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In a system of massive fermions in interaction with massless tensor and scalar mesons, the existence of a
massless vector bound state in the fermion-antifermion channel gives a mass to the spin-2 particle and leads to
a gauge-invariant and unitary S matrix which is completely free of massless poles.

Attempts® have recently been made to under-
stand the spontaneous breakdown of gauge sym-
metries in purely dynamical terms, without re-
course to the Higgs-Kibble phenomenon. In these
schemes the Goldstone boson is not represented by
a field in the Lagrangian but is a true bound state.
The vector gauge particle then acquires a mass
through a pole at ¢2=0 in its proper self-energy®
coming from this massless bound-state exchange.

It is of interest to ask whether a massless spin-
2 particle might also acquire a mass through such
a dynamical process, especially since the Higgs-
Kibble mechanism works only for spin-1.> The
spin-2 situation is rather more subtle than the
spin-1, however, as may be seen by a naive
counting of the number of polarization states avail-
able. Here an extra three degrees of freedom are
necessary to turn a massless tensor meson (two
degrees) into a massive one (five degrees), and a
scalar Goldstone boson can provide only one. It
is essential therefore that the massless bound
state be a vector (two degrees). Yet two plus two
is still only four, and there will be ghost problems
unless we begin with a tensor-scalar theory. In
this way we can give a mass to the spin-2 particle
and show that not only does the massless vector
excitation decouple from the physical S matrix
but so does the scalar. Moreover, this model then
shares with those of Ref. 1 the empirical advantage
that no scalar mesons, unobserved in experiments,
are left over.

Consider a system of massive fermions in inter-
action with massless tensor mesons. This mass-
lessness and Lorentz invariance together imply
the existence of a gauge symmetry,* by virtue of
which the proper tensor-fermion-antifermion ver-
tex function, I',,(p,p’), obeys the Ward identity

q, Ty (p,p+q)=0 (1)

when the fermions are on the mass shell. Further-
more, this identity can only be satisfied by taking
into account the self-interaction of the spin-2 par-
ticles, and the gauge symmetry in question must
contain general coordinate invariance.’

The proper tensor self-energy part, denoted

I, ,,0(q), also obeys the Ward identity®
quIly,,,0(q) =0 (2)
and hence may be written in the general form

My, po(@) =(dy( pdy o) = 5dy,d, )91, (q2)

+%du v4p oqznz(qz), (3)
where
duu=6uv_£%' (4)

Next we consider massless scalar mesons whose
coupling to the fermions is given by I',,/V6. The
factor 1/v6 will prove crucial’ in the ghost elimi-
nation. Closed-loop effects will provide a tensor-
scalar mixing and yield the combined tensor-scalar
self-energy
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The complete tensor-scalar pro%agator then be-
comes )
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II
Gﬂv(q)=_—q—2—2\f€6ﬂv+.'.s (8)
and
Gl)=-"23% . (9)

Here the dots denote gauge terms like ¢,9,9,9,9°
and ¢,9,97*, etc., which vanish, by Eq. (1), when
the propagator couples to a conserved current.

Now our principal assumption is that the fermion-
antifermion scattering amplitude contains a mass-

3969



3970 M. J. DUFF 12

less vector-boson bound state. Its propagator is
given by

Ay (@)= - (- o (10)
with £ an arbitrary gauge parameter. We identify
this massless particle with the Goldstone boson
that accompanies the dynamical breaking of the
global gauge symmetry. As in Ref. 1, this mass-
less exchange imparts a pole at ¢%=0 to the self-
energy and we find that as g2 -0
m2

W™~ - 75 a7z -(36-2) (11)
where V2m is the coefficient describing the cou-
pling of the tensor particle to the Goldstone boson
state. Note that II, is gauge dependent. From Eq.
(7), we see that the spin-2 propagator has devel-
oped a pole at II,(g 2) =-1, and the tensor meson
has acquired a mass (equal to s in the pole ap-
proximation).

However, we still have to worry about the ap-
parent massless ghost contribution in Eq. (7)
(especially since II, depends on &), and also the
effects of the massless Goldstone pole. Let us
consider the fermion-antifermion scattering pro-
cess i —f and denote the on-shell scattering am-
plitude by T¥i. It can be decomposed into three
terms®

T Tl Tl (12
T{i) has neither tensor-scalar nor Goldstone poles

in the s channel. #T'{{) has an s-channel Goldstone
pole but no tensor-scalar pole; it is given by

T(fg) =Puf Au va, ’ (13)

where P} and P} are the vertices connecting the
initial and final states to the Goldstone boson, and
are defined to be regular at ¢2=0. Spin-1 gauge
invariance demands

quu(P9p+q)=0 (14)
for on-shell fermions and therefore

(15)

Lastly, T ) contains the tensor-scalar pole in the
s channel and is given by

P Guvpo Gpv r:;a
) (I‘u,,,raa/\/'g) Gpo G r,ﬂs/m

1 1
m——)(ruyr”—srf I"' ») (16)

Note that T{}) is completely free of the scalar
ghost poles and all dependence on II, has disap-
peared. Thus unitarity and gauge invariance are
simultaneously secured. We still have the Gold-
stone pole in T'{}y, but the crucial point is that

, and T’} , are not regular at ¢* =0 but them-
selves have Goldstone poles. We find, from the
Dyson-Schwinger equations, that onthe mass shell,

F;{U=f{1 1\/—2— zq(u y) ’ (17)

where I'/ is regular at g?=0. On using Eqgs. (1)
and (14), T{i, now becomes

1

x(fﬁvf;v JipgE, Pﬁ) .
(18)

Equation (11) then shows that the singularity at
g%=0in T{i of Eq (15) is exactly canceled by
s1ngu1ar1ty in T{i) of Eq. (18).

In summary, the complete on-shell amplitude
T7% is both spin-2 and spin-1 gauge independent,
is free of ghost poles, is free of Goldstone poles,
but does have a pole at II,(g?)=-1 (i.e., g%=m?
in the pole approximation) with residue appropriate
to that of a pure spin-2 massive particle.®

We do not identify this massive tensor particle
with gravitation. Rather, in analogy with the
unified spin-1 gauge theories, we envisage a mul-
tiplet of spin-2 gauge particles, some of which
become massive by the process described above,
while one (the graviton) remains massless.® This
is similar in spirit to f-g theory,!' though the
mass generation is, of course, quite different.

Finally, the S-matrix arguments we have out -
lined here may be summarized by a gauge-invar-
iant phenomenological Lagrangian'? which exhibits
the excitation spectrum and the various spin 2, 1,
3, and 0 couplings. Moreover, there exists a
choice of gauge for the tensor field in which the
vectors and scalars decouple from the Lagrang-
ian.'®

This, and other details, will be published else-
where.

My interest in this problem was first aroused
by Professor Abdus Salam and Dr. C. J. Isham.
I am particularly grateful to Dr. J. Strathdee for
useful discussions.
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