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We study the Hamiltonian for a nonrelativistic nucleon with Yukawa coupling to a scalar meson field. The
nucleon self-energy is logarithmically divergent. It is known that one can isolate the divergent part by a
canonical transformation, but this technique is feasible only for simple field theories. We study the theory by a
systematic strong coupling in inverse powers of the coupling constant e. The leading term in the energy is of
order e' and corresponds to classical particlelike solutions. The terms of order e' represent a generalized

meson-pair theory. The zero-point energy shift yields the lorgarithmically divergent energy. The residual

Hamiltonian contains scattering resonances, and techniques are developed to study the resonances.

I. INTRODUCTION

In the present paper we exhibit some new fea-
tures of a nonrelativistic field theory that con-
tains particlelike solutions. The Hamiltonian is
(c=l, h=l)

H = Vg' ViId'x + e y x)g'{x)g{xd 'x
2M

+ —':m'+ VQ '+ p, 'P':d'x.

This represents the coupling of a meson field fI)

to a scalar nucleon field g. Since we will be in-
terested in the one-nucleon sector f g gd'x= 1,
P can be either a fermion or boson field.

W'hen H is studied classically, one finds local-
ized "particlelike" solutions for g(x, t) of the
form $0(x)e 'so', with an associated static meson
field and with a total finite energy Eo. The spatial
extent of the localized solution is a Bohr radius
1/Me' and the energy depression is of order e4

One can go on to study moving nucleons, coupled
small oscillations of meson and nucleon fields,
excited self-consistent field solutions, etc. The
same procedure can be followed for relativistic
field theories.

Our earlier work' was devoted to understanding
the quantum-mechanical content of this procedure.
In particular, there is the apparent paradox that
for weak coupling the one-nucleon self-energy
E~ is logarithmically divergent,

-e2 1 1

0 ~ 2te k'/2M+xv ' (1.2)

where gg(y) = (P + p, )
We showed that the addition of E~ f f gd'x to H

yields a divergence-free theory. By performing
a canonical transformation on H we cancel the
counterterm. The remaining Hamiltonian is free
of divergences. This aspect has been put on a
mathematically rigorous basis by Nelson. ' Phys-

ically more interesting was the demonstration
that the divergence-free Hamiltonian also had
particlelike solutions. This was in accord with
the intuitive feeling that the quantum divergence
arises from fluctuations of very short wavelength.
These are insensitive to the existence of any
over-all structure of the order of a Bohr radius.
However, the treatment of the short-wave fluctua-
tions affects and modifies the particlelike solutions
due to long-wave fluctuations, and one would like
a systematic procedure for treating these finite
strong-coupling effects.

In the present paper we examine the same theory
from the point of view of an adiabatic strong-
coupling theory where we proceed systematically
in inverse powers of the coupling constant. The
advantage is that the procedure is directly applic-
able to more general theories and does not depend
on the particular canonical transformation used
to handle divergences. The leading term in the
one-nucleon energy is again the classical energy
of order e . Vfe calculate the next term of order
e'. It contains a logarithmically divergent part,
just as in weak coupling. The divergent term now

arises as zero-point energy for the meson field
which is governed by a pair Hamiltonian with
attractive interactions. Corresponding to the dis-
crete excited states of the nucleon in the potential
well provided by the static part of the meson field,
there are scattering resonances of the meson
field, with the nucleon remaining in its ground
state.

II. CANONICAL TRANSFORMATION FOR ADIABATIC THEORY

We start with Eq. (1.1), using primes in the

variables, and perform a scaling transformation

x
~

1 x
~

1 x"'"'= v' . .

(2.1)
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The transformation preserves the canonical com-
mutation relations. We obtain the scaled form of
the Hamiltonian

II=, Vg ~ Vgd'x+ — f x g x g x d'x

~ P + VQ
2 + ~2/2/2 ad 3x

~ (2.2)

|)I(x}= Q b„g„(x}.

The g„(x}have spatial extent unity and are ortho-
normal,

(2.3)

(2 4)

For weak coupling the appropriate length is A, =1,
whereas for strong coupling it is I = 1/Me' and
goes to zero with infinite coupling strength. We
will be interested in the strong-coupling limit and
will use the small parameter & =1/e so tha, t
X =eo/M. The three terms in H are in the ratios
1:f:6

We now expand the nucleon field in a spatially
preferred basis:

U, , U, '= PE„b~b„+—gw(k}a (k)a(k)

Q x gp'd'x+V. (2.10)

Here

on a Hartree trial function.
There are several noteworthy features of the

primitive strong-coupling theory. The continuum
for the g„(x) starts at an energy ) E, ~

above the
ground state. In addition, depending on the value
of ice /M, there may be discrete nucleon excited
states in between. For example for p, =o, the
effective potential eP(x) is of Coulomb type at
large distances and tends to a finite value as
~x(-0. So there are infinitely many excited
states. These are the excited states of a particle
in a potential eP(x) and not the self-consistent
excited states of the Hartree theory. It has been
shown by Meyer' that the solution go(x) has some
subtle features that are usually ignored in simple
variational estimates. In particular, the Fourier
components of go(x) fall to zero faster than any
power of the wave vector, for large wave vectors.
We now have

We perform a canonical transform that shifts the
meson field about a mean static field P(x): V=K P x $ xfx gp bpbp d (2.11)

Ugo( xU},
' = y(x) + P(x) . (2.5}

The functions P„(x) are chosen to be eigenfunc-
tions of a particle moving in the potential ep(x},

[ .&+&-4-(x)]4.(x) =E.P.(x) . (2.6)

To determine P(x), one examines the diagonal
part of UpHUp 'with bpbp=1, and then chooses
P(x) to make the linear terms in the meson field
P vanish. This yields

v,2~ w e4' ko (x}
M' (2.7}

In the limit of strong coupling eP(x) is of order
unity. The two equations yield the wave function
of the particlelike solution as the function obeying
the nonlinear eigenvalue problem:

3' 1
~ 2( )

exp[-(i3& /M) ( x-y~ ]d3 ( )2 4 0 y
~x i

y 0 y

and we use the usual decomposition

y(x) = Q (
„,[ a( k)e'~+c. c],

1

w(k) = (k'+ p, 'e'/M')'"

Let us write

V= Vp+ V, ,

Vo=& Q (Gwbobo+Goobobo}
n 2ep

, V= +eG b b„.
m 2ep
n 2ep

Here

G „=— Q x P~ x g„x d'x

(2.12}

(2.13)

The potential cQ is also equal to

eP(x) =E +
1 V'y,

kp

=Eolo(y) . (2 3)

(2.9)

These equations are the same as those obtained
as exact solutions of the classical theory, or
alternatively from a variational argument based e [S, Q E„b„b„]+Vo = 0 . (2.14)

depends on the meson fieM. Because of the char-
acter of the E„ it is easy to develop an adiabatic
theory based on expansions in powers of &, We
remove Vp to first order by performing a unitary
transform U=e, S =-$, that satisfies the condi-
tion
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Note that the adiabatic idea is expressed by the
use of only the free part of the nucleon field. The
meson free field has a coefficient c2.

The desired S is simply

S= Q (F„ob„bo —H.c.),
nse 0

with

F„o=G„o/(E„- E()) .
(2.15)

Actually this canonical transformation can be per-

formed in closed form with I'„, an arbitrary func-
tional of the meson field (t). We are here, how-

ever, only interested in the simplest treatment
that calculates the energy of the lowest state of
the nucleon and the associated excited states of
the meson field to order e2. The free-meson part
of the Hamiltonian is already of order e2, so that
the correction due to transformation of the m

variable is of order e'. Ne now set down the
transformed Hamiltonian, including all terms of
order e'. Ne find

4- U '= —— P X g0'd X+ E„b„b„e4M

2 4+:v'+(vt())'+, Q':d'x —e (t)(x)(c)0(x)g(xly)$0(y)yb(y)d'xd'y+R.
M

(2.15)

Here

~ 4.'(x)(C. ( y)

n&0

The residual part of the Hamiltonian is

(2.17)

ly, one can use a, variational argument to exhibit
the logarithmic divergence. Vfe take the expecta-
tion value of the Hamiltonian with the meson
vacuum 4 „such that a(k)4, =0. Then an upper
bound to the energy is

m s)0 n 0

1
~H =-e',

(2»)

where

„G(k lk), (2.19)

mM q 0
n'W

(2.18) G(el)')= f e'"y, (*)tt( le)y, (y)e "'"d'ed'y.

R contains diagonal terms b„bn for n+0, but we
are only interested in the dressed nucleon in the
lowest state where b, b, =1. The terms in R of
the type b 50 can be eliminated against the nucleon
energy QE„b„b„by a further unitary transforma-
tion. But the generator is of order e2, so there
are no correction terms of order c2.

We now comment on some notable features of
the pair Hamiltonian. In the limit p, =0, there is
an over-all factor of c', but otherwise the meson
Hamiltonian is independent of e. (For i(, yy0, it is
only weakly dependent on &, apart from the finite
range for the meson field. ) The ground state of

the meson Hamiltonian contains a zero-point
energy shift. Thus the entire Hamiltonian H in

strong coupling for p, =0 contains in addition to
the "semiclassical" energy shift of order e4, an

energy depression of order e'. This latter con-
tribution is logarithmically divergent, as is the
case for the same Hamiltonian in the weak-cou-
pling limit. Adding the divergent term EG f )I) (I)d'x

makes the theory finite, but leaves a finite non-
zero contribution of order e' to the self-energy.

Even if we do not treat the pair theory accurate-

(2.20)

2 exp[-(2IE. I
)'"I»- yl 1

4m
(2.21)

The divergent contribution comes from g0; the
other contributions are finite. If we define

y. te) = f "'y.t*)e*e (2.22)

we have with g =g,
e' 1

l g,(«)l
'

(2»)' 2w(k) [-,'(k —«))'+ lE()l

(2.23)

Now $0(K} falls to zero for K = Ko» 1, faster than

any power of a. Thus there is a divergent part

The argument that shows this is logarithmically
divergent is similar to the one given in our earlier
paper. ' g(xl y} obeys an integral equation [Eq.
(3.5)j in which the main inhomogeneous term is

)K(. ,)d3,
(2 )' -'K'+

l E, l
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1 1
(2v)' „„2M)(k} —,'k'+

l E, l

(2.24) (y, —E )(4d'},= e'" —fe" t"(,y'}d y'd(e)

As an aside we note that the logarithmic diver-
gence occurs in both extreme limits where the
i(}„(x)are plane waves or oscillator functions.

The second point is that in general g(xl y) con-
tains contributions from discrete excited states of
the nucleon in the potential well eT()(x). There is
then the possibility of scattering resonances and
even of meson bound states associated with each
of these excited states. Since the energies of ex-
citations of the free meson field are of order e,
the meson resonances are also of order e (in
conventional units).

and

—o V Q „—o( V Info) ~ V P, =f~(x),

=-
qof,(x}, (3.7)

(3.8)

——,'V (((,'Vy, ) =y,'f, ( x).

In terms of P, (x) we can write

G(ele')= f e'"d.*(*}d;(eld'e

(3.9)

l/Jp x) e Qg, x +e Qpx d x ~

III. TREATMENT OF THE PAIR HAMILTONIANS

-V' 1 1L„= +eT()(x), te=(}Eo—+ —V'go,0 2 q
0& (3.1)

L,q„(x) = E„q„(x). (3.2)

To set up a practical calculation of the scattering
resonances one must do two things. First, useful
approximations for g(xl y) have to be developed.
Second, the generalized pair Hamiltonian must be
approximately diagonalized. While it is question-
able as to how much interest attaches to this model
Hamiltonian, the procedures are directly useful
in associated solid-state problems '' and also for
relativistic Hamiltonians.

Consider first the kernel g(xly}. Consider the
Hermitian operator

J=2 qpvy~ vied x- y~ xypf~xd x

~xdx, (3.11)

where fI), and p,* are to be independently varied.
The stationary value of 8, [J], is f p~fo'f), (x}d'x
and allows an estimate of the diagonal element
G(kl k) that is important in the self-energy.

The variational principle is useful in handling
the difficult sum over the continuum states that
occurs in g(xl y). For example, assume the trial
function

(3.10)

We now set up a stationary variational principle
for P„(x}. Consider the functional

Then I,( )x=P,[e'" p(k)]+-4f(x), (3.12)

(L. —Eo)g(xl y) =&(x-y) —()o(x)qo(y). (3.3)

(3 4)

we have the integral equation

g(x I y) =go(x —y) —4(x) go(x —x, ))c}o(x,)d'x,

In terms of the Green's function go(xl y), obeying

v2
—

y
'Id. l) d (elyl =e(*-y),

y,'(x)y, (x) = g " E„,(k),
ll P 0

where

(3.13)

d„,(k) = J e' d, t*}d,t*)d'e .

where P, is a variational parameter, p(k)
= J e"*go'd'x. The term P, (x) represents the con-
tribution of the discrete excited states and is
given by

Define Q~(x) by

d, (*)d.te}= f d(*l y) ""d.(y)d'y, (3.8)

where we note that

Q g d'x=0.

We have the differential equations

+ gp x xy 6p xy g xy p d xy 3 5 The discrete excited states g„with energies E„
are obtained by a separate analysis of the eigen-
value problem for the potential eg(x). The form
of the first term in P,(x) is suggested by the
plane-wave limit for the g„(x).

Using this trial in J and varying with respect
to P„*, we find

2

P~
—= (1 —p~p ~) —tk ~ e ' "gp V P„x d xk 2

(3.14)
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(v)= -H. t) —v v ..) —-f ):V *
v v'*

This yields the estimate

(3.15)

We now write V= VD+ V, . V~ contains the con-
tributions from the discrete levels and is the sum
of separable terms. V, is the contribution from
the continuum. Let R be the resolvent for V„so
that

G(klk') = ~(P~+Pf)(pa-" p—apa ) R, =GoV, +GoV,R, . (3.22)

p R„",(k')R„,(k)

p ~0 Eu- Eo
(3.16)

We adopt the frequently employed procedure based
on the attitude that adequate approximations for
R, can be found. With

It is to be noted that the high-k behavior of pk

is the same as in the earlier paper analyzing the
divergence of the theory. However, the long-
wavelength behavior is different. The form of
G(kl k') contains additional separable parts from
the continuum, as well as the separable parts from
the discrete excited states.

We now turn to the second problem, the treat-
ment of the pair Hamiltonian. For brevity we use
the notation of standard expositions of pair theo-
ries.'' Define

V(K
I y) = 2().(x)g(x I y)({.( y),

(3.17)

v()lv')= J v(*l*') '" ""'v' v'v'

and use the four-dimensional Fourier transforms

Q, =1+R, , Q=1+R

and using Q, (1 —GOV, ) ',
Q=Qi Qi o DQ.

(3.23)

(3.24)

V. = p I p&lv&& pl (3.25)

The states
I P& are not orthogonal in general, as

is seen from our expression for G(kl k'). Then

&~ IQ —Q (~I Q,Gal p&tv)(pl Q= & ~I Q,

Write the solution of this finite set as

(3.26)

Suppose VD is a sum of a finite number of separa-
ble terms and is written as

(3.27}

Q(X f) = y(k K )e~(k '( -&ot)d kft "p
(2 )5/2 1 0

The equation of motion based on the pair Hamil-
tonian is written in the integral form

(J) (k, K,) = y'" (k, K,)

so that

(k I Ql k'& = ( kl Q, l
k'&

+ g & kl Q,G. I ~&
an'

(3.26)+, d'k'G, (k)V(k, k"')(f)(k', K()),

(3.19)

G,(k)=, . „~-O .
1

u) (k) —(K() + f'g)

To exhibit the solution, introduce the resolvent
operator R(k, k', Ko)

The scattering resonances are located at the
zeros of the determinant D. The results differ
from those of simple pair theories because of the
modification arising from the nonzero resolvent
for the continuum part of g(xl y), viz. Q, .

Our variational estimate of the continuum contri-
bution to G(kl k') shows that it is useful to extract
separable parts. Thus

(p(k, K()) = Q'" (k, K())
&kl v, lk'&=(p, +p;. )(p, , p, p, .). — (3.29)

+ R(k, k', Ko)P'"(k, Ko}d k'.

In an operator notation

GoV+ GoV

where

(k I G( VI k') =Go(k)V(k, k') .

(3.20)

(3.21)

Thus we introduce a resolvent R, for the nonsep-
arable part and write

&klQ, lk &=&klQ. lk &

(kl Qalk, &Go(k, )d'k, (p, , +pg )

x p, ,p~d'k, (k, I Q, l
k'&, (3.30)
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&ill Q21~'&= (0~+ Pa 'lpga ~

(3.31)

Af ter a suitable approximation has been found for
the integral equation for Q„ the calculation of

Q, and thus of Q is a matter of simple algebra.
This completes our discussion of the technique

needed to analyze the extended pair theory.
Summary. The key point of the present paper

arises from the fact that the introduction of a
breaking of translational invariance of a particle-
like solution alters the spectrum of the "unper-
turbed" part of the Hamiltonian. This in turn
makes possible a systematic adiabatic strong-
coupling theory in which quantum fluctuations (and
divergences) are not lost and can be treated. No

specific prior technique is needed to handle the
self-energy divergence. There is thus hope that
relativistic renormalizable theories can be at-
tacked by an analogous procedure.
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