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Photon emission by an electron in a bichromatic field
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A general expression for the probability of photon emission by an electron in a unidirectional bichromatic

classical field is calculated making use of the exact solution to the Dirac equation for the electron in the field.

In the limit that one component of the field is weak, a cross section for scattering a photon out of this

component is derived. This has a complicated form but numerical values have been obtained in the particular

case of an electron of energy 5 GeV travelling through radiation from a ruby laser (considered weak) and an

intense CO, laser. It is found that, as a function of the intensity of the CO, laser, the cross section first

increases, but eventually decreases to values below the Compton cross section. The spectrum of the scattered

radiation is also calculated; is shows intensity-dependent shifts attributable to a field-induced drift velocity of
the electron.

I. INTRODUCTION

In this paper we are concerned with photon
emission by an electron in an intense bichromatie
electromagnetic field. Our original interest in

this problem stemmed from the demonstration by
Bemporad et al. ' that y rays could be produced
through backward scattering of ruby laser photons

by energetic electrons. The question arose as to
whether the yield of y rays could be improved by
adding a supplementary low-frequency field which
would stimulate the double Compton scattering pro-
cess. It turns out that this question is too narrow,
because although stimulated double Compton scat-
tering occurs, increasing the production of y
rays, many other processes also occur which

affect the over-all y-ray yield. Obviously, it is
this over-all yield which is important experimen-
tally, and one is hence obliged to study the more
general problem enunciated at the beginning of
this paragraph.

We choose to represent the electron by the exact
solution to the Dirae equation for a charged parti-
cle in a unidirectional classical field. ' This elec-
tron is then coupled to a quantized field and the

probability of single-photon emission is calculated.
The scattering cross section o, correct to all or-
ders in the classical field strength, follows.
Plane waves are used throughout the calculation
in spite of the fact that in so doing one cannot in

an unequivocal way decouple the electron from the

classical field at the beginning and end of the scat-
tering process as mould be the case in a real ex-
periment. We feel justified in this procedure,
however, on the basis of the work by Neville and

Rohrlieh. ' They treated the problem of Compton

scattering by an electron encountering an intense
pulse of monochromatic radiation using rigorously
separable wave packets, and obtained the same re-
sult as Brown and Kibble' who used infinitely long
wave trains.

In the general expression for the cross section
one can, on the basis of the frequency of the
emitted photon, identify different contributions
to o arising from the Compton process, the dou-
ble Compton process, etc. Nevertheless, the
formulas for these individual contributions are
too complex to permit general statements con-
cerning their behavior with respect to the field
parameters. Some simplification results in the

case that one field component is weak, but, even

then, understanding of the formulas only comes
through numerical analysis of specific examples.
Because of our interest in y-ray production the

case of an electron of energy 5 GeV traveling
through radiation from a ruby laser and an in-
tense Co, laser has been studied. It is found

that, as a function of the intensity of the Co,
laser, the cross section for scattering a photon
out of the ruby laser beam first increases, but
eventually decreases to values below the Compton
cross section. The maximum increase is about
10% of the initial value, and, as a consequence,
the y-ray yield can be improved at most by this
amount.

The problem of photon emission by an electron
in a bichromatic field has already received some
consideration in the literature. Kronig, ' and
Prakash and Vaehaspati, ' investigated the possi-
bility of enhancing the cross section for the scat-
tering of x rays by irradiating the electron with

light from a laser, and predicted a substantial
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effect. Later, however, this conclusion was re-
tracted by Kronig and Hofelt' who, in a new cal-
culation, found no effect at all. Lebedev' also
studied the general problem, but for a particle
satisfying the Klein-Gordon equation. His results
are unfortunately incomplete, a cross term be-
tween two equally important parts of the transition
amplitude having been omitted from the square of
the latter. A formula for the intensity of radiation
by a Fermi particle interacting with two electro-
magnetic waves has been given by Klimenko and
Khudomyasov, ' but the implications of the formula
were not extensively discussed. Oleinik, "using
the exact Green's function for an ej.ectron in a
monochromatic classical field, studied the scatter-
ing of photons by the electron out of a quantized
field. He found resonances in the scattering cross
section when the frequency of the incident photons
was integrally related to the classical field fre-
quency. There is no evidence for such resonances
in our calculation.

Qf course, if in the general expression for cr the
amplitude of one field component is set equal to
zero, ond finds the cross section for scattering
a photon out of a monochromatic field, a problem
already dealt with by several authors. ""'"

II. THEORETICAL DEVELOPMENT

A. Electron wave function

duct n x. The quantity w(p) is a spinor which sat-
isfies the equation (y p —m)w(p) =0, and the nor-
malization condition w(p)w(p) = m/E, with E =Po.
In deriving (2.3) it has been assumed that A obeys
the Lorentz condition 8&A & = 0, and further that it is
a function of Q only. Later, for simplicity it will
be assumed that A propagates in the z direction;
that is, n = (1;0, 0, 1). The normalization constant
C is to be determined shortly.

The wave function (2.3) was obtained by Volkov
imposing that a function g(x) = exp(- iP ~ x+ E)w(p),
with E'=E(P), be a solution to Eq. (2.1). However,
in the case that A is monochromatic it can also
be derived in principle by summing a perturbation
series. Such a derivation throws some light on
the interpretation of the various factors in the
Volkov solution and will be discussed in Appendix
A.

From the wave function, Eq. (2.3), one can cal-
culate the probability current for an electron in
the field A,

p&=CC* ——— n~+ (p An~-p nA~) .F 2Ep n p n

(2 4)

Averaging this time-dependent quantity over a
few cycles of the applied field one obtains the
constant probability current

[y (fs-eA) —m]/=0, (2.1)

where e and m are the charge and the rest mass
of the electron, respectively. In Eq. (2.1) the

y matrices satisfy the anticommutation relations

The Dirac equation for an electron in a classical
electromagnetic field A has the well-known form

(2.5)

where X stands for the quantity —e'(A')/2Ep n

From the zeroth component of (j"), that is, the
time-average probability density

& j ') =& 0p 0p)

r "r"+r'r" =2g"", (2.2) = CC*(1+x), (2.6)

with the metric tensor g"'=0 for g c v and g"
gll= g22 g33 1.13 Units havebeenchosen

so that 5=c=1.
For a field propagating in an arbitrary direction

characterized by the null four-vector n, the solu-
tion to (2.1) has been shown to be'

1
g (y)=c 1+ — y'ny A)P 2 p~n

&exp —ip ~ x+ i—. 1 1
dp(e A —2eA p)2 2

2 p'N

xw(p) . (2.3)

Here p is a constant four-vector, which would rep-
resent the momentum of the electron were the ex-
ternal field switched off, and Q is the scalar pro-

one deduces the normalization constant

c =[v(1+x)1 '", (2.7)

where V is the quantization volume. The spatial
components of & j"), on the other hand, yield the
average velocity components of the electron as
modified by the presence of the applied field. In
particular,

',"'=&j')V= v. +x
1+X ' (2.8)

where v, =p, /E. That is, the field has caused the
particle to drift in the z direction. It will be
shown later that this modification to the particle's
velocity has important consequences insofar as
the spectrum of scattered radiation is concerned
when the field is intense.
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d3gg~~e X) gp X) (2.9)

and taking a time average of the result. One finds

The orthogonality condition satisfied by the wave
functions (2.3) is found by evaluating the integral

B. Scattering amplitude and cross section

We would now like to calculate the probability
that the electron emits a photon. To this end the
electron is coupled to a quantized field 5 through
the interaction Hamiltonian

(2.13)
2v)'

(2.10) where

where kk" x -ik" x8= (, )12(a e +ae ). (2.14)

1 e'(A')
q=p —— n.

2 p'n (2.11)

This quantity, called the quasimomentum, "equals
the time average of the expectation value of the
kinetic momentum operator p —eA. Its square de-
fines an effective mass for the electron in the
field:

m* =q2 = m' —e'(A') . (2.12)

This effective mass has been invoked to explain
frequency shifts in high-intensity Compton scatter-
ing. '

In (2.14) e is the polarization vector, a and a
are the creation and annihilation operators, and
~' is the frequency of the field. The probability
amplitude equals

sf) = —i&qglHi I@(), (2.15}

where the symbol I%', ) stands for the initial state
of the electron and the vacuum state of the field,
while I4'z) stands for the final electron state and
the one-photon state of the quantized field.

The introduction into Eq. (2.15) of the wave func-
tion g~, together with the expression (2.13) for HI,
yields

)„, fd x((x)y '~ a(,,(x)e""'

d~x w(p') 1+ —, y A y n y ~ e 1+ — y ~ n y A w(p)e' (2.16)

where the exponent 8 stands for the following sum
of terms:

this choice of A it follows that

A' =-A'

y =p' ~ x ——, d())(e A —2eA P')1 1 2 2

2 p''n

1 1—p 'x+
2 pin dq)(e A' —2eA p)+k' ~ x.

= —[A,'+A(, '+2A, A(, cos[(&u, —((),)P]) . (2.19)

with Q=t —z, and that the quasimomentum q, Eq.
(2.11), equals

(2.1V) +2
q =p+ — (A,'+A, ')n. (2.20)

To proceed further, a specific choice of the po-
tential A has to be made. It is assumed that the
scalar potential A' equals zero and that the vector
potential A is the sum of two circularly polarized
components propagating in the z direction with
frequency u, and ~„respectively. That is,

Introducing (2.18} into (2.17) and making use of
the definition of the quasimomentum, one finds

s=(q'-q+k') x

+ a sin(k, —k(, ) x —P, sink, ' x —P, sink, ~ x,

A = [A,((e &' "+ (*e' &'*)

+A, (ge '
()

' "+(~e' &
' ')], (2.18)

where the vector ] equals (2 —fy)/W2, 2 and y
being unit vectors in the x and y directions. From

where

AA~ 1 1

Qpg Qpy p 'n p 'n

(2.21)

(2.22a)
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eA, p„' p„ (2.22b)
8...=g ~i(o)~„1(P.)~. , (Pb) (2.25)

eAk p„' p„ (2.22c)
In the special case that ~, =jew&, with j

=2, 3, 4, . . . , one can instead introduce the func-
tion

For simplicity it has been assumed that the scat-
tering takes place in the (x, e) plane.

Using the mell-known expansion of an exponential
in terms of Bessel functions,

301= gg~i(ci)~, .1(P.)~s „i(Pb) (2.26)

eis sine p eimeJ' (e)
m= -Ob

one can rewrite the factor e' appearing in (2.16)
as follows:

(2.23)

e' =g J (a)e"~" 'b'''J (P,)e
' "'"

Xj (P )
iskb ~-x ( 1aa+k ') ~ x

n

r,s

&{a'-a-rkfI -sky+A') ~ xer se (2.24)

The second line of (2.24) is obtained from the first
line by introducing the new indices r = —l+ m, and
s = l+ n, and the function

and the exponential e' may be expressed as fol-
lows:

iS ~~ s{a' a Ck~+k') ~ x (2.2't)

where t is an integer. The subsequent analysis
would be the same, mutatis mutandis, as that for
the case in which the frequencies are not integral-
ly related.

Introducing (2.18) and (2.24) into (2.16) it will be
seen that the matrix element Sf; is the sum of a
number of terms, each one of which contains a 5

function of the form 5(q' —q-jk, —Ikb+k'), with j
and I, integers. After some simplification one
finds

ieC'*C
Sf i 1 1/bow(p')[B, y ~ e +B,(g, y ~ e y ny F +gjy (y ny e)

+Bb(ray�'e

y ny' $*+(&y $*y ny e)
ras

+Bs(y ~ $y ny e y ny Eb+y $sy ny e y ny $)]be(p) 5(q' —q —rk, —skb+k') .

(2.28)

In (2.28) the following definitions have been intro-
duced:

(2~)'eC'C ' 1P=
4m V

+o=~r, s r (2.29a)
&& g (~') '5(q' —q -rk, —skb+k')'Z„, ,

1
Bi ~2 ( a~r 1,s+ b~r, s 1)&-

1
b

=
~2 (Aar)r+i, s +As )r,s+1)a

B, = s g~ g, [(A,'+A, ') 8„,

+AaAb(a)r 1,a+1+a)r+1,s-1)] ~-

(2.29b)

(2.29c)

(2.29d)

r,s

where

~r,s 1~r,s + 2~r, s ~r, s

+Cs[ (A, g„, , +Ab J„s,)'
+ (Aa air+ i, s +As a),s+1) 1

with

(2.30)

(2.31)

with (; and g~ equal to e/2p ~ n and e/2p' n, re-
spectively. The probability of emission is now

calculated by taking the square of S«, averaging
over the initial electron spin states, summing
over the final spin states, and summing over the
polarizations of the emitted photon. One obtains
the following result:

C, = —8m' —4e'(A, '+A, ')I',

p n p' ~ n
+p'n pn

(2 32a)

(2.32b)

2e'A, A~
C2 = -8 + (u, —co~)(p n —p' n)

(2.32c)
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C3 = 2e2F, (2.32d)

(2.32e)

R=(- ) V

2, , = Q lJ,(a)Z, , (P,)Z, , (P ) .

The transition rate, dP/df, is then integrated
over the final quasimomentum of the electron and
the final momentum of the emitted photon, yield-
ing the total transition rate

where Z„', =Z„,/(2eA, } and ro is the classical
electron radius. This definition of cross section
has been chosen because of our eventual interest
in the scattering of photons out of the a component
of the field.

Owing to the complexity of Z„, [Eq. (2.31) with
Eqs. (2.32a}-(2.32e)] it is not at all transparent
how the cross section 0 depends on various para-
meters such as A, and A, . However, in two cases
more tractable forms of 0 emerge.

xg f d'q'd 'dQ'
r, s

&& 6(q' —q -rk, —sk, +k'}Z„, ,

(2.33)

where the symbol dQ' stands for the element of
solid angle into which the photon is emitted. The
integration over co' requires some care, because
in the argument of the energy part of the 5 func-
tion,

e'(A, '+A, ') e'(A, '+A, ')
2p' n 2p n

—J'(d~ —S(dy + (d ) (2.34)

both E' and P' n are a function of v'. Such an
implicit dependence on +' is taken into account
introducing into the integrand the factor

with

and

(2.35)

(ra, + su~)P ~ n

E —
i p i cos8& g + (1 —cos8)(r&u, + su~+ p/P n)

(2.36)

p = ~ e'(A, '+A, ') . (2.37}

In (2.36) the symbol 8 stands for the angle between
k', the emitted photon momentum, and the z axis.

The cross section for scattering is now defined
as the ratio of the total transition rate to the re-
lative flux of electrons and a-type photons,

1. Monochromatic case

In the case that A, equals zero the parameters
n and g and the function Z„, all equal zero; fur-
ther, the function 8„, simplifies to J„(P,)6„. It
follows from (2.31}that

(2.39)

which, introduced into (2.38) gives the cross sec-
tion for scattering out of an intense monochromatic
field A, . This is the same expression as that ob-
tained by other workers. """ The behavior of
the cross section as a function of the field inten-
sity will be illustrated in Sec. III. It may be read-
ily shown that one obtains from (2.39} the usual
expression for the low-intensity Compton cross
section" in the limit that A, vanishes.

2. Case of weak a component

By allowing A, to tend to zero in (2.38) one ob-
tains the dependence of the cross section for scat-
tering a photon out of a weak field on the intensity
of another field. The result is applicable to the
problem of enhancement of y-ray production men-
tioned in the Introduction. In this limit an exam-
ination of Eqs. (2.25), (2.31), and (2.32) shows
that the only nonvanishing terms are those for
which z =1 and l = —1 or 0. One obtains for Z„',

(2.40)

with

E = (I —vi"'}u), A '/V

that is,

2m ' m'
1 —v, Ep n

Dj s +D2 tfs + DscJs tJs

and o,2 2P~F ~sip' + Js+&'Js+i0

+D4 J.+i'+Ds~s~. +

(2.41)

(2.42)

(2.38)
where the argument of the Bessel functions is P,
and where
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py(dt), m
(2.43a)

poo (2.43b)

&pe
2~, 2 A M~

(2.43c)

D4 =1 —1 —2

1 $ (d& S (dt, p&(d~D, =I' —+ ——+
2 2 (gp, 2 &, 2(g, 2A,

behavior is indicated in any of the terms (2.43);
Oleinik's' predictions are consequently not con-
firmed. "

In the case that A =eA~/m is small compared to
unity an expansion of o in powers of A is useful.
This will be written down, taking p equal to zero
and assuming that the frequencies &, and ~, are
very small compared to m. We are considering
scattering by an electron initially at rest out of,
for example, visible and infrared laser beams.
The ratio R = +,/v, is taken to be less than unity.
With these assumptions, the frequency of the
emitted photon equals

2((u, —(u, }[(p n}'+(p' n)']
(eA~) (p ~ n -p' ~ n)

(2.43d)
(dg + $(dy

1+ ~+~(1 —cos8) ' (2.44)

—2p,D,=;
I ( p n -p' n)((g, —a), ) —2 m'] .

(eA, )'n
(2.43e)

The cross section obtained by introducing (2.40)
into Eq. (2.38) still has a very complicated form,
and to understand the effect of the second field on
o one is obliged to resort to numerical analysis
on a digital computer. This has been done and
our results will be presented in Sec. III. It is
clear by inspection, however, that no resonance

and the argument of the Bessel functions in Eqs.
(2.41) and (2.42) equals

A sine (dg

1+—,'A'(1 —cos8) &u,
(2.45)

It will be convenient to denote the contribution
to the cross section for a given value of s by
2m o'o' ' . Then, replacing the Bessel functions
by their well-known power series, and perform-
ing the integration in Eq. (2.38),"one finds for
the reduced cross section a {', with s = 0, + 1, + 2,

o 4 2 A ' 5 10 2 10g{',o) — 1 + —R + —R2 + —R3 + ~ ~ ~'=3-5
R 3 3

'
3

'

+ — (6+ 21R + 119R~ + 16IR' + 217R4+ 259R'+ ~ ~ ~ )+ ~ ~ ~105 R 7 (2.46a)

A 1o&'& = ——(1+4R+6R'+4R'+ ~ ~ ~ ) — — (4+31R 13+7R' 33+BR~ 48+7R~ 45+SR' ~ + )+ ~ ~"'=5
R 105 R

o = —— 1 ——R + —R ——R + ' ' ' — —(4 —3R + 67R —73R + 39R + 4R + ' ' ' ) +
(,) 1 A 2 8 2 2 1 A 4

2 3 4 5
5 R 3 3 3 105 R

A 4
o ' = — (1+12R+60R +160R'+240R +192R'+' ' ')+' ' ',105 R

(2.46b)

(2.46c}

(2.46d)

o~ "= — (1 —5R+25R' —55R'+44R' —31R'+' ')+105 R (2.46e)

The quantity 2m o'v~" is the cross section for
emitting a photon of frequency equal to approxima-
tely &„ that is, the cross section for Thomson
scattering. It will be noticed that it equals the
sum of the usual Thomson cross section, +neo',
and terms depending on the intensity of the b com-
ponent of the field. The dominant correction,
—2wr, 'x&(A/R)', indicates that the application
of the second field reduces the intensity of Thom-

son scattering. This reduction arises from con-
secutive absorption and emission of b-type pho-
tons, as is shown in Appendix B.

The quantity 2m o'cr~-" may be interpreted as the
cross section for stimulated double Compton scat-
tering. In this process a photon of type a is scat-
tered into two photons, one of frequency ~„ the
other of frequency m'= u, —co, . The latter photon
is accessible to an observer, whereas the former
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is emitted into the b component of the field. One
may obtain the leading term of (2.46c) using the
theory of stimulated processes and the known dou-
ble Compton cross section, as is shown in Appen-
dix C. The quantity o'~+', on the other hand, cor-
responds to a process in which two photons are
absorbed by the electron, one of type a, the other
of type b, and only one photon is emitted.

The total cross section, to the fourth power in
2, is obtained by summing the reduced cross
sections listed in (2.46):

rr = 2 m 0 [+ +A2 (x -&~ ft + ~ ~ ~ )

b

T ~TTIt ~r

1.0—

.001 .01 .1 1

A

-A (mg + ~R+ )+ ] (2.4 "/)

III. NUMERICAL RESULTS

A. Bichromatic case

For bothy and A small compared to unity it will
be seen that the effect of the b field is to increase
the cross section. This increase stems from the
fact that the sum, 2m. ,'(or+'r+cr 'l), exceeds the
first correction to Thomson scattering; that is,
the increase in photon emission at the sum and
difference frequencies, ~'=so, a ~~, is not exact-
ly canceled by the decrease in emission at au'

= +,. Kronig and Hofelt' found instead that o was
independent of A; the discrepancy between their
result and (2.47) arises presumably from their
numerous approximations.

FIG. 1. Cross section for scattering a photon out of a
weak field as a function of the amplitude A = eA~/m of a
supplementary field. The energies of the ingoing electron
and the weak {ruby laser) and supplementary {CO2 laser)
field photons equal respectively 5.11 GeV, 1.79 eV,
and 0.118 eV. The electron and the two fields are initial-
ly propagating in opposite directions.

unity the shape of these graphs is the same as
one would expect on the basis of the formulas for
or', Eqs. (2.46).

In addition, the differential cross section for
emitting a photon of frequency &' into an interval
dry', that is, the spectrum, P(~')d&u', was cal-
culated. The latter is obtained from (2.88) chang-

The range of validity of Eq. (2.4'I) is limited to
values of A small compared to unity. To evaluate
the cross section for larger values of A, numer-
ical evaluation of Eq. (2.38) is required. As a con-
sequence one is obliged to choose values for ~„
&„and the initial velocity of the electron v, . Be-
cause of the already-mentioned interest in the pro-
duction of y rays by backward scattering of ruby
laser photons from an energetic electron beam,
the free electron energy was taken to be equal to
5.11 GeV. Radiation from a CO, laser was se-
lected as the supplementary b component of the
field.

The variation of the cross section with A is
shown in Fig. 1. It will be seen that 0 first in-
creases with A, as would be expected from (2.4'I),
but that it reaches a maximum and then decreases.
The maximum enhancement of the cross section
equals about 16%. In Fig. 2 is shown the contri-
bution to the total cross section for different val-
ues of the index s in the case A = 1. It will be
noticed that processes in which the electron ab-
sorbs a large number of b-type photons (i.e., high
s values) are important. In Fig. 3 are shown the
reduced cross sections v ' for s=0, +1,+2, as
functions of A. For values of A much less than

.04—

.02—

-20 0 20 40 60

FIG. 2. The reduced cross section as a function of the
index s for 2=1.
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ing the variable of integration from 8 to e' through

Eq. (2.36}:

P ((o') = 2wr„' Q([(o,((u, +s&u, )/y +p(I —p) —p+P ' n)

X gi (3.1)

In (3.1}P stands for the speed of the electron
e,/c and y=(1 —P') ' '. The spectrum of the ra-
diation is illustrated in Fig. 4 for several values
of A. The shape changes significantly as A in-
creases; however, the energy at which P(&u') falls
to negligible values does not increase with A.
This is unexpected in view of the fact that, as
mentioned above, for large A, processes in which
the electron absorbs a large number of h-type
photons become important. The explanation re-
sides in the fact that when the electron enters the
field it is slowed down by the intense 5 component,
as may be deduced from (2.8), and the frequency
of the emitted photon is decreased.

0.6

B. Monochromatic case

Because of the development of powerful CQ,
lasers it was deemed interesting to consider re-
placing the ruby laser normally used in the y-ray
production set-up with a CQ, laser, and rely on

high harmonic generation to produce energetic y
rays. The results of this investigation are illus-
trated in Figs. 5 and 6, showing the cross sec-
tion and spectrum, respectively, calculated from
Eqs. (2.39) and (2.38). The initial electron energy

(Gev)

FIG. 4. The spectrum of the scattered radiation for
A=O, 0.25, 1.0, and 2.0 in (a), (b), (c), and (d), re-
spectively. The energies of the ingoing electron and the
weak and supplementary field photons equal respectively
5.11 GeV, 1.79 eV, and 0.118 eV.

I i i 'i'f i i I I
' III/ T I I I I III]

—I

.01—

0

.001

FIG. 3. The reduced cross section o, for s =0,
+ 1, + 2, and+ 3 as a function of A. Because the different
curves interlace for A & 0.1, only o has been plotted
in this region.

FIG. 5. The total cross section for scattering a photon
out of radiation from a CO2 laser as a function of the
amplitude A =eA/m. The initial electron energy equals
25.6 GeV. The electron and the field propagate initially
in opposite directions.
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was taken as equal to 25.6 GeV. It was found that
the total cross section decreased with the inten-
sity of the field and that the spectrum displayed
a similar characteristic to that of the bichromatic
field case; that is, although production of high

harmonics becomes important, the corresponding
y-ray energies are much lower than expected be-
cause of the already-mentioned electron drift. It
appears, consequently, that a powerful but low-
frequency laser is not useful in this application.

APPENDIX A

Following the notation of Bjorken and Drell" one can write the solution to E(I. (2.1) as the perturbation
expansion

S(*)=S(e)ye f d'yS (*—y)y A(y)S(y)+e'I J(d'yd'y'S (*—y)y A(y)S (y —y'ly A(y')S(y')+ . (Al)

In (Al)

4(x}=(2v) '"(m/E)'"e '~ *u)(p)

is the Dirac wave function for a free electron and

d4p e-fP b -y)
Sr(x —y)=

( ), , , (y p+Bl)

(A2)

(A3)

is the free electron propagator. Assume a monochromatic field A propagating in the z direction and given
by

~(X) S (( e-kk()'s + ASS e(SSs))
W2

with (= (0; I/&2, -i/v 2, 0). Then the lowest-order correction to the free wave function is

(A4)

C'"=(2v) '" — ed~, d'p'e ""*„,. [y. (6(p'-p —k, )+y g &(p'-p+ks)]M)(p)

[f2A, p, sink, x + y k& y A jsi'(x), (A6)

corresponding to processes in which a single photon is either absorbed or emitted from the field. The
second-order correction to the wave function corresponds to the two-photon processes illustrated in Fig.
7. The correction corresponding to the first two diagrams is easily calculated and found to be

[e '"'*p 5(p t+y k, y ()+e'"'*p 5'(p 5* yk, y 5*-)1+(x) .ebb -$2@ 'g
b

(A6)

However, the correction corresponding to the last two diagrams is not trivial to calculate because of a
propagator which becomes infinite. To avoid such a difficulty, one assumes that the amplitude of the
field A is a function A, (&u) very sharply peaked around a value (s), with faked, ((s)) =A, . This artifice allows
one to perform all necessary integrations and leads to the following contribution to the second-order cor-
rection".

2 2 (e ()} (p, k )2 2(p, k )2 (p k'y k()y 5 prey k() y 5'-) +i 'k 4'(x) . (A7)

The sum of )Iy, (A5}, (A6), and (A7) gives the wave function of the electron in the field correct to the sec-
ond power in A,

1+ y kby A. 1+i ~ sink x -i b —— ' ~ sink& x 4 x .e . eA, p, (eA&} k& x 1 ed', p,
2p. k b p k, ~ 2p kb 2 p k

(As)

This solution is identical with the Volkov wave function (2.3), up to powers linear and (Iuadratic in dt, as
may be seen by expanding the exponential factor

exp i-' 1 1
dQ(e A —2eA p)2 2

2 p'n

occurring in (2.3).

(A9)
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APPENDIX B

In this appendix the lowest-order correction to Thomson scattering due to the presence of a classical
field is discussed. The model taken is that of an electron in a classical circularly polarized electromag-
netic field of frequency co, absorbing a photon of frequency ~, from a quantized field and emitting a photon
of frequency co' with e'= v, . It is assumed that e, is much less than cu, . The calculation is carried out
in the standard way using second-order perturbation theory in the quantized field, choosing, however, ex-
pression (A8} to represent the initial and final electron wave function.

We are interested in corrections to the lowest order in A/R. With this in mind, and since R is assumed
much less than unity, one is justified in taking the free electron propagator as intermediate propagator.
The transition amplitude then equals

r
S~,. =-ie'( 1, 0 J d'y, d'y, p~ (y, }y +(y, )Sr(y, y, )r-'+(y, )p~(y, ) 0, 1

where the symbol
~ n, m) represents the state of

the quantized field with n photons of frequency e'
and m photons of frequency co, . The symbol 8
stands for the quantized field operator. It is as-
sumed that the scattering takes place in the x, z
plane, and that the classical field propagates in
the +z direction. It is further assumed that the
initial electron momentum equals zero. The only
part of gz which turns out to be relevant in this
problem equals

to terms in ~S« ~' which either have zero trace or
the wrong dependence on A/R. From the form of
(B2) it is clear that the corrected Thomson dif-
ferential cross section equals simply

da 1 eA P„' do~
dQ' 2 P k~ dQ'

1 —— sin 6

where

1 — 4' (S2) do~ r'
dQ' 2

r = ~ (1+ cos'8) (a4)
the correction being the first term of (A7). This
correction is due to consecutive absorption and
emission of b-type photons from the classical
field. The other terms in (A8) either result in the
incorrect frequencyfor v' or else they give rise

is the usual differential Thomson cross section.
Integrating over the solid angle one obtains for
the complete cross section

0' = 21Tt()

in agreement with the first two terms of (2.46a).

3
CL

2

(a)

1 2

APPENDIX C

The cross section for stimulated double Compton
scattering may be calculated by multiplying the
cross section for spontaneous double Compton
scattering by the number of photons in the stim-
ulating field. Assume a beam of photons of fre-
quency e, propagating in the z direction incident
on an electron at rest, with ~,«m. Consider the

n

2 3 0
(Ge i}

FIG. 6. The spectrum of the scattered radiation from a
CO& laser for A =1, 2, 3, and 4 in (a), (b), (c), and (d),
respectively. The incident electron energy equals 25.6
GeV.

FIG. 7. Two-photon processes corresponding to
second-order corrections to the electron wave function.
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process in which the electron emits a photon of
frequency v', e'=e„at an angle 8 with respect
to the z axis, and at the same time emits a photon
of frequency co, ~«v„along the z axis. The
differential cross section for this process,

n(&u) = (2)1PA~'(&u)/(2&()d, Q) .

The differential cross section for stimulated
double Compton scattering hence equals

do'= dc' 6 4) do'g

(c2)

may be obtained from formula (11.41) of Ref. 15.
In (Cl) dor is the differential Compton cross sec-
tion (B4), dQ is the element of solid angle into
which the photon of frequency e is emitted, and
0. is the fine-structure constant. Assume that a
classical field of amplitude A, (&()), very sharply
peaked around ~ =co» ~,« ~„ is propagating
along the z axis. The number of photons associ-
ated with this wave per unit frequency interval
and per unit solid angle may be expressed as

g2 +y 2

sin'8 do
2 401,

(cs)

2mr, ' (c4)

with R =&()(,/&(), . The same expression has been
obtained as the first term in (2.46c).

where A' = (e/m)' 1A, '(&u)d(() Pe. rforming the inte-
gration over 8 one obtains for the total stimulated
cross section
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