(2.17)

(2.18)

FIG. 2. Graphs corresponding to the assumption (2.14)
for the K matrix.

is a two-particle t matrix with the third particle
a spectator. The corresponding picture is the same
as Fig. 2 with k; replaced by t;. Equations (2.17)
are similar in structure to the Faddeev equations
for three-particle scattering, the diff erenc e being
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that Eqs. (2.17) are on-shell equations while the
usual Faddeev equations are off-shell equations;
if the propagator G in the Faddeev equations is
replaced by its imaginary part ip we obtain Eqs.
(2.17).

For the problem in hand particles 1 and 2 are
m 's, and it is a reasonable approximation to ne-
glect the interaction of these two particles:

with different L, , S and is an integral operator in the
dipion energy variable Ws as well.

In order to write out Eq. (2.21) in detail we need
an expression for t, . Before the angular momen-
tum decomposition is made this is

(2m)' 2u), 5'(p,' - p, )

k, =0, t, =0.
This implies

(2.19) x g(2&+1) e' &sin5zP~(cos8),
S

T, =O,

T, = t, +it,pT, ,

T, —t, +st,pT, .

(2.20)

T, = t, + zt, p 8,2T2 . (2.21)

Here T, and T, are the same function of different
variables. We expand the notation below. Note,
however, that there is only one equation now
(really one set of equations); the equation for T,
is the same as the equation for T, . Qn the other
hand, the operator 8» couples together states

In these equations T, and T, differ from each
other only by the interchange of the two identical
w 's in the final state. From Bose symmetry and
Eq. (2.15) it then follows that T, and T, are the
same function of different arguments, correspond-
ing to the interchange of the two m 's. This is cer-
tainly true at least before the angular momentum
decomposition is made; after the angular momen-
tum decomposltlony Tz andTz are the same func-
tions of I, S, and s only if the decomposition of
T, is made with (23)1 coupling, i.e., with particles
2 and 3 paired into the dipion in the final state,
while the decomposition of T, is made with (13)2
coupling, i.e., particles 1 and 3 paired into the
dipion in the final state. Now in the equation for
T„Eq. (2.20}, it is convenient to express T, in
the (23)1 coupling scheme and also t„isnecfor
the latter only particles 2 and 3 interact. If we
express T, in the (13)2 coupling scheme so as to
have the same function as T„ it is then necessary
to transform this to the (23)1 coupling scheme in

order to obtain a simple result for the angular
momentum decomposition. Thus we need the re-
coupling operator which enables us to transform
from (13)2 coupling to (23)1 coupling. Such re-
coupling problems are customary in dealing with
the three-particle problem. A general treatment
for relativistic particles was given by Wick. " A

simplified derivation of Wick's result for the spe-
cial case of interest here is given in Appendix A.
If we call the recoupling operator 6», see Eq.
(A17), we see that we can rewrite the equation for
T„Eq. (2.20), in the form

(2.22)

where the &~ are the phase shifts for nn scattering.
Writing out the & function in spherical coordinates,
using the spherical harmonics addition theorem
for Pz(cos8) (8 is the c.m. scattering angle for
particles 2 and 3), and the inverse of (1.3}, one
can rewrite (2.22) in the form (2.5) with

4's', Ls( x~ 1)

4w' e*' sin5. &ii 5s'5((s,')"-(s,)") .
P8'i

(2.23)

So far Eq. (2.21) has been written in a form ap-
propriate for a three-particle - three-particle
scattering problem. However, what we want is
the equations describing the decay of a state with
definite quantum numbers JMP, This state is pro-
duced by some complex and unknown mechanism
in the reaction n P- n m'm P. Let us represent
this production process by an initial state

~ g;).
We now multiply Eq. (2.21) on the right by

~ P;).
The product quantity 3, =- T, ~ P;) then represents
the decay of the state in question. Corresponding
to the inhomogeneous term in (2.21) we obtain
6I, = f,

~ (;); for this quantity we use one of the de-
cay amplitudes S~~ introduced in the Introduction,
Eqs. (1.4) and (1.7). In this way we can rewrite
Eq. (2.21) in the form

S} Q] +i t,p Sy282 (2.24)

appropriate for the decay problem.
It is now time to assemble the pieces and write

down an honest equation with all the indices and
variables explicitly displayed. Referring to (2.7),
(2.13), (2.23), (2.24), and the formulas for 8» in
Appendix A, (A14)-(A25), we find

g, '(s, ) = &„N;(s,)

+i e' ' sin5, P d(cosy, }X„(1,2) Sf '(s,} .
—1

(2.25)

Here the indices a, b, i stand for pair s of angular
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7r p~~~f p, e, f

p, e, f p, e, f

FIG. 3. The iteration solution of the integral equation
(2.25) is represented by a sum of graphs of the form
shown in this figure. The portion of the graph to the
right of the wiggly line corresponds to the inhomogeneous
term 6„N; in the integral equation.

momenta (L„S,), (L„S„),and (I.;, S;). All pairs
(L„S,), (L„S,) which can couple to a given state
JP are coupled together. In the approximation
used earlier and described in the Introduction the
second term on the right-hand side of (2.25) is
omitted. In this case the different states (L„S,)
are decoupled. This decoupling corresponds to
the &„. factor in the first term of (2.25). In the
complete Eq. (2.25) (I.;, S;) is the state which
occurs before the rescattering described by the
integral term. The index i enumerates the distinct
states; however, for each state i, all pairs (L„S,)
are coupled. The iteration solution of Eq. (2.25)
is represented by the picture given in Fig. 3. Each
blob corresponds to a two-body interaction. The
inhomogeneous term ~„A; is represented by the
portion of the diagram to the right of the wiggly
line —one interaction as specified by the Breit-
Wigner form of dt. The integral term on the
right-hand side of (2.25) leads to successive re-
scatterings of the pairs 23 and 13, the final inter-
action occurring in the pair 23.

Finally we must correct for the isospin of the
pion. So far we have treated the pions as immut-
able particles, taking due account of the identity
of the two w 's. This ignores the possibility of
charge-exchange scattering and the production of
w "s somewhere along the chain of interactions
pictured in Fig. 3. To take care of these possibil-
ities properly we must introduce isospin states.
The possible isospin states for three pions and
the recoupling coefficients when one transforms
from (13)2 to the (23)1 coupling schemes are listed
in Appendix B. The general case is fairly com-
plicated. There are seven isospin states for three
pions. Restricting ourselves to the charge state
~

——+) with T, = —1 eliminates the T=0 state We.
shall further reduce the complexity by neglecting
the dipion I=2 states; we note that this means we
assume states with two pions having I= 2 are not
produced in the original interaction and also that
the two-body t matrix t =0 for the I=2 state. This

leaves three states I= 0, T = 1 and I= 1, T = 1 and 2.
We consider first the two coupled T = 1 states, with
I= 0 and I= 1. We can write down equations analo-
gous to Eq. (2.24). We extend slightly the notation
used there: In the symbol 8, the subscript 1 means
particles 2 and 3 were the last to interact; the
superscript 0 means the interaction took place in
the I= 0 state for particles 2 and 3. We have to
introduce interactions in all three two-particle
channels so we have six coupled amplitudes
~ls ~2s 3) 8ls ~2) 83' L t @12 be the angular momen-
tum recoupling operator which transforms from
channel 2 [coupling scheme (13)2] to channel 1

[coupling scheme (23)1]. Referring to the first
two rows and columns of the matrix in Eq. (B2)
we find as the appropriate generalization of (2.24)

(2.26)

(2.27)

%'e could write down similar equations for the
pairs 8,', 8,' and 8,', 8,'. In order to understand the
sign changes in the last two terms in Eq. (2.27)
note that the order of the particles is important
in Eq. (B2). If we change the order of particles
1 and 3, for example,

~ 0», 1) =+ ~0», 1) but
~ 1», 1)

= —
~ I», 1) . In writing Eq. (2.26) we have chosen

the order for the channel 3 states as
~ 0», 1) and

~ 1», 1) . We can further simplify Eqs. (2.26) and

(2.27) by noting that Bose symmetry implies that
8, and 8,' are the same functions of the coordinates
of particles 1 and 3 as 8,' and 8,' are functions of
the coordinates of particles 1 and 2. Also 8» and
Q y3 are aine 0 st the same operators w ith re spe ct to
different coordinates; 8» transforms (13)—(23)
and 8» transforms (12)- (23). Now for an orbital
state we know that Y'~~(r, —r, ) =(-1)~ Fzs(r, —r,).
Thus 8» is the same as 8» except for a factor
(- 1), where S is the dipion orbital angular mo-
mentum in the final channel containing particles
2 and 3. Keeping all this in mind we see that in
the rescattering terms in Eq. (2.26), states with
even S add and states with odd S cancel, where-
as the reverse is true in Eq. (2.27). If we now

incorporate the Pauli principle for bosons in the
form which says that dipion states with I=O must
have odd S, we see that we can rewrite Eqs. (2.26)
and (2.27) by doubling the channel 2 contributions
and dropping the channel 3 contributions:
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o o o 2 o 2
x -@a+&tiP~j2 ~ s ~23

(2.28)

(2.29)

As a final step we take the projection on the charge
state

~

——+) . This is more convenient in what
follows because it is this charge state which is
measured experimentally and not the isospin
states. From the coefficients listed in Eqs. (B5)-
(B8) we find for these projections

we move from the top of the eut around the end at
s, =4m„' to the bottom, q, - -q, . Similarly, it is
well known from two-pa. rticle scattering theory
that if we move from the top of the cut to the bot-
tom, 5,- -5, . Near s, =4m, ' there is in fact a
threshold dependence 5, ~q, ' "'. Consider the
inhomogeneous term 6t, (s,). Referring to Eqs.
(1.7) and (1.8) and recalling that the Breit-Wigner
form of (1.7) is only a convenient approximation to
the energy dependence of the phase shift 6„we
find

o 1 o o 1 oO', =—8, , O', = — -8, ,v'3 v'3

gl &g 1 gl &@1
(2.30)

Substituting (2.30) in (2.28) and (2.29) we find (3.2)

O', —S., + zt,pg„[,6', +,—6',],
d", = 6I,'+ i t,'p8„[6",+6",] .

(2.31)

(2.32)

where we recall that I'~q, ' ~". Using the results
quoted above for q, and 5, we see that 6t,(s,) has
the special structure

We recall that Eqs. (2.31) and (2.32) apply to the
total isospin T =1 states and neglect all I=2 dipion
production and interactions. For the T =2 state
there is only one state and we find for the ~- —+ )
projection

(2.33)

These equations are to be interpreted in the sense
of Eq. (2.25); thus (2.33) is identical to (2.25),
and (2.31) and (2.32) differ only in the addition of
the coupling of the two isospin states. For a first
attempt at using these functions to reanalyze the
data we shall neglect the T =2 state, Eq. (2.33).
With just the T =1 states, Eqs. (2.31) and (2.32),
the situation is only slightly more complicated
than when isospin is ignored, Eq. (2.25). In par-
ticular, when we recall that in Eqs. (2.31) and

(2.32) I=0 has S=even and I=1 has S=odd, we
see that the number of states is the same and thus
also the number of parameters to be determined
by fitting the experimental data.

III. TWO-PARTICLE UNITARITY

The equations in Sec. II were set up so as to
satisfy the three-particle unitarity equation (2.8).
We now show that the result, Eq. (2.25), also
satisfies a form of two-particle unitarity. For this
purpose we rewrite (2.25) as

S,(s,) =N.,(s,)+ie' "sin5, Q S„S,(s,) .
b

(3.1)

Now S,(s,) is an analytic function of the dipion mass
squared variable sy with a cut starting at the two-
pion threshold s, =4m „~. To study the behavior
near this cut it is convenient'to introduce the
dipion relative momentum q, = —,'(s, —4m„'}'I'. If

lit, (s,}=e'"q,"r,(s,), (3.3)

6I,(s,)- (-1)"e "q', r, (s,). (3.4)

The behavior described by (3.3) and (3.4) is of
the special form required by Watson's theorem,
which in turn is based on very general considera-
tions of analyticity and unitarity. ' '" We now want
to point out that if the procedure for analysis
described in the Introduction is used, this theorem
is violated, whereas if the unitary states described
in See. II are used the theorem is restored. To
see that the scheme described in the Introduction
violates the theorem, note that $.,(s,) is not the
only contribution. We must also add in the re-
coupled transform of the same states 6I,(s, ) which
appea. r due to the Bose symmetrization —see Eq.
(1.4). The total contribution expressed in the (23)
1 coupling scheme is then

6I.(s,) + Q 8„6I,(s,) . (3.5)

As discussed above the first term here satisfies
Watson's theorem. The second term does not.
As we show below the second term changes by a
factor (-1)s' when we move around the end of the
cut; the phase factor e' ~ is, however, missing.

Suppose, on the other hand, we use the unitary
states as described in Sec. II. Then the complete
contribution is the sum of S,(s,) given by (3.1)
and the recoupled transform of S,(s, ) from the
other two-pion channel:

where r, (s,) is an analytic function of s, with no
cut and no branch point at s, =4m, '. If we move
from the top of the eut a,round the end to the bottom
$,,(s,) changes to
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I,(s,) + Q 8»su(s, )

=(R,(s,) + (ie' & sin6, +1) P 8»S,(s, )
b

=$.,(s,)+e'~~ cos6, Q 8»8,(s,) .

(3.6)

The second term now has the required form (3.3),
provided we can show that Q,S»S~(s,) changes
only by a factor (-1)~o when we go around the end
of the two-pion cut, i.e., make the change q, - —q, .
This second term is an integral, given explicitly
in Appendix A, (A14). Referring to Fig. 4, we
see that the simultaneous changes q, --q, and

+ w will have no effect on this integral since
X, is a dummy integration variable. Thus the
change due to the replacement q, ——q, is the same
as that resulting from the replacement

(3.7)

as one can check from an explicit formula for d
functions. " This completes the demonstration
that (3.6) has the correct behavior near the two-
pion cut, as required by Watson's theorem.

1V. CALCULATION OF UNITARIZED AMPLITUDES

Equations (2.31) and (2.32) were solved numeri-
cally for the states J = 0, 1', 2, 3' and J =2'.

For each J, the component states with dipion spin
values S=0 (e), S =1 (p), and S=2 (f), together
with all values of the orbital angular momentum L
allowed by angular momentum and parity conserva-
tion, were used. The 8 and I values used for each
J are shown in Table II.

The numerical solution of the equation was car-
ried out, for each J state, at W'=M, „values of
0.86 GeV to 2.02 GeV in steps of 0.04 GeV. The
values of the amplitudes (at each W) were obtained
at 25 equally spaced points in the dipion mass,
from ~s, =m„,=2m„ to ~s, =W —m, .

Numerical problems were minimized by taking
into account the threshold behavior of the ampli-
tudes at the edges of the Dalitz plot (at vs, -21„,
i.e., q, -0, and at Ws, -W-m„, i.e., P, -O).
Furthermore, the equations were manipulated so
that the equations actually solved dealt directly
with the unitarity correction terms [the second
terms in Eqs. (2.31) and (2.32)j, with the it,
= ie' sinD factor and the threshold factors removed.
The accuracy of the solutions was checked by in-
creasing the number of points from 25 to as many
as 74, and by substituting the results (with inter-
polation as required) into the original equations.

It is worthwhile to pause and review the results
obtained from these calculations before proceed-
ing to the actual confrontation between the uni-
tarized amplitudes and the 3n. data. Figure 5 il-
lustrates some results. The curves shown are for
the state J =1' at W=M, „=1.1 GeV, i.e., near
the center of the A, Each row gives the solution
of the equations with one pair of S and L values for
the initial state. For instance, the first row cor-
responds to S. =0 (e), L =1, i.e. , to .the partial
wave 1'P(en) before rescattering. As a result of
rescattering all J =1' states are present. The
first column through fifth column in the figure cor-
respond to the final state partial waves:

1'P(er), 1'S(pn), 1'D(pw'), 1'P{fw), 1'+(fw) .
It should be noted that the scales used are differ-
ent for different amplitudes, so that some of the
amplitudes are in fact quite small.

If one's attention is focused on the first two

TABLE II. S and I values included in calculation of
unitarized amplitudes.

~=0 (~) ~=1 (p) ~=2 (f)

FIG. 4. Diagram to help visualize what happens under
the t&ans&&nations, qg -q~ and g ~ g ~ +7l.

0, 2

2, 4

0, 2, 4

1, 3, 5
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rows, one notices that the most important effect

1S m s
is the feedthrough into the 1 P(em) state f th

(pv) state. This means that if one assumes a,

certain amount of 1+S(pv) production, the unitarity
correction results in a very substantial am t foun o

(em) in the Sw final state. The reverse effect
[initial 1'P(e v), final 1'S(pn)] is not as spectacu-

lar. The partial wave 1'P(em) from the initially
produced 1 P(em) is somewhat distorted (the real
part is increased), but our experience suggests
that this should make very little difference to the
fits to the 3n data. The results concerning the
other unnatural parity states, especially 0, are

0

quite seminar, x.e, , the main effect is the rescat-

1.6- 'S L=ol-01

0

S,L=OI-IO S,L =01-12 .008.S,L= 01-21

0

.002

-0.40
~ ~ ~
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02- 'S L=IO 01

0-
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3.5 ' f'i
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/'l

S,L =10-21.Ol - r S) L= 10 23

0

-1.8 —— -15 -0.2 —.01 —.014=—

'.02
0

S,L =12-01
.14-

S L=12-10 S,L =12-12
0.3-

0

S1L= 12 —2-1
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/l I

g I
I I
I I
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.008 .007-S,L= 21 —10 S,L=21-12
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S,L=21-21 g S,L=21-23.05- - 3 x.l0-

—.Ol 2

0

—.003 -7 x IO

S,L=23-01.001
S,L =23-10

.0006-

0

S,L=2 3-12

0—

5 S,L=2 3-21

0
.0025

—.001 —.0014

\

—.0006 -8 x 10

T = ~s-Zm

FIG. 5. The unitarized am &plitudes, 6', and nonunitarized amplitudes S for J~ = +

labeled by S,L (see text) values of the ' 't' 1
es, , or =1 at Me~ =1.1 GeV. Rows are

ho o that d t corn. hs - f mplitude in o o i
are GeV" n =(L +8)- -2 The abscissa T e graph. Re@), ---- Im(6'),
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l.O—

0.7—

I

I.O
l I I

l.2
M& (GeV)

FIG. 6. The ratio R =IU/INU vs M3 . Iwv/U
= J(%2 D(~ "~(2d7' are the integrals (over phase space) of
the absolute square of the A. 2 amplitudes calculated from
Eqs. (1.41)-(1.8) for the NU (nonunitarized) amplitude,
and from Eqs. (5.1) for the U (unitarized) amplitude.

tering from a pm initial state resulting in sub-
stantial amounts of &n in the final state.

Practically nothing happens to the natural parity
2'D state, since sr states are not allowed, and fs
states are unimportant in the relevant mass region
(near the A, mass).

A. Priori one wouM certainly expect that the re-
sults of reanalyzing the 3n data using the unitari-
zed amplitudes could be substantially different,
particularly with regard to the decomposition of
the J' =0, 1', (possibly 2 ) states into ps and sw

partial waves. The comparison, given in Sec. V,
shows that in fact the changes are rather smaller
than one might have guessed.

One further point should be emphasized. As
discussed in previous sections, the unitarized
amplitudes satisfy unitarity conditions. Very
drastic assumptions (guesses) were, however,
made in the calculations, for which no theoretical
or experimental basis does in fact exist. In the
discussion in Sec. II, the matrix T was supposed
to be the full 3n -3n scattering matrix about which
we know nothing except that it must satisfy the
unitarity conditions [Eq. (2.12) and the additional
two-body unitarity conditions discussed in Sec.
lilj.

The key assumption, Eq. (2.14), is plausible,
but could be drastically wrong. To emphasize this
point we show, in Fig. 6, the ratio of the square
of our unitarized amplitude for the 2'D state (in-
tegrated over all decay variables) to the corre-
sponding quantity for the nonunitarized amplitude.
It is clear that there is no sign of anything happen-
ing as one moves past the A, pole. In other words,
our 3m-3m scattering amplitude does not include
whatever forces (exchanges, intermediate states)
are responsible for the 4, resonance. One is
free to assume that the calculated amplitudes are

correct in all other respects (i.e., only the M,„
dependence is wrong), but we emphasize that this
is pure conjecture,

o-s(~s),
I 'P (s s),
2 W(pw),

2'D(ps),

0 J(pv)-
1'S(ps), J,= 0 only

J,=0 only

J', =+1 only (in.the "natural parity
exchange" combination
i2'I) + i2' —1&) .

At the risk of being repetitive, we note that the
above isalist of input states; for the case of uni-
tarized amplitudes, all partial waves listed in
Table II for the states 0, 1', 2, 2' are included
in the final state.

In a preliminary account of this work" we pre-
sented the reanalysis of the combined 11-25 QeV
data described in Ref. 5. Here we present the re-
analysis of the larger data sample from the
Serpukhov experiment (Refs. 8 and 9).

We summarize briefly the results, comparing
the nonunitarized and unitarized fits to the same
data sample.

(a) When the unitarized amplitudes are used to
fit the data, the fits are significantly worse. This
is illustrated in Fig. 7, which shows the difference
in y' for the unitarized and nonunitarized fits. We

V. COMPARISON WITH DATA

In Sec. I [see in particular Eqs. (1.2)-(1.8)j we
gave the formulas assumed in fitting the data with
nonunitarized amplitudes. In the unitarized for-
malism we replace Eq. (1.4b) by

puris(s, )Z~P i(Q 0 )+ (1-2) .
(5.1)

Equation (5.1) corresponds to keeping, in the ob-
served 3n final states, "all possible" partial waves
(described by the quantum numbers 1.'S'). As dis-
cussed in Sec. IV, we included, in fact, only
dipion spins S'=0, 1, and 2.

The particular choice of the wm scattering ampli-
tudes will, of course, affect the results. We have,
in fact, used a simple Breit-Wigner description
for the p and f, and tried two drastically different
descriptions of the e (i.e., the S=O amplitude):

(a) A simple Breit-Wigner approximation with

re, =O. V65 QeV, F, =0.4 GeV, with elasticity g =1.
(b) The description given by the CERN-MUNICH

collaboration. " Below M„=1.4 GeV the two
choices for the e turned out to be indistinguishable.

Although other, more complicated hypotheses
were also tried, we will present here only a com-
parison of the results obtained using a rather
simple hypothesis in which the following partial
waves are included:
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have verified (by generating Monte Carlo events
corresponding to the unitarized and nonunitarized
fits —in the region I„=1.2-1.4 GeV) that this is
a real effect. One can account for the decrease in
likelihood by comparing Dalitz -plot distributions
and moments of angular distributions for the
Monte Carlo events and for the data. %'e remark
(but omit details) that the inferiority of the U (uni-
tarized) fits relative to the NU (nonunitarized) fits
persists when more complicated hypotheses (more
partial waves) are used.

(b) The amount of production of various J' states
is essentially unchanged. There is a slight de-
crease in the 4 =1' total and a slight increase in
the J"=0 total in going from the NU fit to the U
fit —see Figs. 8 and 9. The 4 =2' and J =2 con-
tributions are almost identical (Fig. 10).

(c) For the states J =0 [Figs. 8(a) and 8(b)]
and J"=I [Figs. 9(a) and 9(b)], the decomposition
into & m and pm waves is different for the two fits.
For/ =0 [Figs. 8(a) and 8(b)] the number of
events ascribed to both 0 S(cm) and 0 P(pv) by the
U fit is larger. The excess events are canceled
by a strong negative interference between the two
waves. Exactly the same remarks can be applied
to describe the J =1' results [Figs. 9(a) and 9(b)].
Again the U fits give more I'P(ex), more 1'S(pn), '

and a strong negative interference.
It is quite clear what the data are telling us: The

rescattering from pn' to &m produces more en' in
in the final state than there is en in the data. The
fitting procedure then includes an excess of direct cm

production amplitude and cleverly adjusts the relative
phases to cancel (as muchas possible of) the unitarity

500

NU F IT

0 TOTAL

U F IT
I

'
I

0 TOTAL

soo-
I

4oo-

0.—r&

0 S(ew) 0 S{em)
o 800—

o 4oo-

I— 0.—
LLI

400- 0 P[~ ) 0 p(p71)

correction terms. One is strongly tempted to con-
clude that the rescatter ing corrections obtained with
our unitarization procedure are too large. The cor-
rect amplitudes, which must, of course, beunitary,
nevertheless appear to be better approximated by
ignoring the rescattering corrections altogether
(NU fits) than by our present attempts at unitariza-
tion.

(d) In spite of our strong reservations about the
correctness of our rescattering corre tion, we
show (Fig. 11)what happens to the phases of the
A, [O' = I'S(pv)] wave relative to other waves. We
would comment that

(d1) the M, „dependence of the relative phases is
essentially the same for the U and NU fits, al-
though the phases themselves have been shifted.

(d2) In both U and NU fits the 1'S(pw) relative
phases show little sign of change in the region
~3 fr 1.0-1.4 QeV . This behavior is to be con-
trasted with the normal Breit-Wigner variation
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0 S/0 P INTERF.
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FIG. 7. g2 difference between U (unitarized) and NU
(nonunitarized) fits to the Serpukhov data (Refs. 8 and 9).

FIG. 8. Comparison of NU (nonunitarized) and U (uni. -
tarized) fits to the Serpukhov data (Befs. 8 and 9). The
number of events per 0.05 GeV is shown for total J' =0,
0 S(cr), 0 P(pr), and 0 8-0 I' interference. (a) non-
unitarized fits and (b) unitarized fits.
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of phase obtained for the A, [J =2'D(ptt)] state in
both U and NU fits (fig. 12).

In summary, our unitarized functions are a dis-
appointment. Although properly unitary, they ap-
pear to be a less suitable set of functions in terms
of which to describe the data than the simple non-
unitarized functions. If nevertheless we use them
to fit the data, we find, just as in the original non-
unitary analysis, ' no evidence for a resonant vari-
ation of the A, [J =1'S(ptt)] phase.

Note Added. It has been called to the authors'
attention that the relativistic minimal K-matrix
formalism used in this paper was set up in an
earlier paper by K. L. Kowalski. "
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FIG. 10. Comparison of NU (nonunitarized) and U

(unitarized) fits to the Serpukhov data (Refs. 8 and 9).
The number of events per 0.05 GeV is shown for
2 P(p~) and 2+D(p~). (a) nonunitarized fits and (b) uni-
tarized fits.
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We give in this appendix what we hope is a short
and simple derivation of the angular momentum
recoupling operator necessary when one wishes
to transform from the (13)2 coupling scheme in
which particles 1 and 3 are paired as a dipion to
the (23)1 coupling scheme in which particles 2 and
3 are paired as a dipion. The general case has
been treated by %'ick."Vfe restrict ourselves here
to the case of three spinless particles of equal
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FIG. 9. Comparison of NU (nonunitarized) and U (uni-
tarized fits to the Serpukhov data (Befs. 8 and 9). The
number of events per 0.05 GeV is shown for total J+ =1+,
1+8(pm), 1+P(em), and 1+S-1+P interferenee. (a) nonuni-
tarized fits and (b) unitarized fits.

FIG. 11. Comparison of NU (nonunitarized) and U
(unitarized) fits to the Serpukbov data (Refs. 8 and 9).
The phase of 1+S(p~) relative to 0 S(cm), 1+P(e~), and
2 P(p~) is shown. (a) nomInitarized fits and (b) unitar-
ized fits.
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mass (three pions). The kinematics is treated
relativistically.

It is convenient to introduce both helicity amp-
litudes and LS amplitudes. The wave function

(~„~ of a three-pion state with quantum numbers
JMP can be expressed in terms of helicity amp-
litudes f„as

2 J+
g,„, =+( ~, B„'„"(s,)f; '(s„s,). (A1)

Here s„s, are Dalitz-plot variables, D„„ is a
Wigner D function, and R, stands for Euler angles
a„P„y,describing the rotation which carries
the three-pion system with fixed s„s, from a
standard configuration to the actual configuration.
The standard configuration is arbitrary. We use
the following conventions: The superscript 1 on
f~~ ' and the subscript on 8, indicate that in this
standard configuration particle 1 is moving in the
—z direction and particle 3 is moving in the xz
plane with a positive x component of its momen-
tum —see Fig. 13(a). We also have

2 J+ 1
g,„~=+(, D„'„'(A)f'" (s s,,), „*(A2„)

where now the standard configuration is chosen
differently. The subscript and superscript 2
indicate that in this standard configuration particle
2 is moving along the —z direction and particle 3
is moving in the xz plane with a positive x com-
ponent of its momentum —see Fig. 13(b). Since
the actual configuration of the system is the same
in both cases we have a relation between the ro-
tation group elements 8, and R„

tion 1. Using simple properties of the represen-
tation D„„ofthe rotation group, we find from the
equality of (Al) and (A2)

DJ'g(ft )fJP& 'Q Dzg(P y )fJP2

D J'g J'

(A4)

From the orthonormality of the D„„(R)we then
obtain

fJPl Q Dzg(~ )f JP2 (A6)

A glance at Fig. 13 shows that r» is a rotation
through 180 about the z axis followed by a rota-
tion through a positive angle 6» about the y axis.
From the standard formulas for D functions we
then find

D~„*(r„)= (—1)"d~„(8„). (A6)

We can now relate the two sets of helicity am-
plitudes discussed above to the two sets of I-S
amplitudes corresponding to the two coupling
schemes (23)l and (13)2. If we call the LS am-
plitude for the coupling scheme (23)1 Ez &(s,), we
can write the state gz„z in the (23)1 LS coupling
scheme as

R =Rp', , (A3)

ls the rotation which carries the stan-
dard configuration 2 into the standard configura-
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FIG. 12. Comparison of NU (nonunitarized) and U
(unitarized) fits to the Serpukhov data (Refs. 8 and 9).
The phase of 2+D+7t) relative to 1+S(p~) and 1+P(e~) is
shown. (a) nonunitarized fits and (b) unitarized fits.
Curves are drawn to guide the eye.

FIG. 13. The orientations of the particles in the stand-
ard configurations 1 and 2 correspond to parts (a) and
t,'b) of the figure.
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= g s (s)g (sss(ssms)( a",(rp„s„o) s„*;(s„il„o). (A7)

The angles used in this formula are defined in
Fig. 1. For comparison with Eq. (1.3) we remind
the reader that [(21+ I)/4m] 'f' D„'*,(ys 8, 0) is a
normalized spherical harmonic YP(8, y). In order
to obtain the relation between f„' and &I~ com-
pare (Al) and (A7) in the limit when the rotation
A, =(ns Ps y) =1 is no rotation at all. In this limit

8, =y, . The angle y, is indicated in Fig. 13(a); it
is measured in the 23 center-of-mass system;
a formula for it appears below. Making these
substitutions we find

(2L, + l)(2S, + 1)
2(2J+ 1)

Ei, s (s,) = Q d(cosy, )X,t, (1, 2)&~~ s, (s,),

&& g (Zv, i L, S,Ov, )
Vg

I

d(cosy, ,)ds;()(Xs)f„'(s„s,) . (A13)
-1

Substituting (A5), (A6), and (A9) in (A13), we
finally obtain

f,"'( „ss)=Q s "s(s,)( s i (&slssoo)
L S

b

(A14)
L„S

„(ss+ i)'"„,

In exactly the same way we obtain

2L, + 1f„"'( „)=sgss;;(s,)( s', (sslssos)
L,S

s( s
—

) s,*.(s,).

(A8)

(A9)

where

X~(1, 2) = Q C(ds L„S„v,)C(Js Lo, S~s vo )(-1) &

Va Vy

&«d'sso (X,)d'. . (8„)d"., (X,),
(A15)

C(~ L S )
(2L+ 1)(2S+ 1) 'f'(

(A16)

The angle y, is indicated in Fig. 13(b); it is mea-
sured in the 13 center-of-mass system.

We can now combine (A5), (A8), and (A9) to
find the relation between &f.'s(s, ) and F~'z(ss).
Using the orthogonality properties of the d&,
functions, we obtain from (A8)

+ 1 I/2 "+1
d(cosX, )f ', '(s„s,)d",.(X,)-1

2L, +1 'f'
= g &~'~ (s,) — (Jv, ~ LS, Ov, ) . (A10)

E'=8 I'2
12 (A17)

It remains to specify the kinematical relations
in detail. These are illustrated in Fig. 14. The
angle 0» is measured in the over-all center-of-
mass system of the three particles. The angle
g, is measured in the center-of-mass system of

In E(I. (2.21) of the main text of this paper we have
compressed the notation to the extent of express-
ing the transformation (A14), (A15), and (A16) by

Using standard transformation formulas for
Clebsch-Gordan coefficients we find

(jv
~
l sOv) = (—1)'""(l0 ~j s vv), (A11)-(

2i+1 '~2 .
2g+ 1

and hence from the unitarity of the Clebsch-
Gordan coefficients,

2r+ 1
(jv

~
ls0v) —. (jv~ l's0v) = 5„22'1 +

(A12)

With this we can complete the inversion of (A10):
FIG. 14. Pictorial representation of the kinematic

quantities employed in Eqs. (A14)-(A25).
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particles 2 and 3. The angle g2 is measured in
the center-of-mass system of particles 1 and 3.
In the expression (A14) s, = (P, + P,)' is the square
of the 23 invariant mass and cosy, is the integra-
tion variable. In terms of these s, = (p, + p, )' is
given by

q, =-,'(s, —4m„')"', (A19)

s, =-,'(W'+ sm, ' —s, ) + 2p, q, »
—cos)(„(A18)

VS I

where W' = (p, + p, + p, )' is the square of the three-
pion invariant mass, and q, and P, are given by

the (13)2 coupling scheme will be linear combin-
ations of the three states obtained in the (23)1
scheme. We can use state symbols such as II», T)
to mean that the isospins of particles 1 and 3 are
combined to obtain an isospin I state, which is
then combined with the isospin of particle 2 to
obtain a total isospin T state. Vfith this notation
we find for the recoupling coefficients

Il„,o&=-ll„, o&,

1 1
s -~s

p, = ][(w-m„)2- s,][(w+m„)'- s,]]' '.= 1 1II»» = -~3
vis

2 6 I 123» 1&

Given s, and s„cosg2 is determined by

Is —s
4p, q,w/vs,

(A2o)
I2„,1)

~15 1
I 2 I)

6 23&

(B2)

where s„q„and p2 are given by

s, = W'+ 3m, ' —s, —s„
q, = —,'(s, —4m, ')"',

(A22)

(A2s)

)
1

WS 1

2 2

(ss)

p, = ([(w-m, )'- s,][(w+m, )' —s,]}'".

(A24)

Finally cos6» is given in terms of previously
defined quantities by

p 2 1/2 pcos8» = — 1+ '
q, cosy, —~ . (A25)

APPENDIX B

This appendix is devoted to the recoupling prob-
lem for the isospin states for three pions. This
can be handled with the apparatus of Racah coef-
ficients. It is just as easy to use elementary
methods for the few special cases of interest.
For two pions the isospin can be

I=O 1 2.

I2„, s&=12„,s) . (S4)

Io... »=, I+--&-, lo-o&+ I--+&,=1 1 1

It is worthwhile noting that the phases of some
of these coefficients are determined by the order.
We have chosen the order as follows: In II», T&

particles 1 and 3 are coupled first, particle 1

being the first and particle 3 the second particle;
the dipion of isospin I is then coupled to the other
pion, the dipion being the first and the other pion
the second particle.

One way to obtain the above coefficients is to
calculate overlaps between the different states
expressed in terms of charge states for the 3
pions. Using a table of Clebsch-Gordan coef-
ficients it is easy to find for the projection T, =-1

Adding the isospin of a third pion to obtain total
isospin, we obtain

T=1 0, 1~2 1 2 3.
These seven states can be obtained either in the
(23)1 coupling scheme, i.e., first couple the
isospins of particles 2 and 3, then add in the iso-
spin of particle 1, or in the (13)2 scheme in which
one first couples the isospins of particles 1 and
3. For a case such as T =1, where there are
three distinct states, the three states obtained in

11... 1&=l I+ —-&-l I--+&--,' Ioo-&+-,' I-oo&,

where the symbol I+ —-) indicates the charges
of pions 1, 2, 3 in that order. Interchanging par-
ticles 1 and 2, we obtain

I o.„1) =
~3
—I-+ -& —

3
I- oo&+

3
I- -+&,=1 1 1
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I1... »=s I-+-&-2 I--+&-kloo-&+-,' Io-0& .

(Bs)
Taking appropriate scalar products, one imme-

diately obtains the first two rows and columns of
the matrix in (B2).
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