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It is shown that in the Born approximation the helicity amplitudes for graviton-graviton scattering are

completely determined by kinematical considerations alone, without detailed Feynman graph calculations,

reflecting thus the uniqueness of pure Einstein theory. We show that the nonuniqueness of the
matter-graviton amplitudes is related to the existence of nonminimal interactions. In the presence of
such interactions, helicity is not conserved in elastic scattering of massless particles. A simplified

three-graviton vertex with two on-shell gravitons is presented.

I. INTRODUCTION

DeWitt in his 1967 paper' comments: "The
tediousness of the algebra involved in obtaining
the graviton-graviton cross section may be in-
ferred from the complexity of the vertex func-
tions. . .the fact that the final results are ridicu-
lously simple leads one to believe that there must
be an easier way. " Both he and Cooke' and more
recently Berends and Gastmans, ' the latter au-
thors having recourse to Veltman's algebraic
manipulation computer program, ~ have calculated
the Born helicity amplitudes for graviton-graviton,
graviton-photon, and graviton-scalar scattering,
using the complicated three- and four-graviton
vertices that are obtained from the Einstein La-
grangian. As a side result all these authors have
noted that in the Born amplitudes for elastic scat-
tering a strong form of helicity conservation holds
if all particles are massless, namely each par-
ticle conserves its helicity.

In this paper we show that the simplicity of the
Born amplitudes reflects the strong kinematical
constraints that these amplitudes satisfy. In fact
we show that because of the high spin of the gravi-
ton the kinematical constraints are so restrictive
that with knowledge of the dynamical singularities
(poles from single-particle exchange) we are able
to determine these amplitudes almost uniquely.
In particular, the graviton-graviton Born ampli-
tudes are completely determined. Since our only
input (besides location of the pole singularities) is
kinematical and follows from Lorentz invariance,
we may regard our results as the S-matrix coun-
terpart of the usual proof' that Einstein theory is
the unique theory of spin-two massless particles.
For other gravitational processes, the amplitudes
are not completely determined kinematically. We
conjecture and show in some cases that whatever
freedom is left in these amplitudes reflects the
existence of other interactions. We find that in

the presence of these new, nonminimal interac-

tions helicity is no longer conserved.
Having obtained the general structure of the

helicity amplitudes it is a simple matter to deter-
mine their actual values in conventional Einstein
theory by calculating these amplitudes at suitably
chosen points. We find that in general the free
parameters can be determined by computing resi-
dues at poles. It is thus only at this stage that we
need the explicit form of the vertices. Calcula-
tions of gravitational processes are usually rather
opaque owing to the complicated algebra. Specif-
ically the three- and four-graviton vertices look
rather discouraging. Fortunately, simple vertex
expressions can be obtained when some gravitons
are on shell by employing DeWitt's background
field method. ' Using these simplified vertices we
find it trivial to complete the determination of the
amplitudes.

The plan of our paper is as follows: After a
section which summarizes the various properties
of helicity amplitudes we present our three-
graviton vertex in the form we need, with two
gravitons on the mass shell. Next we show how
Born helicity amplitudes for graviton-graviton
scattering can be determined from knowledge of
their dynamical and kinematical structure. We
then apply our method to other processes involving
gravitons, scalars, and photons. We find that the
lower spin of some of the particles leads to less-
stringent kinematical constraints, but the helicity
amplitudes are still almost uniquely determined.
We examine some new interactions which may
take advantage of the freedom left in the ampli-
tudes. We show that the "improved" theory' of
scalar-graviton interactions does not give con-
tributions different from those of the conventional
theory and point out an error in the graviton-photon
amplitudes of Ref. 3. Using the results of our
paper, we discuss in a separate publication' the
Reggeization of gravitons.

Our conventions are as follows: The Mandelstam
invariants for the process 1+2- 3+4 are defined
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by s =-(P, +P2P, t =-(P, -P, )' and u=-(P~-P4P.
0 r metr1c 1s such that PPP~ = P2 P02 = P2+P42

The Ricci tensor R„„is related to the Riemann
curvature tensor R~~& by

R„,=R„,K,

and the latter is defined by

(2)

FX3, X4,

FX3,X4,

FX3, )4,4,

~l ' 2 3' 4 ~ 1' 2
( 1 )X.- }IF

Xl. X2 X1.X2: X3.X4 t

~ (s, t, u) =(-1) "&F~ ), . i ~ (s, u, t),

(8)

(~)

(10)

Bose symmetry for a reaction a+a- b + c, and
invariance under particle-antiparticle conjugation
for a reaction a+a-&+~, we have

where I' is the Christoffel symbol.
The graviton field 0„, is defined as the deviation

from flat space, g„,=q„, +&h„„; since a boson field
has dimensions of mass we have multiplied A,„,by
the gravitational coupling constant w. The actual
value &2 = 32nG, where G is Newton's constant,
follows from the requirement that one-graviton
exchange between two scalar particles at rest
reproduces Newton's law.

The Einstein Lagrangian for pure gravity is

(
~4 ~~ )~2 ~ ~4 ~3

where & = &, —Q, p = &, —&,.
We require that helicity amplitudes be Lorentz

invariant when all spinning particles are massless.
As is well known, ' the theory is then gauge in-
variant. In such cases the helicity amplitudes are
functions of the Mandelstam invariants s, t, and
u and the masses of scalar particles. Moreover,
the crossing matrix becomes diagonal:

gE 2g 1/2 ( E-2ft)

The kinetic term obtained from Z is

Z&»=--. I „, „+a„2-a„h„+-,a „'
and leads to a graviton propagator

(4)

Fp (s t u) ( 1)l xgl - kg+i x4l

X -k -X k ( »
F~ ~ .„~ (s, t, u)=(-1) 2 "4

~ (u~ t~ s}.

(12)

s„'2(k) =s„"(k)s'„'(k). (8)

It follows that they are transverse and traceless.
Our conventions are the same as those of Refs.

1-3 and of Gross and Jackiw' and Chester, ' who
have also calculated some graviton processes.

ll. HELICITY FORMALISM

We denote by F~3,x4'xy x2 the helicity amplitudes
for the scattering process 1+2-3+4 of particles
with helicities ~;. Their relation to the S matrix
1S

+ p p, p p (k) 2 ~ (}pp }pa + 'I}pp'0 pp
'9

p p 8 pp ) ~ (8)

(Momentum factors in the numerator may be omit-
ted; see Sec. III.) We have used the notation
h„=h„„„,h=h„.

The three- and four-graviton vertices are given
by terms in Z cubic and quartic in the graviton
field h„„. We are working in the gauge' where the
polarization tensors for helicity +2 are related to
those of photons with helicity +1 by

Ader et aI."have pointed out that the derivation
of crossing relations may fail unless the usual
crossing path is valid for processes involving
massless particles. However, no problems arise
if we restrict ourselves to the Born approxima-
tion.

The authors of Ref. 11 have investigated the
kinematical singularities of helicity amplitudes
for processes involving some massless particles.
We shall need the following results.

(i) If we write

F~ ~ .„~ (s, t, u}=(icos-,'8}l 'Pl(v2 s,„,g)l&-PI

xF (s, t, .}, (12)

then F has no kinematical singularities in t and u.
The symbol 6) denotes the scattering angle in the
center-of-mass system.

In the s variable there are kinematical singu-
larities at (pseudo-) thresholds and at s =0. The
following cases are of interest to us:

(ii} For four massless particles

s =1+ (2E)'&4(P,. —P,)II (2z,. )-~2F, (s t )-u(Ws)l~ pl'l~'pl'l&~il
4 (14)

where F., is the center-of-mass energy of the ith
particle. These helicity amplitudes satisfy a
number of relations, and we summarize below the
relevant ones.

As a consequence of parity conservation, time-
reversal invariance for a reaction a+ 6 - a + b,

near s =0 for fixed t or u.
(iii) If m, = m, =0 and m, = m, = m, and particles

2 and 4 are spinless, then

i ( , ,s)-u( -s}m',
~.=max(l ~l, l ~ I) (18)
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near s =m' for fixed t or u, and

Pg~ g4, g, ),,(s, t, u) =(vs)

near s = 0 for fixed t or u.

(16)

III. THE THREE - GRAVITON VERTEX

—1+—Kh+'j.
y

g 7) pp Khpp +

R
p p

——KRp'p' + K R
p

',

R =g['"R = KR(') + K2R(')
p. p

Rpv =ip(h, pv
—hp, v

—h p+vCihpv)

R(') =Clh —h

3 2 1R'2' = -4h„s 2+ 2h~s h~ s —h~s C3h~s

+(h„—ph „) +2h„s(hv s —ph „s),

R~p =-4hns, phns. p
(2)

(18)

(19)

(20)

(21)

(22)

(22)

1+ ph~s(ha v, sp + hs p, nv —has, pv
—hpv. ns}

+phap ~ s(hsv, n-hav, s)

+ —,'(h —,'h )(h„„,+—h„„—h„v „). (24)

/Mi/ 4/4
FIG. 1. Born diagrams for graviton-graviton scatter-

ing.

The three-graviton vertex is usually obtained by
collecting all terms in the Einstein action which
are cubic in the graviton field h„,. In the pole
diagrams of Fig. 1, one of these three graviton
fields will be contracted while the other two will be
physical. Denoting by H„„ the field which is to be
contracted, and by h„„ the physical fields, an al-
ternative way to find the three-graviton vertex
is to replace in the Einstein action the field g„,
=qpv+zhpv by g„„+~Hp, =qp„+K(hpv+Hp„), and to
expand to first order in H„„and to second order
in h». The terms linear in H„, in the Einstein
action determine of course the Euler-Lagrange
equations, i.e., the Einstein equations, since H„„
can be considered as a small variation on g„„

(h+H) =8 (h)+2& 'H [g' (R""- 'g""R)]+-

(17)

To obtain the three-graviton vertex we must
expand the expression in square brackets to second
order in h». We use the expansions"

g '=exp[&trln(qp„+ p'hp„}]

We recall the notations h =h), )„h„=h„,„
g=detg„„, snd Cl =s,s~ =v' —(6/st p

Since we have already decided which fields will
be physical, we can use the mass-shell equations
h=h„=0 for these physical gravitons. Since R'„'„'

and R"' vanish in this case, we use only R&,' and
R"' and set g'~' =1 and g„, =pp, in Eq. (17). Fur
thermore, we can take R"' =R&'&. Therefore, the
three-graviton vertex becomes

i"(H, h, h) =2KHpv(R„"v'- pnpvR['~)

Using Eq. (24) we finally obtain

(25)

1

Rsp)vp(hvspy+hpyvshpvghgypv) (27)

We have verified that this vertex agrees with the
usual expression for the three-graviton vertex.

This expression is manageable because we have
used the mass-shell equations for the physical
gravitons in the vertex itself rather than first
derive the general vertex, then contract it with
another vertex in all possible ways, and finally
use mass-shell equations. The technique of de-
ciding from the beginning which role the gravitons
are going to play is also the basis of the background
field method invented by DeWitt in order to deal
with quantum effects in gravitation. ' Recently the
background field method has been used profitably
in pne-lppp calculatipns in gravity
that it also has its merits for Born amplitudes.
One can derive in a similar manner a four-gravi-
ton vertex with two or more gravitons on shell.
However, we shall not need this vertex.

Our three-graviton vertex has some properties
which are relevant for our work.

(i}Helicity conservation for collinear physical
gravitons. This is obvious from Eqs. (26), (27)
since at least one index of each graviton field,
hence the polarization tensor, is contracted either
with a momentum or an index of the other graviton
field. We note that for two incoming collinear
gravitons E„p f„), =0, while if one is incoming
and the other one is outgoing (sp„s)*op~ ' =0 for
parallel momenta.

(ii}Conservation in the sense that replacing in

Eq. (25} the field H» with momentum Q by Q „
yields zero. Since the (off-shell-) graviton-(on-
shell-) matter vertex is H„,T„„, where T„„ is the
(conserved) matter energy-momentum tensor, we
see that any momentum factors in the numerator
of the propagator in Eq. (5) may be omitted.

V'(H, h, h) =2K(Hpv - prtpv H}[hs„R'g„' v 4h—@ ph@ „
+-,'hs„(h„, s- hs„„)],

(26)

where we have written the Riemann tensor to first
order in h
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5V'(H, p, k}=2~H„„(5R'„'J—,'q„—„5R"'},

where

(28)

and

5R~q„' --2P X[kqh„sks+k„k~sks —(k +2P k}k~p

+p cheeks +p vhpeks)

—2P k(krak psX s + k,hqsX s)

+~2(k'+P ' k)(P„k~sXs+P ph„sXs)

—~ (2Pq P„4k
q P„+k „Pq )(k s h ey X ) ) (28)

5R'2' = -2P ~ k(X„h„„k„)+P ' X(k„k„„k„) (30)

(iii) Gauge dependence: Under external gauge
transformations k„„(k)-h„„+X„k„+X,k& with X

arbitrary and 4 off-shell, the three-graviton ver-
tex changes in the following manner:

where the P have no kinematical singularities in
t and u. Finally, from Eq. (14} it follows that
near s =0

s -s4
(38)

S6 y So

[The s pole in the amplitudes of Eq. (34) is dy-
namical; we distinguish it from kinematical fac-
tors. j

Having exhibited the dynamical and kinematical
singularities of our amplitudes, we can conclude
that the Q must be analytic functions of s, t, u,
hence polynomials. On dimensional grounds (the
amplitudes are dimensionless, ~ has dimensions
of s ') they must be fourth-degree homogeneous
polynomials having the behavior of Eq. (36) near
s = 0. Therefore,

We note that

gg (2) ~ yp (2) (31)
Qg = cps, Qs —css 4

Qc ——0~ Ps P4(s, t) -—u),
(37)

as should be the case.
In the above expression the field h„„ is on shell

and carries (incoming) momentum P. The gauge
transformation has been performed on the second
graviton with (incoming) momentum k. We observe
that

(32)

These results are the outcome of rather lengthy
calculations where our simplified three-graviton
vertex may not be used. They are needed if one
wants to check the gauge invariance of processes
where the three-graviton vertex enters.

IV. GRAVITON - GRAVITON SCATTERING

Using Eqs. (8)-(11}we can restrict ourselves
to four independent helicity amplitudes

where P4 is a fourth-degree homogeneous poly-
nomial in s, t, u. From the crossing relations (12)
we obtain

cg =cg =cy (38)

and QD must be a symmetric function of s, t, and
u:

P~ =c'(s'+t4+u'). (38)

(Since s+ &+u =0 any fourth-order symmetric poly-
nomial can be reduced to the above form. )

We have thus obtained, without considering the
detailed dynamics,

s'
2

2424242

242s2s2 & 2&-2&2e-2 &

202 2 2 242 2 ~ 2

(33} u4

2,-2;2.-2 —c~ (40)

A = ~'P„(s, t, u)/(stu), etc. (34)

Expressing the angle factors in Eq. (13) in terms
of invariants we deduce

4A 48 ~B

g$
4c g 4 cy ~D ID'

(35)

Since all spinning particles are massless, these
amplitudes are required to be invariant functions
of s, t, and u alone. In Born approximation we
have s, t, and u channel graviton-exchange dia-
grams and contact terms with contributions quad-
ratic in the (dimensional) coupling constant z, so
that our amplitudes have the generic form

2
S'+t4+u'

2024 2s 2 stu

We note that from kinematics alone we have de-
duced the vanishing of the single-helicity-flip
amplitude &; ... , Furthermore, the double-
helicity-flip amplitude vanishes as well (c' =0)
since, as we shall show in Sec. VI, any three-
graviton vertex conserves helicity when the on-
shell gravitons are collinear. This has the con-
sequence that the t -channel graviton-exchange
contribution has vanishing residue at t =0 (forward
scattering}. Hence, F. ,.. ., , cannot have a pole
at t=0, so that c'=0.

Finally, we can determine in Einstein theory the
value of the constant c by examining again the
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t -pole residue of E».2 2. At t =0 only two terms
contribute in the three-graviton vertex of Eq.
(26},

Kr = t —(s'+u'}.
8

(42)

Therefore, c =4i. Our results agree with those of
Refs. 1-3. We note that at no stage of our con-
siderations did we need the four-graviton vertex,
while the three-graviton vertex is needed only to
determine the over-all constant c.

V (H h, h) 2sHop( ~hs~ ohsy, ohsyhsy op)

(41)

and from the t -channel exchange diagram we com-
pute a residue at t=0

minimally coupled to gravitation, so that the La-
grangian is

z=g"(-2~-9t--,'s 4s 4g '--,'m'y'). (48)

By calculating t and u pole residues it is trivial
to show that c =c' =4 i. In the conventional theory
& =0. This fact does not follow from general con-
siderations and points to the possible existence of
other scalar-graviton interactions for which &40.
We will come back to this question. in the next
section.

Graviton-photon scattering (or graviton-mass-
less-Yang-Mills scattering since the diagrams
are the same in Born approximation} is described
by six independent amplitudes. We deduce from
Eqs. (13), (14) and crossing symmetry

V. GRAVITON - SCALAR AND GRAVITON - PHOTON
SYSTEMS

For (massive) scalar-graviton scattering we have
two independent helicity amplitudes and Eqs. (8),
(12), (13) give

m 42.O:2.O
(s —m')' (s —m')(u —m')t '

S2F . =CK—
2 ~ 1 ~ 2 oi t

uF . =cK'—
2 o-1 o2 o-1

t ~

2 -it-2 Il

s +u

(48)

st
g2 4o.o:-2.0

(s —m') (s —m )(u —m')t '
(43}

F2,1;-2,1
= ~K t

~

From Eqs. (15), (16}we find near s =m' and s =0

Hence

~2 oOs 2 sO

ss 2
2sOo-2 iO

(su —m~)o

(s —m )(u —m')t '

P, (s, t, u, m')
(s-m )(u —m') '

(44)

(45)

where I'2 is a second-order homogeneous poly-
nomial in s, t, u, and m, symmetric (from cross-
ing symmetry) in s and u. We have used the fact
that in the Born approximation no 1/m' terms can
appear.

I'2 is further restricted by the fact that the resi-
due at s =m' (where u-m'= t) should be i-ndepen-

dent of t since only the s-channel diagram (with a
scalar intermediate particle) contributes There-.
fore I'2 can be written in the form

SF . =CK —+yK s1 olsl ol

S' t4 u4

2 u
Fi -i 1 1

——CK —+yK u,

(51}

2 el e2 s-1

We note that the amplitudes in Eq. (21) of Ref. 3

have to be interchanged.
In conventional theory the one-graviton-two-

photon vertex is

V' '(h, F, F) = ortho„[EqxF„x —porto„(Fj, z) ]. (50}

As before, by looking at pole residues we easily
deduce c =-,'i, c' = c"=0. The P, P' terms vanish as
well but we interpret their presence as an indica-
tion of freedom of interactions permitted by the
low spin of the photon.

Finally, we quote photon-photon gravitational
scattering amplitudes:

P, = a(s —mo)(u —mo)+ c'm',

so that

s -m2 u —m2

In conventional Einstein theory the scalar is

(46}

(47)

1 el il e-1

Since the vertex in Eq. (50) conserves helicity for
collinear photons, the argument that led to the
vanishing of F2 2 „, , shows that . . . , =0. We
then find c=--,'i and y=0.
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Vl. FREE PARAMETERS AND HELICITY

NONCONSERV ATION

In the preceding sections we have seen that our
kinematical and dynamical considerations do not

completely determine all amplitudes. We discuss
in this section to what extent this reflects freedom
in the choice of interactions. We emphasize that
we are only looking at interactions which lead to
helicity amplitudes proportional to z2. This re-
stricts us to interactions having rather definite
dimensions.

We have seen that for graviton-graviton scatter-
ing three of the helicity amplitudes are completely
determined. The vanishing of the double-helicity-
flip amplitude F2,2. 2, 2 followed only as a conse-
quence of helicity conservation of the three-gravi-
ton vertex for two collinear physical gravitons.
While this seems to be a property of Einstein
theory it is in fact quite general: Any three-gravi-
ton vertex uith coupling constant having the di-
mensions of K conserves helicity zohen the on-shell
gravitons are collinear. This is a trivial conse-
quence of the fact that the vertex must contain
two derivatives. Any scalar made up of three
graviton fields and two derivatives leads to helicity
conservation. This is also the case if we consider
a vertex made up of two graviton fields and some
other (spin-zero or -one) field. We can therefore
conclude from our S-matrix considerations that
for massless spin-2 particles any helicity ampli-
tudes proportional to &2 must be those of conven-
tional E instein theory.

For photon-photon scattering the same helicity-
conservation argument holds for any vertex made
up of two photon fields F„„and some other field.
On general grounds we can conclude therefore that
F. .. , , =0 in Eq. (51). However, the monomial
terms in the remaining amplitudes correspond to
some real possible interactions. For instance the
interaction Lagrangian

Z, = ~(F„,}'cr, (53)

where 0 is a massless scalar field, will give pre-
cisely these monomial terms.

We turn now to the more interesting case of
graviton-matter scattering. For graviton-photon
scattering the vanishing of the pole terms in the
helicity-flip amplitudes E. .. . , and I' .
again follows from general helicity-conservation
properties of the vertices (this time we would
study the problem for backward scattering at u =0).
There remain monomial terms P~t. Similarly,
for scalar-graviton scattering we find a monomial
term &dt. All such terms appear in graviton-
helicity-flip amplitudes and lead one to suspect
that interactions similar to those of Eq. (52) are

responsible for them. For instance for graviton-
scalar scattering the following interaction terms
lead to such monomial terms in the helicity ampli-
tude

2 =g'~' ~(R )'p+ —y'1
(53)

where R„„z, is the full curvature tensor (covariant
summation understood).

We come now to the question of helicity conser-
vation in elastic scattering processes of massless
particles. The reader will easily convince himself
that the nonminimal couplings in Eqs. (52},(53)
yield nonvanishing contributions (the monomial
terms) only to the helicity-flip amplitudes. There-
fore, helicity conservation is not a general prop-
erty but rather a specific characteristic of the
models considered in Refs. 1-3.

To conclude this section we discuss briefly the
"improved" theory of scalar-graviton interac-
tions. ' In this theory one adds to the Lagrangian
of Eq. (48) the term Ag'~2/'R. This term produces
new three- and four-point scalar-graviton vertices
from the linear and quadratic terms in R. Since
the linear term vanishes on shell it can only con-
tribute to a t -channel graviton-exchange diagram.
Thus the "improving" term generates only a con-
tact term and a t-pole term and leads to contribu-
tions (proportional to z') of the form

Q
K2$ ~2 IO'2 ~O

2 sOI2 ~ 0

](2g ~2 0' 2 0
2sOi 2tO

(54)

with

I 4
2eO;2, 0 S (55)
/ 2

~2 0'-2 0

near s =0. We deduce on dimensional grounds

~2 O;2.O
= 0~

(56}

(57)

Since 9~(R~", ——,'q~R' ') =0 (see Sec. III) and the

remaining part of the second term cancels the

It would appear that the improved theory can pro-
duce the monomial term in Eq. (47}without re-
course to the artificial interaction of Eq. (53).
However, a detailed calculation of the actual value
of c gives zero.

To see this we write the new contributions to
scalar-graviton scattering in the form

F' = jA&2 $2R ~2 ~ + j8K' (06 p + 38 p. s )
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contact contribution, we see that the improved
theory gives no additional contributions to scalar-
graviton scattering (nor, for that matter, to mass-
less scalar-scalar scattering).

VII. CONCLUSIONS

We have shown in this paper that the high spin of
the graviton leads to kinematical constraints on
graviton helicity amplitudes strong enough to over-
come the extra freedom generated by the dimen-
sional character of the coupling constant and to
determine them to a large extent (in Born approxi-
mation) with no reference to the detailed dynamics.
The graviton-graviton amplitudes are completely
determined. The amplitudes for graviton-scalar,
graviton-photon, and photon-photon (gravitational)
scattering are not completely determined by kine-
matics. In a few cases there is the freedom of
extra monomial terms, and we have shown that
this freedom expresses the existence of alterna-
tive, nonminimal interactions between gravitons
and matter.

In conventional Einstein theory these monomial
terms are absent. All amplitudes are therefore
determined up to multiplicative constants. These
constants are fixed by calculating the residues of
the amplitudes at a particular pole. For their
computation we need consider only the three-gravi-
ton vertex with collinear external graviton mo-
menta. We have found simplified expressions for
the three-graviton vertex with two on-shell gravi-
tons, using the background field method. Using
this vertex, the computation of the multiplicative
constants becomes trivial.

We have given examples of nonminimal inter-
actions which give rise to monomial terms in the
helicity amplitudes. These interactions violate
helicity conservation in elastic scattering pro-
cesses of massless particles. We conclude that
helicity conservation, although valid in Einstein
theory, is not a general property of massless sys-
tems. In Ref. 14 it is shown that helicity is con-
served in conformally invariant theories; it is
interesting that helicity is conserved in Einstein
theory although it is not conformally invariant.

The basic ingredient in our considerations is
Lorentz invariance. It determines all the general
properties of helicity amplitudes that we use. It
also fixes the other property that we need, namely
the vanishing of any three-graviton vertex when
two of the gravitons are on shell, collinear, and
with opposite helicities. The only dynamical input
is the existence of single-particle poles and the
proportionality of the Born amplitudes to d. (We
note that lower powers of K in graviton-graviton
scattering are excluded on dynamical grounds;
our kinematical arguments also show that in this
case most amplitudes would vanish. Higher powers
of K are not excluded and are in fact realized by
such nonminimal interactions as ~'g'~'R'. ) The
fact that we are thus able to determine graviton
Born amplitudes can therefore be regarded as the
S-matrix counterpart to the usual proofs that Ein-
stein theory is the essentially unique theory of
massless spin-two particles.
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