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The refined infinite-momentum limit approach is used in the derivation of sum rules for the real parts of
current-particle forward scattering amplitudes. The sum rules are based on covariance, causality, and fixed-q
unsubtracted dispersion relations in v for the amplitudes. The fixed-mass sum rules so obtained are found to
include those of the light-cone algebra. For amplitudes where the unsubtracted-dispersion-relation assumption
is doubtful, the results are shown to be unaltered if once-subtracted dispersion relations are assumed instead.
Convergence of the sum rules and inclusion of class-II contributions are also discussed.

I. INTRODUCTION

Recently Taha' has proposed a refinement in
the conventional infinite -momentum technique'
which, when coupled with Bjorken scaling, yields
from equal-time current algebra sum rules that
were previously derived from the light-cone com-
mutators of the vector-gluon-fermion-quark mod-
el.' In particular, it was shown in Ref. & that the
application of this refined procedure to the diago-
nal matrix element of the commutator of conserved
vector currents between spinless states gives, for
the absorptive parts of scalar amplitudes, the
same fixed-mass sum rules as those obtained by
Dicus, Jackiw, and Teplitz' from the (+, v) light-
cone commutators. Subsequent works applied the
refined technique first' to the diagonal matrix el-
ement of the commutator of the conserved vector
currents between spin-& fermions and secondly'
to the nonforward spin-averaged matrix element
of the same commutator. In both cases the com-
plete sets of sum rules for the absorptive parts
were found to include the light-cone results. Fur-
ther, it was noted that a number of these sum
rules do in fact follow from causality and scaling
alone and that in the nonforward case' the refined
technique produces sum rules that are not obtained
by the light-cone method. '

It is our purpose in this paper to use the refined
infinite-momentum approach in order to derive
fixed-mass sum rules for the real parts of cur-
rent-particle scattering amplitudes, restricting
ourselves to conserved currents and external spin-
& fermions of equal momenta. Such sum rules
were obtained by Heimann, Hey, and Mandula. '
Their considerations, which were based on cau-
sality, covariance of the connected retarded com-
mutator matrix element, and the use of the quark-
model light-cone algebra, were subsequently ex-
tended to the nonforward case by I o.' It is inter-
esting, in our opinion, to find out whether the
light-cone results of Heimann et al.' can also be

arrived at through the application of the refined
infinite -momentum technique.

Assuming noncovariant terms in the retarded
commutator of two conserved vector currents to
be c numbers, we use, in Sec. IIA, the causality
of the commutator of these currents in order to
write Jost-Lehmann-Dyson (JLD) representations
for the invariant amplitudes that characterize the
Fourier transform of the retarded commutator.
From these representations we obtain general co-
variance-causality sum rules, the convergence of
which depends on certain assumptions about the
asymptotic behavior of the JI D spectral functions.

In Sec. IIB we adopt, on dimensional grounds,
scaling hypotheses for the full amplitudes in the
covariant expansion of the retarded commutator.
Anticipating the application of the refined infinite-
momentum technique to the sum rules of Sec. IIA,
we first assume, on the basis of the Regge-pole
model, fixed-q' unsubtracted dispersion relations
in v for all the invariant amplitudes except one.
The one exception is an amplitude having (l/q')W~
as an absorptive part and denoted by R", . In the
scaling limit these dispersion formulas transform
into relations between the real and imaginary parts
of the scaling functions for the full amplitudes and
hence enable us to eliminate the real parts, which
appear in the refined infinite-momentum limit of
the sum rules for the real parts of the amplitudes,
in favor of the imaginary parts. The fixed-mass
limit of the sum rules is studied in Sec. IIC,
whereas Secs. IID and IIE treat, respectively, the
derivations of sum rules for R," and for the am-
plitude defined in the expression for the Fourier
transform of the spinless matrix element of the
axial-vector-ve tor-current retarded commuta-
tor. At the end of Sec. II we identify the "light-
cone" sum rules of Heimann et al.' to be among
those derived in this section. These sum rules—
collected for convenience in the Appendix —are
then consequences of covariance, causality, and
scaling rather than equal-time or light-cone al-
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gebras.
In Sec. III we discuss, for the spin-dependent

amplitudes, the validity of the unsubtracted-dis-
persion-relation assumption, and point out that
this assumption might be invalidated by the pos-
sible presence of dominant Regge cuts in the Regge
asymptotic forms of the absorptive parts of these
amplitudes. We then reexamine our derivation
when it is assumed instead that the spin-dependent
amplitudes obey once-subtracted dispersion rela-
tions, and find that our results remain unchanged.

Finally, in Sec. IV, we study the difficulties as-
sociated with the passage to the fixed-mass limit
in the sum rules using a recently introduced' im-
proved version of the refined infinite-momentum
technique. We discuss the application of the im-
proved version to the type of sum rules derived in
this paper and note that the method allows us, in
principle, to obtain, for the real parts of the am-
plitudes, convergent fixed-mass sum rules in
which contributions from class-II intermediate
states are exhibited explicitly. As remarked in
Ref. 6, the refined infinite-momentum limit in its
original form misses these contributions, as does
the light-cone approach.

The absorptive part of R'„', is

C'„',(p, q, s) =
2

— e""(P,sl[V&(x), V', (0)]lp, s),d'x

4

k=y
(2.5)

V2'"'=if "'F' ~[&(P, +q,)6(q'+2v)ij,nc ~ ijk k

+e(po —qo) 5(q' —2v)]. (2.6)

Thus on w'riting JLD representations for the caus-
al parts Vk" we have

V,"=
I ds e(q, -u, )6((q —u)'-s)&I, '(u, s)d'u
0

where V," also depend on v and q' only and are
related to Rkj by

V„"=ImR„".

Meyer and Suura" have shown that the function
V', is causal, whereas we' have recently demon-
strated that V," and V4' are also causal. The func-
tion V,", however, has a noncausal component

V,""'which is identified in Ref. 11 as

II. DERIVATION OF SUM RULES

A. General formulation

V ~~s l1c (2.7)

We consider the amplitude for forward scatter-
ing of a conserved isovector current by a nucleon
and assume that its connected part may be written
as the Fourier transform of the retarded commu-
tator of the two currents:

ijk k+ f F ~[(pp—qu+qgpv) —v8'pv]~
7f

where R„" are invariant functions of V=P. q and
q', P" is defined by

(2 2)

R'„',(p, q, s) = — e"*8( )x(p, sl[V„'(x), V', (0)]lp, s),d'x,

(2.1)

where P (P' = 1) and s are the nucleon 4-momentum
and covariant polarization, respectively.

Assuming noncovariant terms to be c numbers
we write R„", in the form

pRk

where the spectral function p,
" corresponds to the

causal part in V,". If we then make the assumption
that"' "

(2.8)limg,"(u, s) =0,
S~~

which, as can be seen from (2.7), is equivalent to

limV~ '(q) =0,
0

we obtain the causality sum rules

(2.9)

VI ' (q)dqo=0 ~ (2.10)

Cij( I
R'„'.(q) =R[C'„',(q)] =—-dq'

Q'0 —q0 —Z6
(2 11)

The causality properties of the Vkj can be used
to express the invariant amplitudes Rk" in a form
in which the dependence on q' is explicit, which
will subsequently enable one to integrate these am-
plitudes over q0.

' To do this one first notes that
R'„', is obtained from C &', by the transformation

(p, slV'„(o) I p, s& =F'p„
and the covariants L'„", are given by

(c)
Lpp qpqp q +tjtp9

Using (2.10) one obtains

R[q,V,"'(q)]=q,R[V„' '(q)] (2.12)

L ~2, = v(pgqv +qppv) qP cpu —v~gpv ~-
Lp p scp pnBsnql3

(3) =

Lp p
= &q ' ~&p paaP'A'8(4)

(2.4) R[q,'V„"'(q)]=q, 'R[V,"'(q)]+b,", (2.13)

where, provided lim, „sP„"(u,s) =0, the quantities
5k" are constants given by



COVARIANCE, CAUSALIT Y, AND THE RE FINED. . .

4 =; qoV. ' (q)dq.qq, e

du y Qys ds,
0

(2.14)

and, owing to the symmetry properties of g,"(u, s)
in u, the b„'~ (k = 1, 2, 3) are symmetric in ij, viz. ,
b„' = bI,

"~
(k = 1, 2, 3), and bq is antisymmetric, b,"

=b~'~~. These constants are coefficients of pos-
sible Schwinger terms in the equal-time commu-

tators. One can show" ""' that under certain
general conditions b,"=b4'=0. If one were to as-
sume, further, the absence of scalar operator
Schwinger terms in the time-space isovector
equal-time commutator (ETC) one would also
have" b,"=0. A vanishing b,", however, would
obtain' in the algebra-of-fields model, but not in
a free-quark model.

Making use of Eqs. (2.6), (2.7), and (2.11)-(2.14)
one obtains

4 92
R'„'.=g a."(q) -'(b."-b."5,,.), . L'„".

A=a
3,3 Bq 2 PV

1
m q'+2v+ie q' —2v ie -" ' 2 q'+2v+ie q' —2v -ie

(2.15)

where

1
g'(q) =--

fr

g~" (u, s)d'uds
(q —u) —s +if (2.16)

Hence, in order to have a covariant R'„', we must
set"

provided lim, „s(Iq(u, s) =0. They follow from
causality and the assumption that noncovariant
terms in the retarded product are c numbers. In
establishing them no recourse has been made to
light-cone algebra.

b" =b" =b' =0 (2.17)
B. Scaling

which is equivalent to absence of operator Schwin-
ger terms in the isovector-current time-space
ETC. Equations (2.2), (2.4), and (2.15) will then
give

We assume that in the scaling limit v-~,
q'- -~ at fixed m = -q'/2v, the functions V," ex-
hibit the usual behavior4:

R I' = gI'(q), , (2.18)

1 1
ir q q'+qu+qe q' —qv —qe)'

(2.19)

v2VqJ Fqq(+)1
2'

v V,'~ F,"(&u), -
v2Vqq FqJ(+)

(2.25)

R l' =Z,"(q),

Rq' =gq'(q).

(2.20)

(2.21)

Using Eqs. (2.16) and (2.17) together with the
identity

1 1
lim . = P ——iv 5(x),„(x+is x (2.22)

and assuming the possibility of exchanging inte-
grals, we find that the functions R„' (k q-'2), satis-
fy the following sum rules:

) R,'dq, =o, (2.23)

&o~I d&o=ib3 6A. (2.24)

These sum rules, which are written for k W 2, hold

As will become evident later, we shall need to go
beyond Eqs. (2.25) and know the scaling behavior
of the full amplitudes R&~ in terms of the scaling
functions F,"(&u) (k = I., 2, 3, 4). We therefore ap-
peal to the concept of generalized scaling dis-
cussed in Ref. 1.7 and assume, on dimensional
grounds, the scaling behavior

VRi QI (M),

v2R q ~ q(~)

vR,"- P,"((u),

v2R &q yqq(~)

We next seek to relate the Qtq to the F,"by first
writing fixed-q2 dispersion relations for the am-
plitudes BI", and then considering the large-v-at-
fixed-co limit of these relations. Unlike the work
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of Ref. 4, where the question of subtractions in
the dispersion relations was unimportant since
the object there was to derive sum rules for the
imaginary parts of the amplitudes, the present
work demands a definite attitude towards this
question since we shall primarily be concerned
with sum rules for the real parts of the ampli-
tudes.

On the basis of the Regge-pole model one would
expect" 82' to satisfy an unsubtracted dispersion
relation, whereas for R,'~ one subtraction is need-
ed. The spin-dependent amplitudes R," and B,",
on the other hand, are expected' to satisfy unsub-
tracted dispersion relations provided that Regge
cuts do not interfere with the large-v-at-fixed-q2
behavior of their absorptive parts. To begin with
we shall assume that this proviso is met, but we
shall reexamine this question in Sec. III. Defer-
ring also for the moment the discussion of B,',
we therefore write the unsubtracted dispersion
relations (k = 2, 3, 4)

Imp,"(v) = F2'(&o),

Img3'((u) =F3~(s)),

1m',"(~)=F,"(~).
We get

(2.34)

(2.35)

'I J
( ) p

F3' (ar ')d&u

~ -1
(2.36)

(2.37)R g"( )= 1
P ~ F," (~')d(u

1Th)

The results (2.35)-(2.37) are consequences of
scaling and unsubstracted dispersion relations.
It is our aim in what follows to make use of these
results in the sum rules (2.23) and (2.24). To-
wards this end we find it convenient to introduce
the variables

n=P 0

1 "" V,"(v', q')dv'
V —V —2E

(2.27)

Changing the integration variable in Eq. (2.27) to
&u' = -q'/2v', we obtain

~= -~p p q~

n=q'-P. '(p q)'

These parameters vary such that
0&a&1,

(2.36)

1 ' v'V„"[&u', q']d&u'
(2.26)

—co& $&~

$2
2

(2.39)

(2.29)

from which we obtain, on account of (2.25) and
(2.26), the asymptotic representations

and when n = 1, g = 0 and q ~ 0.
A change of the integration variable in (2.23) and

(2.24) from q, to v allows us to recast these equa-
tions in the form

„( )
1 ' F,"(&u')d&u'

2lTI'd z (d —(d —1E
(2.30)

R„"(v,n'v' —2(v -q)dv =0,tI
~

~

t
2 2 ~ ~ ~~

t (2.40)

t
' F,"(~')d~'

7f J q A —(d —iE'

4& F4 ((d )d(d
I ~ ~

17(d z &d —(d —K

(2.31)

(2.32)

n'
J

vR,"(v, . . . )dv =ib,"5,, (2.41)

for k =3, 4.
In the refined infinite-momentum technique' one

considers the general integral

An alternative form for these equations may be
obtained on taking advantage of the identity

I= 4 v, n2v2 —2 v-gdv

1 I
lim . =P—+iitb(x)
, „(x-ic) x (2.33) + + Adv, (2.42)

and noting that

P,"(~)= Re/,"(~)+ i Img,"(~),
where

and assumes that the limit a —0+ can be taken in-
side the integral over [-R,R]. In the other inter-
vals the variable v is changed to $' = $ -', n'v.
One then obtains

R a2R/2
lim I= A(v, -2)v-q)dv + lim +
0| ~p -8 Ot2~ p

[» 'A(-» '($' —&), 4n '$'(h' —$) n&]d5'-
L+n2& /2

(2.43)
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Clearly, in the last term the integral is evaluated
in the scaling region provided that one chooses
R? R„where R, is the lowest value of v at which
scaling behavior sets in. Thus, on sending e'- 0
and then letting R -~ one has

exists, we observe that Eq. (2.47) is equivalent to
the relations

(2.50)

lim I= it g(v, -2)v q)dv p
(P 0

Jt vR3~(v, -2)v —q)dv =0. (2.51)

(2.44)

where vA. -I' in the scaling limit.
Next we apply Eq. (2.44) to the sum rules (2.40)

and (2.41) taking scaling behavior into account.
We obtain

The results (2.45), (2.46), (2.48), (2.50), and
(2.51) are scaling sum rules for the complete am-
plitudes and include, expectedly, the correspond-
ing sum rules for the imaginary parts that were
derived in Ref. 5. =For example, the imaginary
part of Eq. (2.50), i.e.,

(2.45) 5,"=2 E" 'd ' (2.52)

R,"(v, 2&v -q)dv = 0,

from (2.40), and

(2.46)
is identical to Eq. (3.30) of Ref. 5.

We now consider the real parts of Eqs. (2.45),
(2.46), (2.48), and (2.51), and using the represen-
tations (2.35)-(2.37) and the identities (2.33) and
(2.22) we obtain

VR~ V -2 V —'g dV+ 2N 3 d =Q 'L53

ReR" -2 -g d

4J I d I

vR,"(v, -2)v -g)dv=P
J

(2.47)

(2.48)
from (2.45),

1 F,"(&')d&u'd$'
(h'-5-' )($' — ' — )

from (2.41).
Assuming that the integral

vR3~(v, -2)v -q)d v (2.49)

ReR, (v, —2)v —q)dv=0

from (2.46),

(2.54)

from (2.48), and

v ReR,"(v, 2)v q)dv = 0 (2.56)

G(n, P)=
I

d$'
„(g' —n -ie)($' -P —ie) ' (2.57)

from (2.51). In Eqs. (2.53) and (2.55) the $' inte-
grals have the form (n and P real and unequal
parameters)

(2.59)

Thus this equation is a necessary condition for the
existence of the integral on the left-hand side of
(2.55) at $ =0. It was also derived in Refs. 4 and
5.

Finally, on account of (2.58) and (2.59) the sum
rules (2.53) -(2.56) assume the form

which with the aid of (2.33) is given by

Gla, p)= (PJ, —PJ, )=0.

(2.58)

We also observe that the second term on the
right-hand side of Eq. (2.55) becomes singular
in the fixed-mass limit (- 0 unless

ReR,"(v, -2&v -q)dv =vF3'($),

P

ReR,"(v, -2)v -q)dv =0,

v ReR,*'(v, -2(v -71)dv =mF,"((),

(2.60)

(2.61)

(2.62)

(2.63)
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ReR(3"](v, q')dv =mF',"'(0), (2.64)

C. Fixed-mass sum rules

On simply setting $ =0 in Eqs. (2.60) (2.63) and
remembering that ReR„" have the opposite cross-
ing properties to those of the corresponding imag-
inary parts V&', we obtain the nontrivial fixed-
mass sum rules

P FL, ((d }d(i]
4'' p (d

—mb, —0, (2.72)

F~"(v) =0, moo. (2.73)

Furthermore, on using Eqs. (2.18), (2.16), and
(2.14} we obtain in the limit q — ~ with v finite
and fixed

where the last equality follows from (2.17). Hence,

ReR4i" ~(v, q')dv =0,
a 00

vH. eR,"v, q'dv=mF, "0,

v ReRi3" ~(v, q')dv = 0,

(2.65)

(2.66)

(2.67)

m' 7r

where c," is a constant defined by"""

d B,dsByg~ (Res) =ct py.

Hence, "

(2.74)

(2.75)

where q'& 0.
In addition, since the symmetric component,

R(2"], of R,'~ receives no contribution from the (an-
tisymmetric) noncausal part of V,", so that R,'"
=g(2" ] [see Eq. (2.19)], our procedure also yields
the sum rule

2

iim ReR", (le=, q']}
q2~ ~ 2'

2
= lim ReR", (v = 0, q')2'

1
28(d

ReR',"'(v, q ')dv = 0,

where q'& 0.

(2.68) =0, (2.76)

since b,"=0 by Eq. (2.17). Thus, going back to
(2.71) we can finally write

D. Sum rules for ReR'»
Re&,"(cu}= 0. (2.77)

It was stated earlier that R", satisfies a once-
subtracted dispersion relation in v at fixed q'.
We therefore write

With this result the procedure of the present work
yields the sum rule

ReR", (v, q') = ReR", (0, q') (2.78)

where q'& 0.

(2.69)

Changing the integration variable to ~' we obtain

v ReR", [&u, q'] = v ReR", [~, q']

+— v'V,"[(u',q'], ——d(u',
77 ~ (d —(d (d

(2.70)

E, Axial-vector-current sum rules

Our method may also be applied to the amplitude
R", defined in the expression for the Fourier
transform of the spin-averaged connected matrix
element of the axial-vector-vector-current re-
tarded commutator:

R'„"."(f,q) =-' s""&(~.)(&l[~'„(~),v', (0)]lp), d'~

which in the scaling limit becomes =16v BP qsR (v, q ). (2.79)
2

iieV,"(te) = iim ReR('(, e'])
q2 —~ 2&

417 (d 4) —(0 (a7

(2.71}

The second integral on the right-hand side of this
equation is proportional to the scalar operator
Schwinger term'

The imaginary part, V,", of R," is defined by

~~]i v v(BP dq 8 V 5 (V i q ) i (2.80)

and is causal. "
Assuming that 8," satisfies" a fixed-q' unsub-

tracted dispersion relation in v and that R", and
V", exhibit the scaling behavior
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vA", (v q')- $5'((u) = Reqisj((u) +i&5j((u),

v V5'( v,q'}- &'((u),

we obtain the sum rules (q' & 0)

ReB,' (v,q')dv= mF',~(0),

v ReR5~"(v,q')d v = 0,

I d'uds[j[5j(u, s)=b', j =2 E5 ((u)d(d

(2.81)

(2.82)

(2.83)

(2.84)

trajectory or A, -Pomeron cut, and ()(, is n(0)
of the following possible cuts: (i) Pomeron-f,
e, -0.5; (ii} Pomeron-A„n, -0.5; (iii) Pomeron-
Pomeron, n, =1. Thus, in the presence of dom-
inant cuts the unsubtracted-dispersion-relation
assumption, at least for R,', should be relin-
quished.

We next write for 8,' ~ a once-subtracted dis-
persion relation whose form is akin to that of
Eq. (2.69) for A', j. By steps similar to those
leading from (2.69) to (2.71), the scaling limit
of this relation is found to be

Among the fixed-mass sum rules derived in this
section and summarized in the Appendix are those
obtained by Heimann et a/. ' from a technique based
on the use of the (-,i), ( —,+), (i, j), and (+,i)
light-cone commutators of a free-quark model.
To see this, first note that the amplitudes T2~,
S", , S,", and T3 of Bef. 8 are related to ours by

R2 = ——2T2,

Re[j[," ((d) = lim ReR,'j [~,q j
lq2~-m 2(d j

Z["'( ') (te, ——
)dte'.

(3.3)

Furthermore, from Eqs. (2.20), (2.16), and (2.14)
we have in the limit q - -~ with v finite and fixed

ReA,"j)(v,q')- ——bej'q '- —c,""vq ', (3.4)

R3 —-S, —@82

s ~
4 2

UR,' =T3

(2.85) where the constant c,'&, defined by an equation
analogous to (2.75), is zero' by crossing symmetry.
Thus

With this identification we recognize Eqs. (A5),
(A2), (A3), and (A7) (see the Appendix) as identical,
respectively, to the sum rules A, 8, D, and E of
Ref. 8. Moreover, the sum of Eqs. (Al), and (A3)
is equivalent to the sum rule C of that reference.

In obtaining sum rules in this paper we assumed
that all the relevant amplitudes, with the exception
of R',~, obey fixed~' unsubtracted dispersion re-
lations in v. While this seems"'" to be a sensible
assumption for R," and R,'~, it would be incorrect
for the spin-dependent amplitudes R,' and R," if
Begge cuts dominate the Regge limits of their
absorptive parts. We therefore investigate in the
next section the dependence of our results for
R,' and R4' on the unsubtracted-dispersion-relat-
ion assumption.

III. DISPERSION RELATIONS IN THE PRESENCE

OF DOMINANT REGGE CUTS

Restricting ourselves to the consideration of
the isospin-symmetric functions V3('s(v, q'} and
V('"(v,q'), we note that their Regge behavior in
the presence of dominant Begge cuts is predicted
to be

Vs" ~P","(q')~(v)lvl "i '+P~s(q')&(v)lvl ', (3.1)

[5""(q')lvl "i '+[3""(q')lvl" ' (3 2)

where R denotes the Begge limit v- ~ at fixed
q', i).„=—az (0)- -0.1 is the intercept of the A,

2

lim HeRe'~[le = q'[)
q2 2(d

2

= lim ReR" (v=0 q')2'
y(i j)1

2' Gd
(3.5)

Using (3.5) in (3.3) we therefore write the latter
in the form

(ij)«d(i ) jI ~s (3.6)

where
r ce

d(ij) b(ii) 2 F(ij) ( e)d
2m -' (3.7)

On comparing Eqs. (3.6) and (2.36) for Re(t[,'j (~)
we see that the subtraction assumption modifies
the right-hand side of (2.36) by giving rise to the
extra term (I/u)d,"j). If Eq. (2.52), whose valid-
ity hinges on the condition that the imaginary part
of the integral (2.49) exists, does hold, then
d3'j =0 and (3.6) and (2.36) coincide. However,
even if we were to keep d,' c0 and repeat the
steps leading to the result (2.53) we would still
get precisely that result. Thus the unsubtracted-
dispersion-relation assumption is not necessary"
for deriving the sum rules for BeR,".

Next let us consider R4" and again write a once-
subtracted dispersion relation resembling (2.69).
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Its scaling form would be
4

He+~~(w) = lim, 2e2,"[,q'])
q2~ oo 4(al

P ""
(u'&,"((u')d&u'

+
I ]'F (d

(3.8)

I'"' =p, A"(v, q')dq,

may be rewritten as

I"=p, A" (v, q')dq„

(4 1)

(4. 2)

where we have made use of the fact that

&PF(id)(&1)d~s 0 [Q(U)(~) +(ii)( &)]

where

A" (v, q') A" (v, q') —a'~(v, q'), (4. 3)

Apart from the first term on its right-hand
side, Eq. (3.8) is identical to the ij-symmetric
part of (2.37}. From the relation corresponding
to (3.4) and the observation that b&,

'~) vanishes by
crossing symmetry we have as q'- -~ for v

finite and fixed

with the function a"(v, q') satisfying the condition

a"(v, q')dq, = 0.

If a~'(v, q') is a causal function, Eq. (4.4) will
hold provided the spectral function g'~(u, s) in the
JLD representation of a (v, q'),

HeB,"(v,q'}- —c "'vq '2

so that

lim [q'HeR(") (v = O, q')]= 0,
q ~ +~Co

(3.9)

(3.10)

a"(v, q ) = ' ds c(qo-M, )5((q —u)' —s)
"o

&& g"(u, s)d'g,

satisf ies

(4. 5)

implying that the first term on the right-hand side
of (3.8) is equal to zero. Hence (3.8) is indeed
identical to the ij-symmetric part of (2.37), and
the unsubtracted-dispersion-relation results (A3)
and (2.59} remain unchanged on using instead a
once-subtracted dispersion relation.

In deriving fixed-mass sum rules we have simp-
ly set $ = 0, which corresponds to taking q = 0
inside the integral in the light-cone approach of
Heimann eI, a/. ' A consequence of this is that some
of the sum rules will in general be invalid in the
sense that they are expected to receive class-II
state contributions which are missed on naively
setting (=0. The parallel step of taking q =0
inside the integral in the light-cone approach also
results in the neglect of these contributions, as
is evident from Eqs. (B3)-(B5)of Ref. 8.

In a recent extension of his original refined in-
finite -momentum technique, Taha'P has developed
a procedure for proper handling of the fixed-mass
limit which renders possible the inclusion of con-
tributions from all classes of intermediate states.
His procedure is based on the isolation of the
possible divergences that may arise in this limit
and is therefore essentially a recipe for regular-
ization of divergent sum rules. The next section
is devoted to a discussion of this aspect of the
problem.

IV. REGULARIZATION OF DIVERGENT SUM RULES
AND CLASS-II CONTRIBUTIONS

A. Review of Taha's regularization method'

lim("(u, s) = 0.
+ oo

(4. 6)

lim I"' = R" - P
~z

where

(4. 7)

A"(v, -2 (v -)I)d v, (4. 8)

and in the scaling limit,

vA" (v, q') E' (&u).

To pass to the fixed-mass limit in (4.7) one
first rewrites E"', for ~ &0, as

(4. 9)

E ' = A" (v, -2)v —)i}dv
-R

+ + 2 A —,Q

(4.10)

where B ~ Bp, the lowest value of v at which
Begge behavior sets in. Then taking the limit

0 in complete analogy with the steps leading
from (2.43) to (2.44) one obtains

G2J( 2)d 2

limZ'~ =
l~

A' (v, -q)dv+p
(~p ~ oo+

+'g

(4.11)

Changing the integration variable in (4.2) from
qo to v and introducing the parameters of Eq. (2.38},
one can then apply the theorem (2.44) to the inte-
gral I'~ and obtain

'The starting point in this method is the simple
observation that an integral of the type where, in the Regge limit, "
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vA (v, q ) e(v)G (q ).
Moreover,

provided

(4.12)

(4.13)

obeys a fixed~' dispersion relation in v, the
large-v behavior of the real part can nevertheless
be predicted from knowledge of the number of
subtractions in that relation. This is accomplished
with the aid of an asymptotic theorem" which
states that, given an analytic regular function
f(v) satisfying the requirement

E"($') is finite at &' =0. (4.14)
f( v) - const x v, v- ~ (4.19)

Hence one finally has

lim limI'~ = A"(v, q)d-v
P -+P fy 2-+P OO

Rem = —n —e (n a non-negative integer, 0& @ &1),
the asymptotic expansion for large v of its Stielt-
jes-Hilbert transform,

(4.15)

E( )
p

" f(v')av'
w ~ ~ v —v

is given by

(4.20)

Formula (4.15) is the basic result in the recent
method of Taha' and it is valid provided the con-
ditions (4.4), (4.9), (4.12), and (4.14) hold. The
subtracted form of the integrand in the first term
on the right-hand side guarantees, through con-
dition (4.12), the Regge convergence of the fixed-
mass sum rules. The third term on the right-
hand side represents the Z-graph contributions,
and the second term, which was absent in the
original version of the refined infinite-momentum-
limit technique, denotes contributions from class-
II intermediate states. The application of the
theorem (4.15) to the type of sum rules discussed
in this paper will be given in the next subsection.

8. Application to sum rules for real parts of the amplitudes

Consider, for example, the sum rule (Al), the
derivation of which springs from the general cau-
sality sum rule for BeA,', i.e. , from the real
part of the ij-symmetric k = 3 component of Eq.
(2.23),

(4.16)

Regardless of the Regge behavior of V3'~~ the in-
tegral in (4.16) converges provided lim, y~' ~(u, s)
= 0. In what follows we apply Taha's regulariza-
tion method to show how, in principle, a conver-
gent fixed-mass sum rule can be obtained from
(4.16).

Comparing (4.16) and (4.1) we write

E(v) - P ~~ + const && v,0
p-g V

where

(4. 21)

a~ = ——,v f(v)dv. (4.22)

A~" ~(v q') =A~"~(v q') —at'~'(v, q'), (4.24)

where a~" (v, q') is an even function in v that sat-
isfies (4.4) and is such that va '~~ scales and

(4.25)

As a corollary one also deduces that if f(v) and

E(v) are connected by a once-subtracted dispersion
relation then they both have the same asymptotic
behavior in v.

In the presence of dominant Regge cuts Re@3"
obeys a once-subtracted dispersion relation in

v, and consequently we predict, on the strength
of the preceding theorem, that ReB~'~chas the same
large-v behavior as V" . The next-to-leading be-
havior is obtained on subtracting the leading be-
havior from BeA,' and noting that the remainder
satisfies an unsubtracted dispersion relation.
Then the asymptotic theorem, together with the
fact that V,"i(v, q') is odd in v, enables us to
infer that this behavior is also the same for both
real and imaginary parts of A," . Thus we are
finally able to write in the Regge limit (R limit)

r", "(q')
I
vl"» '+ ~""(q')

I
vl". (4.23)

Next, define A" (v, q ) by

A""( v, q') = Re&',"'(v, q'). (4.17)

(4.18)

The Bjorken limit (B limit) of this function is,
according to (2.26),

vA&"' ~Re y""'& ((u)

in the Regge limit. Then

vA'"(v, q') —Reps"'((u)

anc}

(4.26)

For current-particle scattering amplitudes
Begge behavior is usually assumed only for the
absorptive parts. " If, however, the amplitude

»'*"(v q') " r'*'(q')Ivl""' (4.27)

Although we have previously indicated that n»- -0.1, we nevertheless remark that this value
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ReR~3" ~(v, q'}dv —P
""Re/'"($')d$'

where

+~p y', (q } q =0, (4.28)
+'g

should not be taken too seriously since the A„ to
be charitable, is not too well known. If a~j is not
positive then Eqs. (4.15), (4.16}, (4.26), and (4.27}
yield the convergent fixed-mass sum rule (q'&0)
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X=1, if e, =0

=0, if aA, ~ 0 (4.29)
APPENDIX

The function Re/', "~ can be related to Fs~" ~ by the
techniques of Sec. II. If Qpy =0 the 1ast term on
the left-hand side of (4.28) will be present and one
would then need to know y',"~(q'). Likewise, a
knowledge of y",,"(q') is essential for the calcula-
tion of the appropriate subtraction function
a~"'(v, q') [see the Appendix in Ref. 10.] Owing to
the doubtful status of the A, any calculation of
y',"~(q') is bound to be uncertain, whereas quan-
titative deductions about y3", will depend on mod-
els for Regge cuts. If, on the other hand, n„y& 0,
the sum rule will not receive class-II contribu-
tions unless there is an n = 0 fixed pole in ReR,"~.
If such a pole does exist then it will give rise to
class-II contributions of the form of the last term
on the left-hand side of (4.28) (with A. = 1) but with
the residue of the pole replacing y~~" ~(q'). One
hopes that the experimental check of the sum rule
could then throw light on the nature of the residue
of the pole, e.g., whether or not it is a polynomial
zn q'.

Finally, we remark that the procedure we fol-
lowed in the regularization of the sum rule (Al)
can also be repeated for the remaining sum rules
in the Appendix.

ReR "dv=wF'~ (0) (A1)

ReR~"~dv = 0, (A2)

v ReR,"dv =sF,"&(0), (A3)

v RBR~"~dv =0, (A4)

ReR,"'~d v = 0, (A5)

Jf ReR", ~dv=0, (A6)

ReR',"'d v = vF',"&(0), (A7)

(A8)

d'udsg, "(u,s) =b,"=2 I F", ((u)d(u. (A9)

The following is a summary of the fixed-mass
sum rules.
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