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Domain structure of a Reggeon field theory with three couplings
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The high-energy behavior of a Reggeon field theory with a three-Reggeon coupling and two four-Reggeon
couplings is considered. Using the renormalization-group equations which are calculated in lowest order by
Bardeen et al. for this model, we study the way the couplings evolve to the fixed points in the high-energy
limit. We find that there are three fixed points (plus a fourth at infinity) to which the couplings can evolve.
The space of couplings divides into four domains, two of which are two-dimensional and two of which are
three-dimensional. The couplings in one of the three-dimensional domains are found to evolve to infinity and
the couplings in the other three domains are found to evolve to the fixed-point couplings. We show the
boundaries of these domains and some characteristic evolution curves. The implications of the domain
structure of the model are discussed.

INTRODUCTION

The renormalization group has proved to be a
very intriguing tool for the study of Reggeon field
theory. ' Using the renormalization group, one is
in principle able to extract the infrared behavior
of the theory, a limit in which, in general, an in-
finite number of bare diagrams would contribute.
One is able to accomplish this feat by showing that
in this limit the effective renormalized coupling
becomes small; therefore, all one need do is cal-
culate this small effective coupling and use pertur-
bation theory.

Reggeon field theory has the possibility of giving
a direct physical interpretation to both the bare
theory and the renormalized theory. ' At low ener-
gies (-100 GeV) one can argue that only a few Reg-
geon diagrams w'ill contribute to a given process,
and that at higher energies more diagrams will
contribute. While a naive attempt to sum this se-
ries leads to trouble, ' the use of the renormaliza-
tion group and Reggeon field theory in some sense
allows us to sum them and obtain a sensible re-
sult. The bare couplings in a Reggeon field theory
are those that one would obtain from fitting pres-
ent energy data, and the couplings calculated
rom the renormalization group are those that one

would obtain by fitting ultra-high-energy data. If
this use of the renormalization group is correct
and one were presented with data over this tre-
mendous energy range and proceeded to fit it with
Reggeon diagrams one would find the following: At
low energies one would be able to find fits with
relatively few diagrams, going to higher energies
would require more diagrams to get a good fit, and
the couplings would be energy-dependent. Going
finally to the highest energies the fits would be-
come simpler, only a few diagrams would be
necessary and the coupling would be quite small.

This of course is the best of all possible worlds
and there are a number of things that could go
wrong. First the use of perturbation theory to find
ihe effective infrared coupling may not be justified.
Secondly, the effective infrared coupling may not
be small, implying that the use of perturbation
theory to calculate '.he ultra-high-energy behavior
is not justified, and furthermore that the initial
use of perturbation theory may not have been valid.
Finally, there is the possibility that starting with
ihe experimental bare coupling one is not carried
by the renormalization group to the stable infrared
coupling.

In this paper we will consider a model with three
couplings, one three-Reggeon coupling and two
four-Reggeon couplings, and study the detailed
structure of the evolution of these couplings from
their bare values to their effective infrared val-
ues. We find one new infrared fixed point, and
discuss in some detail the relation between the
pure p' theory and the pure p4 theory. Finally,
we attempt to analyze the implication of bare cou-
plings at present energies.

REGGEON FIELD THEORY

The Reggeon field theory that we are considering
here has been calculated in detail in Ref. 4. This
theory has (a) a linear Pomeron trajectory, (1)
a triple-Pomeron coupling g, and (c) two types of
four-Pomeron coupling h, and A, The reasons for
studying this model in detail are several: (i) phe-
nomenology indicates that linear trajectories are
preferred, (ii) there is strong experimental evi-
dence for the existence of a bare triple-Reggeon
coupling, (iii) the four-Reggeon coupling is the
only other coupling that might be relevant to the
ultra-high-energy behavior, and there is experi-
mental evidence that the four-Reggeon coupling is
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sizable at present energies, "and (iv) the model
has sufficient complexity to see new phenomena;
in particular it has a nontrivial domain structure. '

The bare perturbation graphs for this theory
(with a cutoff to remove infinites) will essentially
reproduce the basic Gribov calculus. ' Each of
these graphs is a representation that is valid in a
particular kinematic region, for example, the
graph in Fig. 1(a) is valid in a region where the
energy across the one Reggeon is large. The
graph in Fig. 1(b) will require a higher-minimum
energy, and a measure of its relative importance
or size is g'(0)lns. ' This idea of a perturbation
series of diagrams with successive diagrams be-
coming more important with increasing energy has
been discussed in detail by Frazer, Snider, and
Tan' in the context of the multiperipheral model
with a triple-Reggeon coupling. The basic point,
which has been elaborated on by White' in the
context of the Reggeon field theory, is that the
relative size of the successive graphs is measured
by g'lns so that as s (the center-of-mass energy
squared) increases, the effective coupling increas-
es and one needs more diagrams to maintain the
same accuracy.

The Reggeon field theory not only allows you to
sum this series in the ultra-high-energy limit, but
using the renormalization group shows you that the
ultra-high-energy behavior can be expressed in
terms of a few perturbation graphs, which have a
new effective coupling that has evolved from the
bare coupling, in a manner that can be investigated
in detail.

The essence of the renormalization group is the
following relation between Reggeon Green's fune-

tions

I'($(1-J),g(0), . . . )=fF(1-J,g(-in)), . . .)
which says that the behavior near J= 1 ($ 0) is
given by the behavior for J away from one but with
the bare coupling g(0) replaced by g(~) (multiplied
by some calculable function f). The evolution of g
from g(0) to g(~) is given by the differential equa-
tion

where t = -In). In practice, P~ is obtained from
renormalized perturbation theory in some approxi-
mation. The solution to the equation, g(t), gives
the evolution of the coupling constant g from the
bare coupling g (0) to the effective coupling for J
closer and. closer to one, i.e. , -In)-~.

In the particular model that we are considering
there are three couplings: the triple-Reggeon cou-
pling g, a four-Reggeon coupling h, involving one
incoming and three outgoing Reggeons or vice ver-
sa, and a four-Reggeon coupling h, for two incom-
ing Reggeons and two outgoing Reggeons. Thus we
have three coupled differential equations that de-
scribe the evolution of the coupling:

= -pq (g (t), hi(t) h2(t ))

For the model we are considering, P2, P„, and
g

P„have been calculated in perturbation theory in

the one-loop approximation' and are given by

p~2= -g +4.886g'+ 2g h, +g h„

P„=12.527g h, + 4.54g'h, + 1.5h, h„

p„=13.772g h, + 10.372g'h2+ 0.5h, '+ 2h, '.

DOMAIN STRUCTURE

We consider here the detailed evolution of the
bare couplingsg (0), h, (0), and h, (0) to the so-
called fixed-point couplings g'(~) =g', h, (~) =h„
and h, (~) = h, . A fixed-point coupling is, as the
name suggests a coupling whiell does not change
as t changes, i.e.,

dg' dh, dh,
cN cN

(b)

FIG. 1. Beggeon perturbatian graphs.

or equivalently

pg2(g ', h„h, ) = 0, p„(g ', h„h, ) = 0, p~(g2, h„h ) = 0.

These fixed-point couplings are candidates for the
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effective ultra-high-energy couplings. It is a rel-
atively straightforward process to solve these
three sets of equations for the fixed points; there
are three fixed points:
Case (a)

g2=0, k, =0, h2=0;

Case (b)

g2=0.204V, h, =0, h =0;

Case (c)

g'=0. 196 18, k, =0.28887, h =-0.586 21.

As a result of these three fixed points our space
of couplings (g, lz„h, space) is divided up into
four domains: A, B, C, and D. If our bare cou-
pling is in domain A the coupling will evolve to
fixed point (a), and similarly for domains B and C.
If the bare coupling is in domain D then the cou-
pling will evolve to infinity.

We can study the nature of these domains by
considering the linearized form of our differential
equation about each point, or by performing nu-
merical computer studies; we have done both. The
linearized equations have the form

where Pz is a matrix obtained by linearizing P,a,

p„, and p„about the fixed point (g ', k„k,). This
is an eigenvalue problem, and the dimensionality
of the domain is related to the number of positive
eigenvalues. ' If we have one positive eigenvalue
there is a one-dimensional domain or line in the
coupling space on which we can start and be led to
the associated fixed point. This line represents
a very special relation between bare couplings.
While we know of no reason why these couplings
should be related in this way, such relations be-
tween Heggeon couplings do occur in nature. ' Fur-
thermore, such relations are known to occur in the
context of other field theories; for example, cou-
plings in models with supersymmetry have the cor-
rect relationship between couplings to put them on
the type of line described above. '

If two of the eigenvalues of the linearized equation
are positive there is a two-dimensional domain or
surface which contains the bare couplings that lead
to the associated fixed point. This would again
require a special relation between couplings. Fi-
nally, if all the eigenvalues are positive there is
a three-dimensional region of the coupling space
that has bare couplings that lead to the associated
fixed points.

Of the three sets of fixed points in this prob-
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FIG. 2. Coupling-constant evolution curves in the
g2= 0 plane.

lem, (a) and (c) have two-dimensional domains
and (b) has a three-dimensional domain. For case
(a) the problem cannot be linearized in h, and h2,
however, the problem had been studied analytical-
ly' in the k, A,, plane and found to be stable in apor-
tion of that plane (same as two positive eigen-
values). We have studied that plane numerically
and, of course, find the same result as shown in
Fig. 2. All points in the triangular region above
the origin make up domain A. The equation can
be linea, rized in g' and the eigenvalue is -1, in-
dicating that the solution is unstable in the g di-
rection, and that domain A lies entirely in the
h, h, plane. The fixed point (c) can be linearized
and has two positive eigenvalues indicating that
domain C is two-dimensional. Locally about the
point (c) the domain C is the plane constructed
from the two eigenvalues associated with the two
positive eigenvalues. The unstable direction is
given by the eigenvector associated with the nega-
tive eigenvalue, i.e., (0.001725 5, —0.5012227,
1.000). Finally the fixed point (b) has all positive
eigenvalues, and the domain 8 is a region of
three-space. We show a contour plot of the boun-
daries of the domain in Fig. 3. In Fig. 4 we show
the projection of various evolution curves as pro-
jected on the h, k, plane. The curves start at g'
= 0.1 and various values of h, and k, on the bound-
ary of the graph. Near the domain boundary we
see that the evolution curves are quite erratic as
might be expected. This is the result of the fact
that the eigenvector of the smallest eigenvalue for
domain B which controls the approach to the fixed
point is nearly colinear with the negative eigenval-
ue for domain C which controls the motion out to
inf inity.
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FIG. 3. g2 contours of domain B boundary.

Finally, let us attempt to estimate the location
of the bare coupling as dictated by the data. In
Ref. 2, White has estimated the bare triple-
Reggeon coupling. With our slightly different nor-
malization this gives

g,„2=—0.006.

From double-diffraction data one can estimate the
size of the four-Reggeon coupling" h, (actually,
the thing estimated is the discontinuity of the off-
shell coupling). It is found that

(h, /g'), „p
=—l0.

Therefore

point (b), and that even though the bare couplings
are small [in the sense that fixed-point couplings
(b) are small], the bare coupling could be in do-
main D and evolve to , implying the failure of the
renormalization-group procedure.

1.0

h2
—= 0.064.

In Fig. 3 we have the contour of the boundary of
domain B. The line h =0.064 is drawn along with

the place it crosses the domain boundary. We see
that for k, —0.2 we are in domain B and the cou-
pling will evolve to fixed point (b). Furthermore,
one might expect some generalized crossing sym-
metry to imply k, = h» which would clearly put it
in domain B.

The interesting point here in this model is that
the domain boundary is quite close to the fixed
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FIG. 4. Coupling-constant evolution curves projected
onto the g2 = 0 plane. Curves start atg 2 = O.l and various
values of h& and h& on the edge of the graph.
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