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The concept of Reggeon field theory (RFT) is applied to particle production in the multi-Regge region. For
processes with repeated Pomeron (P) exchange we calculate the high-energy behavior of the production cross
sections cr„(s) and find that cr„(s)—cr,&(s) —(lns) " for every n. It is then shown that s-channel unitarity
constraints are respected: in the absence of P cuts these processes are known to violate the Froissart bound
(Finkelstein-Kajantie problem). We show that the inclusion of P cuts in our RFT model solves this problem,
provided the P-particle-P vertex is not large. Furthermore, we demonstrate that the way in which s-channel
unitarity is restored does not lead to decoupling problems. Finally, particle production with a secondary
Reggeon exchange is considered. We find that the cr„(s) have qualitatively the same behavior as in the absence
ofP cuts.

I. INTRODUCTION

The problem of formulating a consistent theory
that describes the high-energy small-momentum-
transfer limit of hadronic scattering and accom-
modates a nonvanishing total cross section has
survived many attempted solutions. Recently the
existence of a strong-coupling solution in Reggeon
field theory (RFT)" has stimulated a new series
of investigations, and many facets of RFT have
been studied, related to both diffractive and non-
diffractive properties. '

By their very construction, RFT's satisfy t-chan-
nel unitarity, but although they involve multi-
Pomeron cuts which have been used in absorptive
models' ' to enforce s-channel unitarity, it is not
a priori clear that they obey all s-channel require-
ments. In the absence of a complete proof of s-
channel unitarity, one is led, as a first step, to
check whether RFT at least satisfies some of the
constraints imposed by unitarity. The conventional
Regge-pole model has been shown to be inconsis-
tent with unitarity in various inelastic processes, '
and it is natural to test RFT in the very same re-
actions. Such a test has been performed for the
triple-Regge region, ' and all inconsistencies were
found to be removed in RFT.' In this paper we
study another pitfall of Regge-pole models, multi-
particle production processes with repeated Pom-
eron exchange. It has been known for many
years"' "that in these processes a Pomeron pole
with intercept 1 leads to a violation of the Frois-
sart bound.

Our interest in multiparticle production process-
es is not only restricted to the test of s-channel
unitarity constraints. One of the major problems
that have to be addressed, once RFT has been
proven to pass the most serious tests, is that of
how the bare Pomeron and the total cross section
are built up. Again, a complete answer to this has

not yet been obtained, but a study of multiparticle
production processes may provide further insight.

These are the two issues of this paper. The
framework of our calculations will be a RFT which
is based on the Reggeon calculus for multiparticle
production amplitudes derived recently. " For pro-
cesses in which only Pomerons are involved, our
RFT coincides with that used by Migdal, Polyakov,
and Ter-Martirosyan' (MPT), but our formalism
is general enough to include secondary trajectories
as well. Our main interest is focused onto the in-
tegrated partial cross sections o„(s) rather than
the production amplitudes T, „, and this, as we
will show, requires the formulation of a RFT for
the v„(s) directly. In all these calculations we use
the linear, self-interacting Pomeron pole with re-
normalized intercept 1, which has been described
in Ref. 2. As has been shown in Ref. 13 this cor-
responds to the bare intercept being greater than 1.

In the first part of our paper we study the partial
cross sections &„ for multiparticle production with
repeated Pomeron exchange. In particular, we
want to test whether the Pomeron cuts solve the
Finkelstein-Kajantie problem of the simple pole
model. In examining the high-energy behavior of
o'„(s), we find that for s -~ and fixed n

v„(s) -a „(s)
for all n. This result is radically different from
the situation in the absence of Pomeron cuts. But
it also differs from the result obtained by MPT, '
who studied the same processes. We show that
their result actually represents a nonleading con-
tribution to &„(s).

In order to prove that these cross sections do
not violate s-channel unitarity we first rephrase
the problem of the Finkelstein-Kajantie model in
terms of a j-plane singularity above j=1.' We
then trace the fate of this singularity in the pres-
ence of Pomeron (P) cuts. The result is that for
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small Pomeron-particle-Pomeron (PPP) couplings
the singularity disappears. Thus, s-channel uni-
tarity is restored. We find, however, some indi-
cations that for larger values of the PPP coupling
the singularity may survive.

In the process of restoring s-channel unitarity,
the Pomeron cuts produce a softening of the re-
normalized PPP vertex. From models where the
PPP vertex vanishes as a function of the two Porn-
eron momenta, we know that the Pomeron is forced
to decouple from many processes at zero momen-
tum transfer, even from elastic scattering. "'"
We show that in RFT the PPP vertex is screened
in such a manner that decoupling problems do not
arise. We do this by studying the PPB (Pomeron-
particle-Reggeon) vertex at nonzero values of the
Reggeon momentum.

This concludes our consistency tests of process-
es with repeated Pomeron exchange. As a con-
sequence of (1.1), the sum of these cross sections
behaves like &,i(s) and is not large enough to ac-
count for the total cross section. In fact, when
s -~, o',~(s)/o', „-0in RFT." This situation has
to be confronted with certain absorption models
where a consistent theory is formulated to build
the total cross section only out of Pomeron-dom-
inated processes. "Our result implies that one
has to consider also production processes with
non-Pomeron exchange. We take a simple model
where all particles are produced from one sec-
ondary Regge pole, but allow for interactions with
the self-coupled Pomeron. The main subject we
are interested in is the question to what extent the
presence of cuts changes the behavior of a„(s). It
turns out that, unlike the previous case, the cross
sections are qualitatively unchanged by the pres-
ence of cuts. We discuss the relevance of this re-
sult.

Our paper will be organized as follows: We be-
gin in Sec. II with the description of a simple mod-
el whose properties are similar to those of the
RFT model to be considered later and will serve
as a useful guide in understanding our results. In
Sec. III we describe the formalism of RFT that we
will use later on. In particular, we will explain
why we need a special RFT for the cross sections
and cannot proceed in the way of MPT. ' Sections
IV, V, and VI are devoted to processes with re-
peated Pomeron exchange. In Sec. IV we compute
the high-energy behavior of &x„(s). This requires
some calculations, and we divide the section into
two parts: The first will contain all the technical
details, and in the second half we present and dis-
cuss the results. Section V contains the proof that
the Froissart bound is satisfied and in Sec. VI we
make sure that decoupling problems are avoided.
In Sec. VII we consider processes with a secondary

Reggeon. We conclude our paper with a summary
of results.

x; =y;/F.
This leads to

U
12-2

&„(Y)= const&

(2.2)

] n —], n-y

IIdx;5 1 —Qx; „~ . (2.3)
&=1 t=l

P "n- iQ

ts

FIG. 1. Repeated Pomeron exchange without cut cor-
rections.

II. MULTIPARTICLE PRODUCTION: A SIMPLE MODEL

In this section we consider a simple model for
multiparticle production with repeated Pomeron
exchange. It will turn out that many features of
this simple model will survive in the RFT of the
following sections. We will, therefore, use this
consideration as a guide in understanding the situa-
tion in more sophisticated models.

Let us consider the following structure for the
cross sections a„(Y), associated with the processes
shown in Fig. 1:

s„(Y)=sssstxU f " '( „' )S (F—P y&),
S=1

(2 1)

where Y'=lns and y; are total rapidity and the ra-
pidity gaps between the produced particles, re-
spectively. The constant U is proportional to the
square of the PPP vertex. This factorized form
of the production cross section is obtained if we
take the Pomeron to be a simple moving pole with
intercept 1 and integrate over the momentum
transfers t;. For reasons which will become clear
later we generalize the number of transverse di-
rections to be D (D=2 is the physical dimension).
For each t; integration, we then have an additional
factor t; with p=2D —1. (Alternatively, such a
factor t; could reflect a dynamical softening of
the PPP vertex. ) In the following, we will call
this the Finkelstein-Kajantie model in D dimen-
sions. It a@ill turn out that RET at D=Z zvill have
the same qualitative features as this simple model
at D greater than 2.

One may try to evaluate the asymptotic energy
behavior of (2.1) by scaling the rapidities:
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The power of Y in front of the integral will indi-
cate the correct asymptotic behavior of O„only
as long as the integral is a finite constant. In this
case one finds that

Un-2
o„(Y)=constx (2.4)

o„„(Y) U

o„(Y) Y (2.5)

However, the xq integrations in (2.3) diverge at
x» =0, and the integral, therefore, will strongly
depend on how we define the lower limit of the
rapidity integrations. For example, if we require
that all subrapidities become large when & -~, say

y» o-CY', 0&q &1,
then the asymptotic behavior of (2.3) becomes

Y 1 P ( 2)eP if Q&P&i
o„(Y)-U" 'x

Y '(ln Y)" ' if p=0.

(2.6)

(2.7)

For & =1, this agrees with (2.4) (except when
p=0), but (2.'l) shows that the decrease of o„(Y)
as a function of s becomes smaller and smaller,
when q approaches zero, and in the limit q = 0, the
asymptotic behavior of o„(Y) is

Y
o„(Y) -U" 'x

Y '(ln Y)" ', p=0.

0&P&i
(2.8)

Let us first consider p &0. Then (2.8) tells us that

(2.9)

for all n. This means that the region of phase
space y~

& cY, which leads to (2.4) is far from
giving the leading contribution to o„(Y). In fact,
the behavior (2.7) or (2.8) comes from the small
x region in (2.3) which implies that in the most
favored contribution to a„all but one rapidity is
finite (they may still be large but do not increase
with energy). In order to see how this is related to
the contribution (2.3), we keep nonleading terms
in (2.8):

o -U 'Y ' ~[o +c Y ~+ ~ ~ +o 1' ~" '~~]
n ny n2 nn

(2.10)

(c;~ are some combinatorial constants). In the
first term [which is (2.8)], all x but one are small;
in the second all but two, and so forth, until in
the last term [which is (2.3)] all x are staying
away from its lower limit. Thus, (2.10) can be
considered as an expansion in the number of large
rapidity gaps. For the case P =0 we only note that

the situation is quite different, and in the leading
contribution (2.8) none of the rapidity gaps is
driven to its lower limit.

It is important to note that in (2.3} the divergence
of the x» integration at the lower end is closely re-
lated to the large-t; behavior. In performing the
f; integration which then resulted in (2.1) we ne-
glected any t» dependence of the vertices which
would have led to a cutoff of large t; values. As a
consequence of this, the y» integration required
a cutoff for small values. If we would, instead of
this, have included a more realistic exponential
damping of the PPP vertex {or simply have cut off
the t; integration), then the remaining y; integra-
tions would no longer diverge. The results on the
behavior of &„ would not change. However, it is
important to keep in mind that such a crude ap-
proximation of the t» dependence, as we made in
(2.1}, makes the y; integration infrared divergent.

After finding the asymptotic behavior of o„(s),
one might try to take a glimpse at the nature of
the total cross section resulting from these pro-
cesses. Although it is known that the behavior
of o„(s) in the (n, lns) plane may be nonuniform,
we do this by summing over the leading terms of
o'„(s). For the moment we are interested only in a
heuristic argument, and that the conclusions made
from this are correct will be shown later on. For
the case 0&p&1, Eq. (2.10) suggests that, as long
as U is small enough, the sum over the leading
terms will converge, and the resulting o „,behaves
like 0,~- Y ' . However, when U is large, the
sum starts to diverge, indicating that the asym-
ptotic behavior of &„, is stronger than 0',~. In par-
ticular, a power of s might be built up which vio-
lates the Froissart bound. For P=O, o'„, goes
like s"(n & 0) for any nonzero PPP coupling, which
is another way of stating the Finkelstein-Kajantie
problem. In Sec. V, we will present a more rigor-
ous treatment of this problem.

The model which we have discussed in this sec-
tion seems oversimplified compared to RFT.
Nevertheless, some of its qualitative features
will survive and the preceding discussion will help
us to understand the situation in RFT. In partic-
ular, we will find a strong similarity between
RFT and our model for 2&D&4, i.e., 0&p&1. The
most distinctive feature of this model is that in
the leading contribution (2.8) to the high-energy
behavior, n-2 of the n-1 rapidity gaps prefer to
be finite, thus excluding an n dependence of the
asymptotic behavior of 0„. This was related to
the possibility of divergences at small rapidity
gaps, and the divergences were the result of dis-
regarding the large t damping properties of the
vertices. Being aware of this problem we now
turn to RFT in production processes.
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III. RFT IN PRODUCTION PROCESSES

In this section we give a description of RFT in
production processes. We are mainly interested
in production processes with repeated Pomeron
exchange, but we will formulate the rules general
enough to include non-Pomeron Reggeons as well.

The basis of our RFT is the Reggeon calculus
for production processes which has been derived
in Ref. 12. It is the equivalent of Gribov's Reggeon
calculus for the 2- 2 scattering and exhibits many
properties that one expects on general grounds.
In particular, it is in agreement with the energy
discontinuity structure required by the Steinmann
relations and, when continued to the physical re-
gion of the crossed channels, exhibits the main
features of physical partial-wave amplitudes. The
transition from the Reggeon calculus to RFT pro-
ceeds in the same way as in the 2-2 scattering
case. Since one is interested only in those specific

points of (angular momentum, transverse momen-
tum) space, where an accumulation of j-plane sin-
gularities takes place, one approximates all quan-
tities appearing in the Reggeon calculus (vertex
functions, propagators, and signature factors) by
their behaviors near this accumulation point. As
a result of this, one is left with a local field the-
ory. As compared to the elastic case, there is
only one new feature one has to observe in deriving
RFT from the Reggeon calculus for production
processes. This is the fact that because of the
Steinmann relations the T, „amplitude cannot be
written as just one multiple Sommerfeld integral,
but is a sum of different terms, each of them re-
flecting an allowed set of simultaneous discontin-
uities. Only when making approximations in the
spiritof RFT, this sum of terms may collapse,
and one is left with a smaller number of terms.
In the particular case of only Pomerons it happens
that, for any number of produced particles, all
terms are combined to one single term:

(i)" 's E — E
Tm n (yll 0 Xn-1& qls iqn-1)

(
~ &n-1 d+1 d~n-1 e e Fn(~17 I ~n-19 qit & qn-1) ~27'�)

(3.1)

The partial wave I'„ is the object for which RFT is
formulated. In (3.1), we have used E; =1-j,,
where j; is the angular momentum in the t,. channel,

q,. '=- t, the momentum transfer, and y,. the rapid-
ity gap (Fig. 1). The factor i" ' in front of the in-
tegral is the result of approximating signature
factors. The 7i variables (Toiler angles), whose
singularity structure is correctly described by
the Reggeon calculus, do not explicitly appear in

(3.1), but F„depends on them through q,' q~. The
remaining part of the g dependence is, together
with some phase factors, - absorbed into an effec-
tive complex-valued PPP coupling constant. The
Feynman rules for a diagram of the partial wave
F„can be formulated as follows (Fig. 2):

(a) Define a direction, say from the left to the
right.

(b) F.„q, are the sums of Reggeon energies and
momenta in the t; channel (marked by the vertical
cut in Fig. 2). In order to maintain energy and
momentum conservation everywhere in a diagram,
each produced particle carries away energy and
momentum E; —E,.+» q; —q;„

(c) Put a number V~ at the PPP vertex (p~ is
generally complex) and conserve energy and mo-
mentum.

(d) For all other parts of the diagram use the
rules of the 2 2 RFT.

Introducing a field operator P(x, t) for the Pom-
eron (and g for its Hermitian conjugate), the cou-

I 2

q(-q2

y ~ ~

I

E2

q~

FIG. 2. Feynman rules for the Reggeon calculus of the production amplitude.
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pling to the produced particle is described by a
source operator. For example, the nonamputated
I'I'I' vertex is

(0~$ (x,t,) P(x, t, ) Vog (x,t, ) $(x,t, )~0) . (3.2) (a) (b)

go=2f g sr'-o'o'VP VP —bog P. (3.4)

The first term Z, describes the propagation of the
free Pomeron, JP and j g couple the Pomeron to
the incoming particles, and the source term g V,g
attaches the produced particles to the Pomeron.
The last term in (3.3) induces the Pomeron self-
interaction, leading to absorptive corrections.
Without this triple coupling, we would have just
the diagram of Fig. 1. Including g, generates those
of Fig. 3. Looking at this figure, we recognize
three effects of Pomeron cuts: (i) The Pomeron
propagator becomes renormalized [Fig. 4(a)].
Since this is independent of the particle production,
it is the same as described by Abarbanel and
Bronzan' for the elastic scattering. (ii) The PPP
vertex (i.e. , the source operator P Vog) undergoes
a renormalization [Fig. 4(b)]. (iii) Particles are
produced out of different Pomeron lines [Fig. 4(c)].
It will turn out that these contributions are sup-
pressed at large energies.

Before we plunge into calculations it is neces-
sary to hesitate for a moment and to recall our
experience from the previous section. So far we
have been describing the RFT for the production

A derivation of these rules has been given in the
final section of the second paper of Ref. 12. They
coincide with those used by MPT. We further men-
tion that for the case when a secondary Reggeon
is included the rules (a)-(d) remain unchanged.
In Sec. VII, we will consider particle production
from one secondary Reggeon, together with ab-
sorptive Pomeron cuts. We than use (a)-(d) to-
gether with (3.1). The only change is the replace-
ment in (3.1): (i)" '- g„(o)" ', with o.(0) being the
intercept of the secondary Reggeon.

In the following we concentrate on processes
with only Pomerons. If we allow only for fully en-
hanced diagrams, the Lagrangian for F„ is given
by

& =&o+0 V 4o~+0 +~4 kfkok 4(4+t)' )

with

FIG. 4. Effects of absorptive cuts in the production
amplitude: (a) renormal. ization of the Pomeron, (b)
renorrnalization of the PPI' vertex, (c) Particle produc-
tion from different Pomeron l.ines.

amplitude T, „, but what we are really interested
in are the cross sections o„. Naively, we would

go ahead and compute T, „, then square it and
integrate over rapidities and transverse momenta
of the produced particles. This, however, is
somewhat dangerous. For from what we learned
in Sec. II, it follows that, since we have approxi-
mated all vertices by constants (i.e., we have no

damping coming from the large-t behavior of the
vertices), the rapidity integration will diverge.
We have demonstrated this in (2.1) for the dia-
grams of Fig. 1, which are described by our La-
grangian (3.3) without Pomeron self-interaction.
In order to obtain the correct asymptotic behavior
of the v„, we had to introduce a low-energy cutoff
for the Y integration, and the evaluation of the in-
tegrals was possible only because we knew the de-
pendence on each rapidity separately. Using RFT
for T, „, one usually obtains a scaling law which
does not give enough information to proceed in the
same way. We will, therefore, proceed in a
slightly different manner.

The idea is the following: Let us take a diagram
that contributes to T, „and close it on itself. As
an example, the square of Fig. 1 is shown in Fig.
5. The result of this looks very much like a Reg-
geon diagram for the 2-2 scattering amplitude.
In particular, a quartic coupling arises as the
square of the production vertex. This considera-
tion holds for any diagram of 7, „(in fact, not
only for squares of diagrams but also for inter-
ference terms), and

can be written as a sum of a specific class of dia-
grams for the 2-2 process. Each of these graphs
has, of course, still the divergences mentioned

o ~ ~

l 2 5

0 ~ ~

FIG. 3. Repeated Porn. eron exchange with cut correc-
tions.

FIG. 5. A Reggeon diagram for 0„(E), resulting from
squaring the diagram of Fig. 1.
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above, but now we can employ the methods of field
theory" to regularize divergent integrations. That
this leads to the correct results for v„can easily
be checked for the simple diagrams of Fig. 5.

We finally want to demonstrate how the 2-2
Reggeon calculus for v„can formally be derived.
Let us take the 2-3 process. Then the cross sec-
tion o3 is

q, (y) = —, dy, dy, q(y-y, -y, )fd'q, d'q, y, (y„y„q„q)ym, (y„y„q„t)y),
S

with cbeing a normalization constant and T, , as given by (3.1):

dE~ dE2 -3 zE j WE2T2 3(y1 y2 q„q, ) =i S („.„e»e ' F,( E„E„q„q2)2 tt'2 )

(3.5)

(3.6)

I I

T2*,(y„y2, q„q.) =(- )' (2',.' s ""e "'"+3(E1E' q1 q )
27M)

(3.7)
v v'+

0 0

We insert this together with (3.6) into (3.5), in T, , replace q„q, by —q„—q, (T is invariant under this
transformation), and perform the y, and y, integrations. This leads to 6 functions between Reggeon en-
ergies of T, , and T,*,and allo~s us to integrate over E,' and E,'. The final answer for o, is

The complex conjugate to T, , is obtained by taking the complex conjugate of the signature factors, which
in (3.6) appear in the factor i ' and the complex-valued PPP coupling V3 in E2 3. Therefore,

dE y.E d(d~ d(02
(y) +

2
e

(2 2 F2 3(+ly +2y qly q2) F2~(E ~ly +2) qly q2)
2%i (2'FZ j

(3.8)

This has exactly the form of RFT for the 2-2 am-
plitude with Reggeon energy E and momentum
transfer zero (Fig. 6) and holds for any contribu
tion to F, , We therefore define a Sommerfeld-
Watson transform g3(E):

q, (y)= . fdd ' q, (d)q, (3.9)

1=122

+~432+~ 4, 42 ~ (3.10)

The reason why we need two Pomeron fields

g, and g2 is that we allow for Pomeron self-inter-

and for the computation of o, (E) we can use the
Reggeon calculus (and RFT) of the 2-2 amplitude.
As to the topology of diagrams for o, (E), a quartic
couplingappears as the product of the PPP vertex
in T, , and T,*,: It is U, = V, V0 and hence real.

This consideration holds for all o'„(Y), and the
diagrams for &„(E)are obtained by squaring those of
T, „(Fig. 7). The Lagrangian which generates all
these diagrams is

&= g l&.;--'ig. 4,'4&(A'+4&)l

actions in the lower and upper half of Fig. 7, but
the only place where p, and p2 may come into con-
tact are the quartic vertex Up and the coupling to
the external particles Jg, (2. [Note that these are
not all the diagrams which would arise in a RFT
with a full quartic interaction (e.g. , the diagrams
of Fig. 8 do not appear in our theory). We have
only those diagrams which arise from squaring
T, „.] With the Lagrangian (3.10), g„(E) is given
by the sum of all diagrams which are proportional
to U

This completes the description of RFT for pro-
duction processes. We still want to mention that
the Reggeon calculus for 0„, which we have derived
here only for a pure Pomeron theory, remains
valid when other Reggeons are included. The main
reason is that in multiplying T, „with its complex
conjugate and integrating over the physical region
of the produced particles, the whole phase struc-
ture which makes T, „ that complicated, always
becomes very simple: The phase factors can be
absorbed into the quartic coupling, which is the
product of two complex-conjugate numbers and
therefore real.

E QJ), q) E-u)~,q~

~) ~q), ~2~qg
Uo= YoVo

FIG. 6. A Heggeon diagram for e3(E). FIG. 7. A BFT contribution to 0'„(E).
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FIG. 8. Quartic interactions that do not occur in our
or on'

o(E) —g o„(E), (4.1)

IV. HIGH-ENERGY BEHAVIOR OF 0„(F)

We now turn to the high-energy behavior of the
production cross sections o„(Y) for fixed n. The
Lagrangian for these cross sections is given by
(3.10), whereas the production amplitudes are de-
scribed by the Lagrangian (3.3). The asymptotic
behavior of o„(Y)as a function of I' is controlled
by the infrared structure of its Sommerfeld-Wat-
son transform o„(E). In order to evaluate the in-
frared behavior of o„(z) we first define the gen-
erating function

Zl~ ufireII ~

satisfies the conditions

I'"(E,k, a', g, E„)
@=p
k=p

(4.3)

(4.4)

r "(E,k, o[, g, z„),
k=p

d
2 i I' "(E,k, o)') g, Eg) s

k=p

(4.5)

(4.6)

The renormalized coupling constant g is given,
by the amputated three-point function [Fig. 9(c)]:

Zs/2I 12 (4 'I)

order to make our calculations self-contained, we
start by reviewing the results of Ref. 2 on the
Pomeron self-interaction. The renormalized in-
verse propagator I'" [Fig. 9(b)],

with o'„(Z) being proportional to U" ':
o„(Z)=U"-'o„(z) . (4.2)

A. Calculations

As we have said before, one of the effects of P
cuts in production processes is the renormaliza-
tion of the PPP vertex. We, therefore, first con-
sider the infrared behavior of the renormalized
amputated PPP vertex rp~f, (E;,%;) [Fig. 9(a)]. In

We find a renormalization-group equation (RGE)
for o(E), expand the solution in powers of U, and
then determine the infrared behavior of the coef-
ficient functions o'„(E). In addition to that, in order
to see the relation between the behavior of the
cross sections o„(Y) and the amplitudes T, „, we

first consider the infrared behavior of the renor-
malized PPP vertex and derive a sealing law for
72~n

In order to make the reading as easy as possible,
we organize this section in two parts. In part A,
we derive and discuss the HGE's together with its
formal solutions. In part 8, we present and dis-
cuss the results and the physical implications.

8 w iy iy &PVf @ =2@ =2@ =-@ In X(D+l)/2

0 =pi

In (4.8) g carries a subscript "d" indicating that
it still has dimensions. We introduce a dimension-
less coupling g through

D/4-1
N

]Dt4
Q

The HGE for I"has the form

(4.9)

[(s &
- tl,s, - (~ - ')8.- 1 ~, ]

xr" (gz, k, n', g, z„)=o, (4.1o)

with

(4.12)

(4.13)

P, = E.s.„g(z,), (4.11)

g=z„e, o'(E„),

y, =z„e, InZ, (z„).
The solution (t =In)') to (4.10) is

0
r"()d, ie, e', d, d„)=exp j [) —r(d(r))]dt I, '

xr"(E,k, ~'(-t), g(-t), z„).
(4.14)

FIG. 9. Green's functions that are computed in Sec. IIA: (a) the PPP vertex, Q) the Pomeron propagator,
(c) the triple-Pomeron vertex function.
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In lowest order ~, one finds an infrared-stable
fixed point g for g, such that for t- —~, g(-t)- g.
For n'(-t) one finds

I'" -(E„E,k„k„n,g, E ), „=1,
k;=O

(4.18)
n'(-t)=n'$ '. (4.15)

(4.16}

Now we consider the renormalized PPP vertex
I'p~p [Fig. 9(a)],

ppp = +4 happ;urlreri (4.17)

At the fixed point g, the values for y, and z are
which indicates that we have taken out Vo as an
over-all constant factor to I~~~. Further, (4.18)
tells that j.ppp depends only on two parameters,
the triple-Pomeron coupling and the Pomeron
slope. Both of them are defined above. The RGE
for Ippp is

[5& L
—p,s, (K ——n')& ~ —r.]

x 1~»((E„k„g,n', E„)=0, (4.19)

where g, combines the renormalization constant
of the source operator PtV~(C) and the wave-function
renormalization of the external Pomeron lines.
Z, is defined through

with

p4 ENBg lng4 ~

The solution to (4.19) is

(4.20)

0
I'- -()E„k;,g, n', E„)=exp + dt'y, (g(t')) I~ -(E„k„g(-t),n'(-t), E„).

-t
(4.21)

The only new (luantity is y, (g). In lowest order e, only the diagram of Fig. 4(b) contributes. Inserting the
fixed-point value for g, we obtain

r, (g}=P =~/6 (4.22)

Since in our notation [cf (4.18.)] I'~~@ is dimensionless and, hence, depends only on dimensionless (Iuanti-
ties, I'~~p on the right-hand side of (4.21) can be written as

N N

In the limit $-0 (t- —~) we obtain, using (4.15) for n'(-t),

(4.22)

E yak k

Scaling on both sides the momentum vectors by $'i', (4.24) can be written as

(4.24)

(4.25)E))) ~ ~ FIJI*
g/2 8

5~0 ~N

The important result of (4.25} is that PPP vertex, which in the absence of Pomeron cuts was a nonvanish-
ing constant, is now screened and vanishes as (-0 [note that P) 0 from (4.22)].

In the same way one derives scaling laws for the Pomeron-n-particle —Pomeron vertex (PnPP) [Fig.
10(a)]. With the definition

~ -n~ 1-nr„
PnPP ~ 4 ~ 1 PnPP; unren

the result is

(4.26)

(4.27)

In order to obtain a scaling law for the physical partial wave E„, we observe that in the leading contribu-
tion only one Pomeron couples to the incoming particles, " such as illustrated in Fig. 10(b). The expres-
sion for the partial wave I'„ is then

En+2(«i "()=&(K"(E(~ "()] 'I'0" I'I nJJ* (E(ik;)[I'"(En+(, kn+(}] '~( ~

Formula (4.27) yields the scaling law for E„„:

($E k ) tn8+(n+1)()(-1)@ E( (-n n kl
n+2 n+g g p g

O N

(4.26)

(4.29)
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Transforming via (3.1) to rapidities, we obtain
n-1

( k ) +ps-( -1)(8+F1) dg -Ziti/F~ & yg & & y'8-( -1)(8+y1) y ~~ y kk
2 n y s i ~

y~ oo i=1 N N

(4.30)

3 ~2p+2yq+g~). (4.31)

After discussing the properties of the production
amplitude T2 „, we now turn to the cross section
o(E) and its RGE. According to the Lagrangian
(3.10), v(E) depends, in addition to (g„n, ') and

(g„o,') on the renormalized quartic coupling U.
The renormalization of g„n, ' is independent of
U and, hence, the same as described above. For
the definition of the renormalized quartic cou-
pling U, we define the amputated Green's function
I'22 for the process Pomeron 1+Pomeron 2- Pom-
eron 1+Pomeron 2 [Fig. 11(a)]

I Z 2I2 (4.32)

We finally mention that the parameters y„z, and

p have been calculated by methods other than the
c expansion. "'" The values obtained in the high-
temperature expansion are

1
y ~(] —~& z ~(23

1 y 2

The subscript "d" to U in (4.33) indicates that U~

still has dimensions. A dimensionless quartic
coupling is defined by

g 8/2-1
NU =Uq
CV

(4.34)

N= ZN 'Z1 'N„„„„

with

(4.35)

ki=p

For v(E} [Fig. 11(c}]we need, in addition to a
multiplicative renormalization, one (constant)
subtraction, which we define by means of

Next we have to renormalize the source operator
Jg, g, and its Hermitian conjugate. To this end we
define the amputated-source-two-Pomeron vertex
[Fig. 11(b)]:

and set

(E(& gt Q( t gg( Ut EN) E~ Em=$3=Z4-=-E~/2

ki=p

iUq

(2 )8+1 ' (4'33}

v(E)(s s =0.
We then have the relation

o(E) = Z„'Z, '[a„„,„(E)—(x„,„(-E„)].

The RGE for o(E) is

(4.37)

(4.3S)

E„B + g [p 9, +$ „8+ (y}g] p+s +2y„o(E;g„o,', U, E„)=+6,(g„n, ', U, E„},
i=1 2

(4.39)

with

~N ~N EN

P~=E 9 U(E„),

(4.40)

(4.41)

(4.42)

By dimensional analysis of o(E) we find that

[o]=E ik

which leads to

(4.43)

($8 ) + E„s~ + n, '8„+n, '8„+1)(r()E, g„o. , U, E„)=0.
N 1 "2

This together with (4.39) yields

(4.44)

[P,&,, +(L- n, ')&~, +ri(g~)1 Pvev+1 —-2r, o((E, @,o'~', U, Z )=&(g&, n U, Eg).
i =1 g2

(4.45)

The solution to this equation is
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0
e((E gt et U Ex) =rr( E g(tl, -e(t)-U,( t), E—) exg dt ['t-+2y(g(t')) +2y(gft'), U(t )))')-t

0 0
+ dt (e'E g(t )U'(,t )t'x', (t')) exg (-2 e 2y(g(,t )) +"2y„(g(t )U"(,t )))'dt )."-t -t'

(4.46}

P, =rU+ O(U'),

with

D D
, +r, (@)+r,(g.)

+ r4(g, ) + &4(ga) ~

Inserting for g, and g, the fixed-point values, this
becomes

Dr = —g —1+2@,+2p.
2

(4.48)

These are all quantities known to us, and using the
numerical values obtained in the e expansion
(4.16), (4.22), or the high-temperature expansion
(4.31) we find x& 0. For example, in the e expan-
sion:

r =1 —e/4. (4.49)

Thus, the point U =0 is an infrared-stable fixed

On the right-hand side of this equation, we put

g, (t) =g, (t) =g(t) [because g, and g, are renormal-
ized in the same way and the functional form g(t)
is the same for both]. The first term on the right-
hand side of (4.46) is the usual solution to a homo-
geneous RGE, and the second is due to the inhomo-
geneous term of (4.45). What makes the solution of
(4.45), despite the inhomogeneity, rather simple,
is the fact that ~, the inhomogeneous term, is a
constant with respect to the Reggeon energy gE.
In solving (4.45}, the only t dependence of b enters
through the auxiliary functions g, (t), c(, '(f), and.
U(t). This explains (4.46). The functions g, (t) and

n,. '(t) are the same as in (4.10}, and the only new
function is U(t). U is a quartic coupling, and we
know from previous investigations" '2 that these
couplings tend to be infrared free. In order to
determine U(t) for our case we look at the P„ func-
tion. It has the form

point, and for small $ (or t- -~) U(-t) has the
behavior

U(-t) -Ue"'. (4.50)

This result depends mainly on the sign of &, which
is a function of z, y„and P. Once these quantities
are given (from the e expansion or high-tempera-
ture expansion), the evaluation of r involves no
further approximation. In Sec. IVB we will find
that the sign of r has still another important ef-
fect.

Before we go on, a word might be in place about
the renormalizability of our theory at D =4. Our
RFT for the production amplitude, as given by
the Lagrangian (3.3), is renormalizable at D =4
just as is the RFT with a triple-Pomeron inter-
action for the 2 —2 scattering. But the RFT for
the cross sections, as written is (3.10}, has lost
this nice property. In fact, if we were to compute
any Green's function away from the infrared limit,
which has a quartic coupling in it, we would have
to iritroduce an infinite number of counterterms,
depending on U and g„ in order to avoid infinities.
This is again the result of taking constants for all
couplings and disregarding damping properties for
large I' values. However, in the infrared limit it
has been shown by Bardeen et al."that only a very
limited number of interaction operators can pos-
sibly play a role, and in our theory it is only the
operator U)ct, $, (2t()t, . Now (4.50) shows that this
operator goes to zero in the infrared limit, and the
quantity & which determines its infrared behavior
is given through the quantities z, y„P. Each of
them is computed in a theory that is renormaliza-
ble D =4. This is why (4.50) is valid even at D =4,
and all results of this section can be continued up
to D =4.

Our next step is to determine the infrared be-
havior o„(E). To this end we expand the right-hand
side of Eq. (4.46), which, as it stands, is valid
for all t, in powers of U. In doing this we have to

(a) (b)
(b) (c)

FIG. 10. (a) The P-(n-particle)-P vertex, {b) the 2
n + 2 amplitude.

FIG. 11. (a) The 2-Pomeron 2 Pomeron Green's
function I', (b) the coupling to external particlesN, (c)
the generating function 0'(E).
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assume that this expansion converges, but since
our theory is infrared free with respect to U, we
can choose our U =U(0) small enough such that a
convergent perturbation expansion exists. We then
write the left-hand side of Eq. (4.46) as a power
series in U fcf. (4.2}], and on the right-hand side
we expand all functions in powers of U(t) [the func-

tion U(t) depends on U as a boundary value U(0}
=U]. To simplify our consideration we take g, =g,
to be the exact fixed-point values, such that the
function g( t) o-n the right-hand side of (4.46) be-
comes a constant. (However, our results would be
the same if g„g, are chosen to be near the fixed
point. ) Equation (4.46) then becomes

p

g U" (y„„()E,g, n', E„)=P U(—t)"a„„(E,g, n'(-t), E„)e" 1 "'exp dt' g y„„(g)U(t'}"
n n -t n

p p

+ I «'QU(t')" &...(g, n'(t'), E }e "' "' exp — «"g y~.(g)U(t"}" .
-t n -t' n

(4.51)

The remaining t dependence of o„and 4„can be extracted by use of dimensional arguments:

Z(Z Z z'(-)) z )=z z 'z'(-)) zir (,z, l, ))
N

g)/2- Z I- p/2 - tz&/2-
On

N

(4.52)

(g nl( t) E ) E D/2 in/( -l) DI2I) (g 1 I) E D/2 1n) D/2e 2zDI2t) (g 1 1) (4.53)

U( t) —Ue"', -
0

dt' U(t')" - U" (e"'"-1).
-t nr

(4.50)

(4.54)

So the U dependence on the right-hand side of Eq.
(4.51) becomes fairly simple, and if we equate
the coefficient of U" on both sides, we find that

v„„((E,g, n', E~) ~ exp[(2y, —1 +zD/2)t)

n+1

crt (0- g ) (4.55)

where the constants c„I, are combinations of y„„,
o„(E/E~, g, 1), and b, „(g,1, 1). Finally, putting
co=)E, we have

So far, Eq. (4.51}together with (4.52) and (4.53)
is valid for all values of t. We now consider what
happens for small ( (t- —~). In this limit, we
know that

U(-t)=
1

and the analog to (4.56) would be

((z)) -(z)' 1 "' '(In(u)"

(4.58)

(4.59)

This would have been, for example, the result in

the absence of cuts at D = 2.

B. Results and discussion

v„,2(Y) -o,)(Y)U"(c„,+c„,Y "+ +c„„,Y "').
(4.57}

This is the hey result of the calculations of this
section.

Before we turn to a discussion of this result,
we would like to point out that the infrared be-
havior (4.55) of a'„„strongly depends on how U(t)
approaches its fixed-point value. For example,
if Po=cU'+ O(U') has a double zero at U=0 (i.e.,
r =0), then U(-t) has the form

&4+2(~1 g) n i EN} ~ ~

~r(A'-g)
nk

We can transform to rapidity and obtain

(4.56)

After these rather long calculations let us
pause for a moment and contemplate what we have
achieved. %e first derived a scaling law for the
partial-wave amplitude F„( . 49)2and the scattering
amplitude T, „(4.30). If we use this result to
evaluate the cross section cr„, we obtain

n+ 1
Y28-(n+ 1)(2 8+2)'1+zD /2-1) -1 ll (d+ dDh }6(I g+ ) i T (+ k ) i

2 (4.60)
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(a) (b)

FIG. 12. Particle configurations in 0„(F). (a) The
leading contribution with one t.arge gap, (b) the next-
leading contribution with two large gaps, (c) the last con-
tribution where the particl. es are distributed uniformly.

with x, =y,.jY. This is the result of Migdal,
Polyakov, and Ter-Martirosyan. ' However, we
know that the x& integration is divergent at x& =0,
and, therefore, only if we restrict the x; to be
greater than some finite cutoff, say x, ~ a
(y,. ~ aY), is the right-hand side of Eq. (4.60)
defined. Any energy-dependent cutoff would intro-
duce further energy dependence of the integral in
(4.60), over which we have no control.

Since we anticipated this danger, we developed
our RFT for the cross sections. The result for
o„ is written in (4.57):

o„„(Y) o„-(Y)U "(c„,+ c„,Y "+ ~ ~ ~ + c„„„Y"").

(4.57)

The most prominent feature of this is clearly that
the asymptotic energy behavior of o„ is the same
as for o „.We have kept the nonleading terms
because they show the resemblance to our simple
model in Sec. II (2.10). Let us take, for example,
the last term in (4.57). It has just the same be-
havior as obtained in (4.60), because

y 28 "+1 28+2'y 1+ D/2 1) = y1 2y1 -zD/2y mr
t

(4.61)

and y' 2» ' ' is the asymptotic behavior of 0 „.
But we know that the power of Y in (4.60) belongs
to that configuration of particle production where
all rapidity gaps are large. We, therefore,
identify the last term in (4.57} as the contribution
of this region of phase space. As to the other
terms in (4.57), we use the analogy to our model
in Sec. II. Equation (4.57) is the expansion in the
number of large rapidity gaps, and the leading
contribution comes from the first term where only
one rapidity gap is large. We illustrate this situa-
tion in Fig. 12. %'e plot the rapidity distribution
of the produced particles of a single event. In the
leading term of (4.57) [Fig. 12(a)], we have one
"hole" (in order to preserve symmetry, this hole

( )
(InY)" '

n y' (2.8)

and in this contribution all rapidity gaps are
large. Once the triple-Pomeron coupling is turned
on, we have (4.57), and the produced particles
prefer a very different configuration.

Our result (4.57) can further be illustrated by a
simple counting rule of anomalous dimensions. If
we think of a production process where only one
renormalized Pomeron is exchanged between two
renormalized PPP vertices, then a simple count-
ing of anomalous dimensions coming from the
Pomeron propagators (4.14) and the PPP vertices
(4.25) leads to

n-1
1v„(Y)-constx J' dy, 5(Y-+y,. ) „„,(4.62)

i=1 i

with r given in (4.48}. Repeating the arguments
given in Sec. II, this leads to (4.57) and may serve
as a heuristic way of tracing the effect of anoma-
lous dimensions.

In these calculations we have not included non-
enhanced graphs which, once finite values of
rapidities appear, are no longer negligible. How-

can be between any iwo of the outgoing particles},
in the next term, two holes and so forth. In the
last term, the produced particles are uniformly
distributed [Fig. 12(c)].

Looking at Fig. 12 we make a,nother observation.
It has been argued" "that high-energy scattering
in RFT with a Pomeron having intercept 1 can be
viewed as a critical phenomenon. One of the char-
acteristics of phase transitions is the simultaneous
existence of differentphases of the system. In hadron
scattering, different phases correspond to different
densities in rapidity of particle production. This
feature is exhibited in Figs. 12(a) and 12(b), where
rapidity regions with high particle density (parti-
cle clusters) are adjacent to regions with zero
density (holes). This situation has to be confronted
with Fig. 12(c}, which represents the last (non-
leading) contribution in (4.57): This type of parti-
cle production is what one would expect in the
usual multiperipheral models.

In all these considerations, the picture obtained
from our simple model of Sec. II has served as
a rather faithful guide. In fact, comparing the
multi-Pomeron exchange without cuts in D & 2
transverse dimensions with our RFT result we
find that the qualitative picture has not changed.
In both cases we have o„-o„. [A consequence of
this is that those types of production which are
present only when cuts are included, e.g. , Fig.
4(c}, leave no signature on o„(Y).] Only at D= 2

does the presence of cuts lead to a change. With-
out cuts, we have from (2.8)
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+(gE g +I U E} (2P~ 1+ sD/2 (4.63)

or

o(Y') -c„(F). (4 64)

This obviously represents the sum of the leading
terms of o„(I') in (4.57):

ever, the fact that for large s all (but one) rapidity
gaps are pushed down to their lower limit is dic-
tated by the enhanced graphs. In other words, if
we would include nonenhanced graphs in our cal-
culations, then the infrared behavior of U(t) and,
hence, the asymptotic expansion of o„(Y') in (4.57)
would not be affected. This, again, is a conse-
quence of the results of Bardeen et a)."

This completes our treatment of the asymptotic
behavior of the fixed-multiplicity cross sections.
The next problem to be addressed is the high-
energy behavior of cr(Y), the sum of o„(Y'). One
might be tempted to derive this from the infrared
behavior of o(E) in (4.46). If we use for o and b,

on the right-hand side of (4.46) the scaling argu-
ment (4.52) together with the infrared freedom
of U(-t), we obtain

tence of a singularity above 1. In the last section
we learned that RFT resembles very closely the
simple model of Sec. II with p=D/2 —1&0. So
our expectation is that in our model for small U

we have no new singularity, while for large U we
may still have problems.

We will now' demonstrate that this expectation
is correct. The search for a new singularity
which corresponds to a two-Pomeron bound state
requires, in principle, more than just studying
infrared properties of the Green's function, and
it seems as if the tools of the RGE used in the
previous sections are not adequate. However,
the knowledge of the P~ function provides us with
enough information to ensure that the singularity
which causes the Finkelstein-Kajantie problem in
the simple pole model, disappears once cuts are
included. Before we start any calculations, let
us sketch the main idea, following Gross and
Neveu. " Let us consider the (renormalized)
2 Pomeron - 2 Pomeron Green's function
I"'(E„k,, U, Es), where we have suppressed the
dependence on all other parameters. At a renor-
malization point it defines the quartic coupling U:

v(I) =o., - P U"-'(c„,+ ~ ~ ~ + c„„„r-""). (4.65) U=I' (E,k, , U, E )

k-=0

(5.1)

But here again the experience from Sec. II pro-
vides us with a warning. For small U, the sum
of leading terms converges and might yield the
correct behavior of o (Y ), but when U becomes
larger, the sum of leading terms begins to di-
verge, and the neglect of the nonleading terms is
certainly no longer justified. What in fact may
happen is that a new power of s is built up, which
may violate the Froissart bound. Such a situation
would correspond to a new singularity of cr(E) in
the E plane. To find the correct behavior of o(I'),
we therefore turn to a study of possible new sin-
gularities of o(E) away from E = 0.

V. FINKELSTEIN-KAJANTIE PROBLEM IN RFT

On the other hand, we have a RGE:

((s, P,s,)r"((E„k,, U, E„)=0,

with the solution

(5.2)

r"($E(, k„U, E„)= r"(E;,k), U(-t), E„).
(5.3)

I"($E;,k;, U, E„)= U(-t) .
Now the function U(t) is, as usual, defined by

(5 4)

Choosing in (5.3) E, =-E„j2, k; =0. , we have on the
right-hand side by the definition (5.1)

The question whether repeated Pomeron ex-
change leads to a new singularity of o =pc„ to
the right of j=1 and, hence, leads to violation of
the Froissart bound is actually one of the main
interests in studying these production processes.
Originally, Finkelstein and Kajantie demon-
strated that along a specific line in the (n, lns)
plane &x„(s) grows faster than allowed by unitarity.
But this is just the reflection of a new singularity
in o(E) to the right of j &1. In Sec. II we men-
tioned that when p= 0 the existence of such a sin-
gularity is unavoidable, no matter how small we
make the PPP coupling. For p&0, on the other
hand, a small-enough U might prevent the exis-

P(U), -U(0) = U. (5.5)

This equation is solved by

(5.6)

Now suppose that P~(x) &0 for all x&U, and the
integra. l

T=- dx g oo

~ Pv(x)
(5 7)

converges at infinity. Then it follows from (5.6)
that U(t) has an infinity at t=T. But because of
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(5.4}, U(T) =~ implies also

I"( e-E„/2, 0, U, E„)= ~ . (5.8)

This shows how a singularity in I ' can be traced
in the behavior of P~. In the following we will use
this method, in order to compare the question of

new singularities in the Finkelstein-Kajantie case
with our RFT model.

Let us first examine the P~ function in the
absence of triple-Pomeron interactions. Then
only the graphs of Fig. 5 contribute to o(E), and
F" is given by

I '(E;,k;, n', U~o) „„„„=F"(E;,k;, n', U~) „„
Uuo

[ &1(ik +k )2 E E ] D/2 1&r-D-/2Z (1 1D)( 1v)D /2 (5.9)

and, following (5.1},

Uuo

U ~ D/2-1&) D/2I -(1 1D)(1 )D/2 '

(5.10)

I

made explicit by solving Eq. (5.5):

D/2 —1 -(D/2-1) S

K (D/2 —1)/K U-1+e-""-""
(5.14)

In (5.9) and (5.10), we have given U a subscript
d in order to indicate that U still has dimensions.
Using the dimensionless combination

U E 8/2-z
N
(D/2 (5.11)

we obtain for the Pn function the exact form

P~ —— ——1 U-U K
D 2

U 2
(5.12)

where

(5.13)

We have plotted the behavior of P„ in (5.12) in
Fig. 13 for both 2&D&4 and D =2. Using the argu-
ments given above we note the following:

(a) 2&D&4. pn has two zeros at U=O and

U, )0, the point U=O being infrared stable. If
the physical value U is chosen to be in the range
[0, U, ], the effective U will be driven to zero. For
the physical U) U„ the effective U moves to the
right, and according to our argument above, there
exists a value T for t such that U(T) = ~, and a
singularity at E&0 or j &1 exists. All this can be

U
U' "=

I+KUf (5.15)

we see that for any value U a pole occurs at

o r g e 1 e 1 / KV1
KU

(5.16)

Since E =1 —j=—$E„/2, this singularity lies to
the right of j = 1:

j=i+g—+N
2

and choosing for U values within [0,U, ] or U) U„
respectively [U, = (D/2 —1)/K]. [A closer look at
(5.14) with 0& U& U, tells us that even in this case
a pole exists, if we allow for complex values of t.
However, one can show that this corresponds to
a singularity of I" on an unphysical sheet of the
E plane, as long as 2&D&4, and, therefore, it
is of no interest for us. ]

(b) D =2. We start with case (a) and let D ap-
proach 2. Since the value of U, =(D/2 —1}/K goes
to zero, the interval [0, U, ] shrinks to zero, and
at D=2 there are no values for U left where U(f)
would not encounter a pole. Solving again (5.5)

2
(5.17)

2& D&4 D=2

Uc
~U

FIG. 13. The P~ function in the absence of Pomeron
cuts (a) for 2&a&4, @) for D=2.

[It is important to note that, as a consequence of
our method of regularizing divergent integrals,
Eqs. (5.10) and (5.17) describe the physical situa-
tion reliably only for Ei & E„. But this is all we
need for our purpose. ] The results from (a) and

(b) agree exactly with what we had anticipated in
Sec. II.

Now we want to see to what extent the situation
changes when a triple-Pomeron coupling is pres-
ent. In the last section we discovered a close
similarity between our RFT model and the Finkel-
stein-Kajantie case for 2 &D &4 transverse dimen-
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2(D(4

FIG. 14. The P & function when cuts are included (2 ~ D
& 4)

n~(t) = 1 + ao'i+ aoo.o't

This changes 2« in (3.10),

(5.18)

o, —2igs Bt(& &o vP, ~ vg,.1 ~

2 f 2 (5.19)

and makes the theory renormalizable at D = 4.
When applied to the Finkelstein-Kajantie case,
this theory reproduces the correct results for the
whole interval 2 «D «4. In the presence of a
triple-Pomeron coupling it has been shown' that

sion. This leads us to the expectation that the
situation of our RFT model mill be similar to case
(a) above. That this is correct follows from P ~
(Fig. 14) which we studied in the last section. We
found that the slope of P u at U = 0 is positive and
different from zero, for 2 &D & 4 as well as D = 2.
This, together mith our argument given above,
guarantees that there exists a range of values U
such that the effective coupling constant U(t) is
driven to zero without encountering a singularity.
'For the physical U being within this range, no
nem singularity is generated, and violation of s-
channel unitarity is avoided. This proves that in
our RFT the Finkelstein-Kajantie Pxoblem no
longer exists.

Having ensured the existence of a range of U
values, for which unitarity is obeyed, one still
may ask what happens if U becomes large. Be-
fore we try to find an answer to that question, we
first introduce a slight modification into our theo-
ry which will not affect any of our previous results
on e„(Y) but will allow us to continue our theory to
D =4 dimensions. As we said in the previous sec-
tion, the RFT given by the Lagrangian (3.10) is
not renormalizable at D = 4, although the inf rared
behavior of cr(E) and e„(E) remains valid at D = 4.
But now we want to know a little bit more than
only the infrared behavior of U(t) and would like
to determine the P function at least to order U'.
The difficulty with our theory at D =4 becomes
already visible in the absence of Porreron cuts:
The U' term in the P~ function in (5.12) is not de-
fined at D= 4, since K (5.13) becomes infinite.
We can avoid this by including another term in the
bare Pomeron trajectory and propagator"

the i' term in (5.18) does not affect the infrared
behavior of g and n', and thus, had we included
this term into our previous calculations, none of
our conclusions would have changed.

Now our theory with (5.19) for Zo, in (3.10) is
renormalizable at D =4, and me start considering
P~ at D near 4. Because of the presence of the
triple-Pomeron coupling, it is now no longer
possible to compute the exact P~ function. How-
ever, we know tha. t for a=4 —D sma, ll, the effec-
tive triple-Pomeron coupling is small, and P~
will not too much differ from the case mithout a
triple-Pomeron vertex. In the Appendix we show
this in some detail. Then the situation can be
described by the P function of Fig. 13(a): There
is a range [0, U, ] for which the effective coupling
constant U is driven to zero, and no singularity
occurs. For U & U„a singularity appears. We
conclude from this that in the neighborhood of
D =4, our RFT model contains still a, new singu-
larity mhen U is large enough.

If we go away from D =4, me loose the control
over the large-U behavior of P~. All we know is
that the slope x of PU of U=0 remains positive
and nonzero all the way down to D =2, which
proves tee absence of a singularity as long as U
is small enough. Whether the singularity assoc-
iated with large U survives cannot be decided.

Before we turn to a discussion we have to add
one missing link to our argument. The argument
that we have made about the existence or non-
existence of a singularity applies to the 2 Porn-
eron 2 Pomeron Green's function I'2, and we
have to make sure that in going from 1""to g(E)
the situation remains unchanged. It is clear that
if I' has no singularity o(E) will have none either.
On the other hand, if I' becomes infinite for
some value of its external energies and momenta,
this singularity will not be washed out by going
from I" to o(E). One verifies this by taking a
look at Eq. (4.46) which expresses o(E) in terms
of the effective coupling U(t). The singularity
of I 2 was found to arise when U(t) becomes in-
finite. In (4.46), an infinity in U(t) will, in gen-
eral, also lead to a singularity of y„(g(t ), U(& ))
and, hence to a singularity of o(E).

Let us now discuss some implications of our
results. First we notice that our~ RFT model has
again the same qualitative features as our simple
model with P = D/2 —1&0 of Sec. II. It is only the
point D=2 where the simple pole model becomes
very peculiar, while RFT retains the same be-
havior that it had for 2&D&4. The nice conse-
quence of this is that RFT at D=2 obeys the
Froissart bound, provided we take the PPP ver-
tex (the quartic couphng U is the square of the
PPP vertex) not too large. This taken to be the
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case, the asymptotic behavior of o(I') is given
by the infrared behavior of a(E), namely, (4.63),
(4.64):

o(1')-o„(Y). (5.20)

(a) (b)
/

(c)

FIG. 15. Different cuttings of a contribution to e&,&.

Since 1D RFT lt turns out 1n all performed approx-
imations"""'" that o„(F)&o„,(F), there is no
problem with unitarity.

The result (5.20) has an important consequence
for the formation of the total cross section. Since
o(I') is smaller than o'„„ the production process
vrith repeated Pomeron exchange is not the most
relevant contribution to o„,. This is different
from certain absorptive models' where the Pom-
eron can consistently be built up by processes
involving only Pomeron exchange. The fact that
in our model Pomeron-dominated production
processes are not sufficient to build o„, leads
us to consider processes with secondary Regge
poles, and we will do this in Sec. VII.

The next comment we want to make concerns
the consequences of our result for other BFT
models. We have stressed the importance of non-
zero anomalour dimensions, resulting from the
Pomeron self-interaction. This leads to the ex-
pectation that in infrared-free RFT's (weak-cou-
pling Pomeron), where such anomalous dimen-
sions do not appear, s-channel unitarity will be
violated. In fact, more detailed calculations for
the Q' Pomeron theory (which is described in

Ref. 21) show that the Finkelstein-Kajantie problem
is not solved, and a singularity above 1 is gen-
erated for al.l values of PPP coupling. This points
out to difficulties exhibited in infrared-free BFT's.

Finally, we want to say a few words about the
possibility that in our model, if the PPP vertex
is large enough, we stiLL may have a singularity
above j =1. We found that it exists near D=4
transverse dimensions and may very wel. l survive
when going to D=2. If this is the case, then we
either have to conclude that unitarity restricts
the range of allowed values of the PEP vertex,
or we have to search for other inelastic proces-
ses that might help to eliminate the singularity.
Clearly, the production processes that we have

considered are not complete in the sense of s-
channel unitarity. Namely, if we decompose the
Reggeon diagram in Fig. 15(a) into diagrams of
the sort discussed by Abramovskii, Gribov, and
Kancheli, "then we obtain, in addition to our
contribution [Fig. 15(b)], also the configuration
Fig. 15(c) which stands for other types of mul-
tiparticle production. From this point of view
it may be that singling out the production process
of the Finkelstein-Kajantie type is just an un-
fortunate way of cutting the total cross section
into pieces. These, however, are speculations,
and calculations have to be done, before one can
rely upon this. For the moment we will be con-
tent with having a range of values for the PPP
vertex where there is no need to search for can-
cellation mechanisms.

VI. POMERON-PARTICLE-REGGEON VERTEX

In order to complete our plan, we have to show
that the way in which &-channel unitarity is re-
stored does not lead to any decoupling problems.
We have seen that in our model the basic mech-
anism which reconciles the repeated Pomeron
exchange with s-channel unitarity is the screening
of the PPP vertex (4.25). This scaling law tells
us that, when both Pomeron energies and mo-
menta go to zero, the vertex vanishes. The form
(4.25) of the PPP vertex has to be compared with
another form which has been suggested to restore
s-channel unitarity in production processes:

Ip~p(t„ tm) =(t, +t,)[a+0(t„t, )] . (6.1)

The basic difference between this and (4.25)
is that in (4.25) the PPP vertex depends also on

the two adjacent angular momenta. This depen-
dence leads, via the Sommerfeld-Watson tra'ns-
form, to inverse powers of lns, and it is these
powers which prevent the cross sections from
rising too strongly.

The form (6.1) is known' to lead to the decoupling
theorems. (In the literature, decoupling theorems
are usually derived from inclusive sum rules. "
But it is possible to arrive at the same conclusions
in the framework of multiparticle production
processes. ) Because of the difference between
(6.1) and (4.25), RFT has a good chance to avoid
these difficulties. For a more detailed examina-
tion of this point, we repeat the argument which,
when applied to (6.1), leads to the decoupling

problems.
Instead of considering the production of n single

particles via Pomeron exchange we now take the
productions of n particle pairs, and assume their
invariant mass to be sufficiently large. Then,
for an appropriate choice of quantum numbers,
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FIG. 16. Opening of the P- {2-particl.e)-P vertex. The
horizontal straight line denotes the Regge pole.

FIG, 18. A diagram that does not contribute to the
Regge pole.

a secondary Regge pole with mass t ~ is exposed
between the two particles (Fig. 16). We now con-
sider the cross sections v„ for the production of
n such pairs with fixed invariant mass M' and
fixed internal momentum transfer t~ 40. Without
any cut corrections and using a nonvanishing
PPR vertex, we clearly violate s-channel uni-
tarity in the same way as in the Finkelstein-
Kajantie case. We, therefore, have to show that
the Pomeron cuts are sufficient to avoid this
disaster.

In order to be consistent we start with all pos-
sible enhanced diagrams (Fig. 17). We then iso-
late those which contribute to the Regge pole in-
side the particle pair (for example, the diagram
in Fig. 18 has no Regge pole, but only a Regge-
Pomeron cut, and this singularity is, for t~ 0,
well separated from the Regge pole), and examine
whether they (Fig. 19}alone already satisfy s-
channel unitarity. At first sight this seems to be
a fairly strong demand, but a brief reflection
shows that it is the simplest way to avoid com-
plications. Namely, if these contributions were
not enough to obey unitarity, we would have to
add those diagrams that give rise to the RP cut,
APP cut, etc. and show that their sum respects
unitarity. But if we take the Sommerfeld-Watson
transform of the Reggeon energy, we obtain a
Regge-pole contribution, a RP cut, etc. , and since
the position of these singularities has different
t~ dependences, these terms appear to be linearly
independent from each other. It is, therefore,
hard to imagine how a cancellation between all
these terms might occur.

Returning to the PPR vertex, we are prepared
to find a screening, and this screening has to be
strong enough. Before we start calculations, we
point out that such a screening will not imply
decoupling problems. Although we do not exactly
know how to continue our RFT from negative t„
to positive values (on the way to t~&0 some ap-

proximations made in RFT are no longer valid,
and new j -plane singularities emerge"), the
Reggeon calculus of Ref. 12 tells us that at the
particle Pole (ts =m', and physical angular mo-
mentum in the Reggeon channel) al/ Pomeron
cut contributions must decouple, and only the
bare PPR vertex survives which we take to be
different from zero. The decoupling of all cut
contributions at physical angular momentum is
part of the Reggeon calculus for the production
amplitude. "

We are now going to show that our RFT model
does exactly what we expect, namely, the PPR
vertex is screened for t~4 0, and the screening
is strong enough. From a formal point of view,
the existence of this screening is by no means
obvious. For all scaling laws which have been
derived in RFT are valid in the limit where all
external Reggeon energies and momenta are
scaled to zero. In our ease, however, we con-
sider the PPR vertex at the point where the Reg-
geon, being on or close to its mass shell, stays
away from zero (fs0 0), and only the Pomeron is
infrared.

To see why, nevertheless, an anomalous di-
mension is built up, we recall that the origin of
an infrared anomalous dimension is the accumula-
tion of infrared divergences. We, therefore,
start by considering infrared singularities of
some simple diagrams that contribute to the PPR
vertex. We take the Reggeon mass t~ to be neg-
ative and nonzero, and examine the limit of van-
ishing Pomeron variables (&,-0, k, -0). We will
find that in this limit an accumulation of infrared
divergences occurs, and that we can separate
certain diagrams which yield the most singular
contribution (Fig. 20).

The simplest diagram is shown in Fig. 21(a)
and consists of a single (&u, k) loop integration.
A singularity of this integral occurs if two (or
more) singularities of the integrand pinch the

~ ~ ~

FIG. 17. Enhanced diagrams for the process 2 2
+ {n-1) particle pairs.

FIG. 19. A diagram that contributes to the Regge poles
in all particle pairs.
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E, —E~, k, -k~

FIG. 20. Diagrams which contribute to the leading in-
frared behavior of the PPR vertex. E], k,

(a} (b}

E, = 1- „(k,'). (6.2)

integration contour, and using the standard tech-
niques of Ref. 30, we find two infrared singular-
ities. The one is the two-Pomeron cut and arises
when the poles of the two Pomeron propagators
pinch, the other is generated by the simultaneous
singularities of all three propagators and occurs
only if the Reggeon sits on its mass shell, i.e., FIG. 21. Some lowest-order diagrams for the PPR

vertex.

For both these singularities the relevant region
of integration is that of small & and k, i.e., both
Pomerons are infrared, and the internal Reggeon
is close to its mass shell. A similar result holds
for the diagram of Fig. 21(b): The most singular
behavior is obtained when (6.2) is fulfilled, and
in order to make the integral singular, all internal
Pomerons have to be infrared and the internal
Reggeons close to the mass shell.

In Fig. 21(c), we have no more infrared sing-
ularities than in Fig. 21(a), because the k, loop
produces no new singularity at ~, =0, k, =0. Thus,
it has the same infrared behavior as Fig. 21(a)
and only leads to (finite) renormalization of the
EPA vertex in Fig. 21(a). In the same way, a
self-energy correction along the Reggeon line
[Fig. 21(d)] only produces, when compared to
Fig. 21(a), a new singularity in E„k, (the Reg-
geon-Pomeron cut), which is well separated from
the Regge pole. It yields no new contribution to
the infrared limit &, -0, k, -0. These two ex-
amples show that a Pomeron, omitted from the
Reggeon line, does not enhance the infrared singu-
larities and the most singular diagrams are those
of Fig. 20.

We are now going to describe a theory that takes
into account all diagrams of Fig. 20 and, to leading
order, will give the correct infrared behavior
of the PPA vertex. We expand the Regge trajectory
around its value at t~ = —Q':

o.„((Q+k)') =o.„(Q')+P'[(Q+k) —Q ]

=o.„(Q')+2P'Q k+P'k', (6.3)

and drop the term P'k', because only small values
of k are important for the infrared behavior. Our
Reggeon propagator thus becomes

G„=i[E—[n„(Q ) —1] —2P'Q @+it) '

=i (E —0 —2.P'Q k+ie) '. (6.4)

For the Pomeron we use the same propagator
and self-interaction as before. Interaction be-
tween Pomeron and Reggeon takes place via a
Pomeron + Reggeon -Reggeon vertex function,
approximated by its value at zero Pomeron mo-
mentum and Q' Reggeon momentum. The Reg-
geon calculus of Ref. 12 tells us that this coupling
is again purely imaginary. The Lagrangian for
this theory is (Fig. 19)

(6.5)

where So [given in (3.4)] is the free Pomeron
part, g and Q are field operators for Pomeron
and Reggeon, respectively. The PPA vertex is,
as before, given by a source term V,g Q. For
the term [1—o.s(Q')] Q P we use the idea of
Abarbanel and Sugar" and shift the Reggeon ener-
gy by replacing Q-exp(it[1 —az(Q')]}Q. As a
result of this, the "intercept" of our Reggeon is
zero rather than A.

For the examination of the infrared behavior

of the PPR vertex we proceed in the same way
as we did before with the PPP vertex, i.e., we
define renormalized quantities and write down

the RGE. In doing this we observe that the re-
normalization of the Pomeron quantities (field
renormalization, slope, and triple-Pomeron
coupling) is independent of the interaction with
the Reggeon. Furthermore, the Reggeon field
and slope P' remain unchanged through renormal-
ization, because we have dropped the Pomeron
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g, P', W} and on the renormalization point. Wz

on the right-hand side of (6.8) still has dimensions.
We define

FIG. 22. Lowest-order renormalization of the PI'R
vertex.

'( Q )
( IE )1/2 t

gr gr g D/4-1& -D/4+-1
d N

(6.10)

(6.6)

(6.7)

emission from the Reggeon ((C)(I) Q interaction).
The only new renormalization conditions are,
therefore, those for the PPR vertex (i.e., the
Vog Q source term), the PRR vertex and the re-
normal, ized coupling W:

-I 1/2
PPR 5 1 PPR 4 unrent

gr g (D/2-1)/2 t (1-D/2)/2n-1
d N P ~

The ROE for I'- „is

(6.11)

8
h ~(

—p, 8, -(k- o')&~ - pws w-P„s„-(y, - y2)l

x I'pJ, „()E,, k;) =0, (6.12)

with

I to {E„E,k„k,
27T)

k1= k2=O

(8 w =Ease„»
P)) E„&Z-)((= —2(/la'+ 2).,

(6.13)

(6.14)

(6.9)FP~s(El E2 kl, k2) 2l 22- 2N =1.
k1= k2=O

In (6.8) and (6.9), we have suppressed the de-
pendence on the parameters of our theory (c(',

y5 @NBE (6.15)

and the other quantities as defined earlier. For
Pw we calculate the lowest-order contribution
to lr,» (Fig. 22) and obtain

D 1 g 1 t gW ~/ l D x ' x (1 —x)2
1 ——, + —y, W+ w /'I'~ 3 ——g dx{l+x) /' 1 —— 1 ——+ t(,

'
4 2 o. ' 2 ' (2v)' 2 2 (1+2)

(6.16)

(6.1V)

(6.18)

and

which at D=2 implies the existence of an infrared-stable fixed point W ~0. But rather than evaluating
its numerical value in this approximation, we make the following observation. Looking at the graphs
that contribute to the renormalization of I'r,» and I't)», and using our renormalization conditions (6.8),
{6.9), we have

W =W Z~2~-
d d0 1 ~ PPR;unren ren point&

Z =Z~2I-
5 1 PPR o unren ren point &

P l W + Pi (2il/2-D/4E &l4-l/2E 8 {W ~ l/2F )
D 1

IY 4 2 unren & (6.19)

(6.20)

At D = 2, a zero of Pw implies y, =0, and the solution to the RGE is

1r, „()E„)E„k„k„o(',g, W, p,, E„)-$ ~l/2I'r, „(E„E„k„k„c('(-t),ll(-t), g(-t), W(-t), E„). (6.21)

Taking E, and k, to zero (i.e., the Reggeon on its energy-momentum shell} and making use of the fact
that I p» is dimensionless, we rewrite

2r;,„((z„o;("z„~',zw uz„)-(-" &*O z~, z ', zwo( t)z). -
N N

(6.22)

The scaling function Q approaches a finite limit
as p, -~.

It is now straightforward to see that the screen-
ing in (6.22) is strong enough to prevent the cross
sections o„ for the production of n pairs with
fixed but large invariant mass and fixed internal

momentum transfer tR 0 0 from violating s-chan-
nel. unitarity. From (6.22} it follows that the
P -particle-pair-P vertex has the anomalous
dimensions -y„and this has to be compared with
the dimension P for the PPP vertex. From the
discussion of the last two sections we know that
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- }C

FIG .23. Beggeon diagrams for multipartiele produc-
tion via secondary Reggeon exchange.

the quantity which ensured the restoration of
s-channel unitarity was [cf. (4.47)]

r = 2y, + 2P+ o Dz —1.

Taking for P what is now the screening exponent
of the P-particle-pair-Pomeron vertex, namely,
—y„we find that r = z D/2 —1 is still positive,
and all our discussions in the preceding sections
tell us that there is no violation of s-channel uni-
tarity. 2'his completes ou~ demonstration that
repeated Pomexon exchange in RFT respects s-
channel unitaxity soi thout decoupling problems.

VII. OTHER PRODUCTION PROCESSES

The study of production processes presented
in the former section was mainly centered around
consistency questions. We showed that repeated
Pomeron exchange in multiparticle production
processes no longer violates s-channel unitarity
constraints once absorption is included and the
PPP coupling is not too large. However, the
very way by which the Froissart bound is restored,
namely, the screening of the production vertices,
led also to the result that the part of the total
cross section which is built up by those processes
is proportional to o,~. The ratio of o,&

to otot is,
whichever of the available numerical values for
the critical indices one takes, a decreasing func-
tion of s, and processes with repeated Pomeron
exchange are thus not the main part of 0„,. This
leads to the question which multiparticle produc-
tion processes do build up the increasing cross
section.

The candidate for generating the Pomeron singu-
larity are production processes mediated by non-
Pomeron exchange. However, we have seen that,
at least in the Pomeron-dominated production
processes, the generation of a new singularity
is strongly disturbed through the presence of
absorptive cuts. As shown in (5.17), in the ab-
sence of cuts one can, with an appropriate cou-
pling U, promote the new singularity as much
as one likes. But in the presence of cuts, this
is no longer the case, because, at least for a
certain range of values for U, we now have no
new singularity at all. . In this section we will
address ourselves to the question whether the
influence of cuts is always that strong. We will
examine this in a model of multiparticle produc-
tion, in which only one secondary trajectory
(henceforth called Reggeon) couples to the pro-
duced particles. Absorptive effects are taken into
account by allowing the rescattering Pomeron to
couple to the Reggeon and to itself (again we take
only fully enhanced diagrams). Rather than com-
puting the production amplitude, we again turn
directly to the cross sections and make use of the
formalism developed in Sec. III. The diagrams
that we are going to study are shown in Fig. 23.
We recognize the following three renormalization
effects: (i) The Pomeron propagator becomes
renormalized, and this happens just in the same
way as in the pure Pomeron theory. (ii) The
Reggeon propagator gets renormalized, 32 and this
renormalization is independent of the particle
production. Hence, we can use the results of
Abarbanel and Sugar" who have investigated the
interaction between a Reggeon and the Pomeron.
(iii) The RPR vertex undergoes renormalization.
This is the only quantity that we will have to com-
pute.

We take the Lagrangian

« —~o&i &x&'o&o+ J'&x&'o+ &i &o
i=1 ~2

with [cf. (3.3) for the Pomeron part]

+ —'y', r, y, -~., 'vy', . Vy,. -[1-~„(0)]y',. 4,. — ' y', y, (g, +q',). . (7.2)

'v j Yj (7.3)

Here P, , P,. are the field operators of the Pom-
erons and Reggeons, respectively. Shifting the
Reggeon energy by the substitution

f

is possible only because the Reggeon number is
conserved.

Now we can proceed in the same way as we did
for the Pomeron and examine the infrared be-
havior of o„(E), which is related to o„(Y) via

we eliminate the term [1—o.s(0)] Q~ P,. in 2, ,
i.e., we shift the Reggeon intercept to zero. This g„(Y)=S "& ' ' — dEe o (E)

1
2zg

(7.4)
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P~ =rRU+ 0(U3),

with

(7.8)

D D h
x~ = ——1 ——,+ 2y»+ 2y~,2 2 Q~

(V.7)

in analogy to (4.48) with z», y~ being the anom-
alous dimensions of the Reggeon propagator and
BPB vertex, respectively, and

N R R( N)' (7.8)

Ca.lculating y» and y~ in the manner outlined
in Sec. IVA, we observe that these two quantities
are closely related to each other. In fact we have

y~~+ ym ——0 (7.9)

in all orders of perturbation theory. This follows
very simply from a "Ward" identity that relates
the BPA vertex to the Reggeon propagator

The key point is again the infrared behavior of
the quartic coupling U. Defining the dimensionless
coupling U by

U g D/2-j

(7.5}
(Qp

we obtain for the P~ function

P~=aU +O(U ), (7.1V)

and a must be negative. To prove this, let us
assume that a&0. Then U =0 is an infrared-stable
fixed point, and U(- t) has the form

of the production vertex to all orders of pertur-
bation theory. Finally, we have to determine the
function h in (V.V), (7.8). It is the function which
in the BGE for the Reggeon propagator determines
the infrared behavior of the renormalized Reg-
geon slope (the analog to r for the Pomeron). If
the renormalized Reggeon trajectory is to remain
linear near t =0, then h, evaluated at the fixed-
point values for all. coupling constants, has to
vanish. In fact, Abarbanel and Sugar found a
solution to the Reggeon-Pomeron interaction,
where the renormalized Reggeon trajectory is
linear near t =0, and the value of h corresponding
to this solution, is zero in their approximation
(first-order e expansion). We expect that if
this linear solution survives in higher-order e,
then h will remain zero. Therefore, the coef-
ficient r R foU in (7.7) vanishes at D=2, unlike
the Pomeron case (4.47), where r a0. This is
a nonperturbative result.

As a result of this, the function U(t }will have
a different form than in the Pomeron case (4.50),
where r was nonzero. In the present case

(7.10) U

I aUt- (7.18)

~BP8 4B ~M'8; unren x

r„,„(E„&„k„k,) .. ., , =1,
kg= kp=o

~Reggeon ~ pReggeon
unren

(7.11)

(7.12)

(7.13)

(7.14)

Here l"R'gg"" is the inverse Reggeon propagator,
and (7.10}is easily understood by looking at
graphs that contribute to I'»~ and the self-energy
of the Reggeon. The "Ward" identity (7.10) is a
consequence of the fact that in our theory the
number of Reggeons is conserved at each vertex
and that all produced particles couple to the Reg-
geon. In a theory with a triple-Reggeon coupl. ing
or in the pure Pomeron case there is no "Ward"
identity. Formula (7.10) together with the def-
inition of y» and y~,

We stated in Sec. IV (4.58) and (4.59) that this
leads to

(y (~) ~ayR &+&~2 (In~)" (7.19)

However, a closer look at the coefficient of
o„„teaches us that, for a &0, the sign alternates
as a function of n. Thus, positivity of the cross
sections, which is an input into the construction
of RFT for o„, tells us that (V.18) with a &0 is
not possible. So let us take a:&0, and assume
that P~ has no higher terms. Then (7.18) is the
exact behavior of U(t) and (7.19) that of 5„.
Furthermore, (7.18) indicates the existence of
a pole at t =I/aU. Finally, if Pu in (V.17) has
further terms that lead to a second zero of P,
then this zero at U is infrared stable and U(t)
gets driven to that point:

U(t),~„U+(U-U)e ", (7.20)

(7.15)y,~ =@„e~„lnZ, „,
y~ =S„e~„lns (7.16)

leads directly to (V.9}. We then find that in (7.V)

the anomalous dimension associated with the
Beggeon propagator is cancelled by the screening

where b is the slope of p~ at U. With this we go
back into (4.49) and again find a behavior like
(7.19). We, therefore, conclude that (7.19) de-
scribes the infrared behavior of cr„, and this is
a consequence of quite general arguments. Turn-
ing to the Y behavior of o„(Y), we find
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o (Y)-s "& o 2 ' ' (lnY) 2&sU"
t'lnr&"

(7.21)

This result is the analog to (4.57) for the Pom-
eron-dominated production processes. Except
for the n-independent power of lnY, it has the
same structure as our simple model in Sec. II
with P =0, i.e., the Finkelstein-Kajantie model.
This comes about because the screening of the
APIt vertex (anomalous dimension y~) is just
enough to cancel the anomalous dimension of the
renormalized Reggeon propagator (y»). What
then remains is the shrinkage, and since we have
used the linear solution for the Reggeon, our
result is practically the same as one would obtain
in a model without Pomeron cuts. The dominant
contributions to o„(Y) are due to that kinematic
configuration where all rapidity gaps are large
(and not only one as it was the case for Pomeron
exchange).

We thus have established that the effect of Pom-
eron cuts in those multiparticle production proces-
ses which are described by a secondary Reggeon
exchange is considerably weaker than in Pomeron-
dominated processes. In fact, the qualitative
behavior of o„(Y) is practically unchanged in the
presence of cuts. As a consequence, the mech-
anism of generating a new j-plane singularity
is not disturbed, and these processes can, even
in the presence of cuts, serve as a candidate for
building the Pomeron singularity.

We finally want to relate our results to some
other work along this line that has been done
recently. "'" The effect of absorption in multi-
particle production from a secondary Regge pole
has been studied by Ciafaloni and Marchesini. '
For o„(Y) they find a result which is similar to
ours (7.16). Compared to their calculations which
are motivated by an s-channel absorptive picture,
our calculations are more complete from the
point of view of t -channel unitarity. In particular,
they do not consider self-interactions of the ab-
sorbing Pomeron or renormalization of the Reg-
geon propagator. That the conclusions are the
same, despite the different frameworks of cal-
culations, means that the character of a secondary
Reggeon is quite insensitive with respect to ab-
sorption by the Pomeron.

Having established that the presence of Pomeron
cuts does not destroy the mechanism of generating
a new singularity in o(E) and assuming that, for
an appropriate value of the RPR coupling, this
singularity corresponds to the Pomeron, one
might ask whether these processes can account
not only for the correct position of the singularity,
but also for the Poacher of (lns) that are required
for o„, in RFT. Within our calculations, an an-

swer to this requires a study of the nature of this
singularity I if it is a simple pole, no (lns) factors
would arise j, and our knowledge of the Po function
is not sufficient for this purpose. On the other
hand, Caneschi and Jengo" have studied absorptive
corrections to the cut Pomeron, and identifying
this with the singularity built up by multiparticle
production processes, their results may shed
some light on this question. They claim that they
can construct a solution which yields the same
behavior of the total cross section as that derived
from the study of 2- 2 processes.

VIII. SUMMARY

In this paper we have confronted RFT with one
of the most serious tests of s-channel unitarity
that have failed in the past for Pomeron-pole
models. The constraint we have studied is that
following from multiparticle production. We find
that, in the presence of cuts, processes with
repeated Pomeron exchange no longer violate the
Froissart bound, provided the PPP coupling is
not too large. However, we qualify this result
by giving some indication that a two-Pomeron
bound state of j&1 can still be formed, if one
takes the PPP coupling large enough. We do not
know whether such a bound state can be eliminated
by other types of production processes, or wheth-
er its possible existence imposes a restriction
on the value of the PPP vertex.

In the process of preserving s-channel unitarity
all o„(s) are forced to behave asymptotically like
o„, the physical picture emerging from this being
that mainly only one large rapidity gap is opened
between the produced particles. The rapidity
distribution of a single event will, therefore,
exhibit large fluctuations. This is in agreement
with the idea that particle production at high
energies resembles a system being at a phase
trans ition.

The basic mechanism by which violation of
s-channel unitarity is prevented is the screening
of the PPP vertex. By opening this vertex and
studying the PPA vertex at nonzero Reggeon mo-
mentum we show that decoupling problems do not
arise.

We then pointed out that in the case of particle
production by a secondary Regge pole the presence
of Pomeron cuts does not lead to as drastic
changes as in the Pomeron-dominated processes.
Namely, the qualitative behavior of o„(s) remains
essentially unchanged once cuts are included,
and the produced particles have still a uniform
rapidity distribution. This indicates that even
in the presence of cuts these processes can gen-
erate a new singularity which can be promoted
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for any finite coupling.
In this paper we have mainly been concerned

with the question whether RFT with a Pomeron
whose intercept is j. passes a strong test imposed
by s-channel unitarity. But at the same time we
have gained some insight into the mechanism in
which the bare Pomeron might be built up. One
of the most important questions that have to be
asked in the future is why the Pomeron singular-
ities actually are at 1. It has been suggested
that this reflects an underlying structure of had-
rons and hadron dynamics. But it is al.so pos-
sible that the full content of s-channel unitarity
does not allow for a Pomeron intercept other than
1. We hope that our results might be of some
hei.p for future investigations along this line.

without the k~ term in the Pomeron trajectory.
The function PU has the form

P~= -~(g )U —C(g', a)U2 (A5)

d
—= —p, (g(t), a(t)), g (0) =g, (A6)

da(t ) = —P, (g(t)', a(t)), a(0) =a, (A7)

= -P (U(t), g(t)', a(t)), U(o) =U. (A8)

with r from (4.47).
Before we turn to the actual computation of

C(g', a) we note the following. In order to solve
the RGE for any Green's function (e.g. , I")we
search for the solution of the auxiliary functions
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APPENDIX

In this Appendix we will study in detail the Pa
function [defined in E(I. (4.41)] near D=4. The
Lagrangian we use is defined in (3.10) together
with (5.19). Our main interest is to show that
near D=4 the structure of P(( is nearly unchanged
through the presence of the triple-Pomeron inter-
action and that the results holding in the absence
of the Pomeron self-interaction carry over. To
this end we compute Pa (which is a function of
U, a, and g2) up to order gm and U'.

The Lagrangian in (5.19) contains, in addition
to the parameters whose renormalization has
been described in Sec. IV, the new parameter
a0. Following Ref. 26 we define

2
tI'"(E, I ', &', g, a, E~) z=z„=a.2o. ' Bk

k2=0

(A1)

and introduce its dimensionless version

(A2)

In first order e, p, does not depend on a and
we, therefore, solve successively (A6), and
(A7) and obtain for U(t)

dU
dt

= -xU+C(t)U'. (A9)

with

e -rt

I/U-I(t) ' (A10)

I(t)= J dl 8' C(t')d('''
0

(A11)

As long as I(~) is positive and finite, we have

0&I (~)& ~,

U, = I/I (~),

(A12)

(A13)

such that, for U, & U, U(t) in (A10) encounters
a pole.

We, therefore, have to show that (A12) is, in-
deed, satisfied in our theory. The graphs which
contribute to C(g, a) in (A5) are shown in Fig.
24. Let us first take D=4. Then we know that

[r is also a function of t, but we know that for
large t it approaches the constant, (4.48), and
we are interested in the solution to (A9) for large
t. I The solution to (A9) is

The HGE for any Green's function contains an
additional P function which describes the change
of a as a function of E„:

id)

p. ( g, a) =&g&E„a(E~)

To first order in ~, P, is"
(A3)

(A4)64m'

and P, and g/n' are the same as in the theory
FIG. 24. Diagrams contributing to P&, which are of

second order in U and up to first order ing2.
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P, =Kig3, Ki&0 (A14) 0(t ) - lnt x positive constant. (A18)

and

1g'"'= 1/g" K,f
(A15)

a(t)- a —.K 1

K~ t' (A17)

For small a, the contribution of Fig. 24(a) to
C(g', a) is of the form ln(l/a) x(positive constant),
i.e., with (A17)

From (A4) and (A7) we obtain

t ~t
a(t) =e ' a+K» 2, dt' (K &0)

1 g'+K, t'

(A16)

i.e., for large t
C(t ) - const& 0. (A19)

Again, (A12) is satisfied. This demonstrates that
near D= 4 the presence of P cuts does, indeed,
not affect the existence of a pole in U(t) for
U~ Uc.

All other graphs of Fig. 24(a) yield contributions
of the form g' in't, but since g'-1/t [from (A15)]
they are much smaller than (A18). Hence, Fig.
24(a) gives the leading contribution, and inserting
(A18) into (All) we find that indeed (A12) is satis-
fied. When DW4, g' is of the order &=4 —Dand
Figs. 24(b)-24(c) yield contributions to C(f ) of
the order e. Therefore, for small &, Fig. 24(a)
still. gives the leading term whose large-t be-
havior is now
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