
PHYSICAL REVIEW D VOL UM E 12, NUMBER 12 15 DECEMBER 1975

Pomeron-Reggeon relationship according to the topological expansion*

G. F. Chew and C. Rosenzweig~
Department of Physics and Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720

(Received 21 July 1975)

The nature of the Pomeron and related effects are studied within the framework of Veneziano's topological
expansion. At the second, or cylinder, level it is found that no new poles are generated but that first-level

(planar) poles with I = 0 are shifted by the cylinder, the shifts being in opposite directions for positive and

negative charge conjugation. The planar f, in particular, is shifted upward and may be interpreted near t = 0
as the Pomeron —with couplings lying roughly midway between the ideal mixing of a planar f and an SU3
singlet. The Pomeron intercept and couplings (mixing coefficients) together with corresponding intercepts and

couplings for to, f', and P are semiquantitatively related through a single parameter to the properties of
p-A2. In the positive- t physical-particle region corresponding relations successfully correlate the breaking of
the Iizuka-Okubo-Zweig rule to the p-u mass difference. Comparison of the cylinder shift in this large-t
region to that near t = 0 reveals the phenomenon of "asymptotic planarity" —the cylinder perturbation dying
out rapidly with increasing t. It is pointed out that the small Pomeron slope as well as certain physical effects
attributed in field theory to asymptotic freedom are consequences of asymptotic planarity.

I. INTRODUCTION

The duality-diagram topological expansion re-
cently proposed by Veneziano' provides a potential
basis for understanding previously obscure as-
pects of hadron dynamics, including the constella-
tion of effects surrounding the term "Pomeron".
Veneziano discovered a small dimensionless pa-
rameter related to the number of conserved in-
ternal hadronic quantum numbers that allows the
hadronic S matrix to be topologically decomposed-
in such fashion that successive levels of increas-
ing topological complexity are plausibly of de-
creasing importance. The phenomenon character-
ized by the term "Pomeron" is absent from the
first level but promises to appear at the second.
Although the physical picture of the Pomeron giv-
en by the topological expansion is equivalent to
the diffraction model of Chan, Paton, and Tsou, '
the latter authors do not concern themselves with
any motivating small parameter and ignore a vari-
ety of Pomeron-related second-level considera-
tions. The object of the present paper is not only
to elucidate the Pomeron but to identify other as-
pects of the hadronic S matrix that arise through
the same topological second-level mechanism.
An abbreviated account of some of our results
has been given in Ref. 3.

Although the Pomeron discussed here is an ap-
proximate concept, it shares such a status with
all other physically useful notions. The topolog-
ical expansion, furthermore, provides a basis
for assessing the accuracy of the approximation
in terms of the motivating small parameter. This
paper does not address the slippery question of
whether the Pomeron intercept is exactly equal
to 1 or what may be the strict mathematical struc-

ture of high-energy asymptotic limits. Such ques-
tions are inaccessible to physical measurement;
physically answerable questions about the Pomer-
on all seem approachable through the topological
expansion.

Veneziano has characterized the first level of
his expansion by the term "planar" and the second
by "cyl.inder"; we shall adhere to this terminology.
The most interesting conclusion we reached is that
cylinder poles correspond to shifted planar poles
and not to a new set of singularities. The Pomer-
on and f trajectories, ih particular, turn out to
be one and the same. This unconventional identi-
fication, while clashing with some heretofore
cherished notions, does not conflict with experi-
mental facts. On the contrary, experiment sup-
ports the unified picture we achieve of the six
leading trajectories (f, p, A„os,f', p) and their
coupling —nondegenerate at the cylinder level but
mutually related through a well-defined pattern.
Our results together with those of Chan et al.4

are so successful with respect to experimental
data and their theoretical motivation by Veneziano
so attractive that we believe a major step forward
in hadron physics is being realized.

In the next section we review essential features
of the planar S matrix and proceed in Sec. III to
establish an integral equation for the cylinder cor-
rection. Section IV shows how the cylinder shifts
planar poles of both even and odd charge-conjuga-
tion symmetry without generating new singularit-
ies, features independently discovered by Schmid
and Sorensen' although interpreted by these authors
as pathological. Section V deals with the qualita-
tive behavior of the six leading planar trajectories
affected by the cylinder, and Sec. VI discusses
the qualitative viability of the proposed new pic-
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ture for these trajectories with respect to current-
ly available experimental information. Finally,
in Sec. VII we employ a simple explicit model to
emphasize the wealth of detailed physical content
present in the cylinder. One striking outgrowth
of this semiquantitative investigation is recogni-
tion of a connection with physical effects attributed
in field theory to asymptotic freedom.

II. THE PLANAR S MATRIX

The Veneziano topological expansion begins with
a planar approximation, defined through discon-
tinuity formulas that can be graphically depicted
in a plane. The idea of planarity enters in two
ways. First of all, at this level of approximation
the connected part itself is planar in the sense of
Harari-Rosner" duality diagrams. A five-line
connected part, for example, is a sum of compo-
nents each representable as shown in Fig. 1, where
i, j, . . . are quark indices for internal quantum
numbers. How many different values each index
is allowed to take (i.e., how many different kinds of
quarks need be included) and how much internal
symmetry exists may be left as open questions,
perhaps to be decided by the discontinuity formu-
las. The essential aspect of the quark lines is
that they correspond to the boundary of an orient-
able two-dimensional surface. The reader is cau-
tioned not to identify the planar approximation with
the tree approximation to the dual resonance mod-
el —which ignores branch points in connected parts
and keeps only poles. The planar S matrix is pro-
foundly dependent on the discontinuities across its
various branch cuts.

Where does the idea of a two-dimensional sur-
face arise? %'e have here an example of the "which
comes first (the chicken or the egg)'P" logic that
typifies bootstrap physics. Some information
about the hadronic S matrix must be taken from
experiment before analysis can begin, even though
all aspects of the S matrix are supposed ultimate-
ly to be determined by requirements of self-con-
sistency. Historically, Regge behavior and cross-
ing led through finite-energy sum rules to duality
and thence, with the additional information that

FK". 1. Quark diagram representing one of the order-
ings for a five-line connected part. The indices i, j, ...,
are quark indices for internal quantum numbers.

low-mass hadrons have low internal quantum num-
bers (absence of exotics), to the Harari-Rosner
two-dimensional diagrams. Later, however,
Veneziano' found an a Posteriori explanation for
the relatively small magnitude of nonplanar S-ma-
trix components, relating this smallness to the
existence of conserved internal hadronic quantum
numbers. (Veneziano employed a perturbative
framework for his reasoning that started from a
two-dimensional topology. ) Although it remains
to be seen whether discontinuity formulas demand
the presence of internal quantum numbers, such
a requirement is not out of the question. The re-
semblance between the planar S matrix and the
observed hadronic world may thus ultimately
emerge as a necessary consequence of self-con-

sistencyy.

The second way in which planarity enters the
picture —with more apparant dynamical content-
is through the products that prescribe the discon-
tinuities of planar connected parts. These pro-
ducts are planar in the sense of the example of a
four-line connected-part discontinuity given in
Fig. 2. The dots remind us that intermediate
states in the bilinear products correspond to
stable particles, while the plus and minus signs
indicate the side of the cut on which the product
member is to be evaluated. The essential charact-
er of the product —where there is no crossing of
lines —might be characterized as "strong order-
ing. " It is important that planar discontinuities,
so constructed, occur only in channels built from
adjacent lines, corresponding to the famous "rub-
ber sheet" property of the Harari-Rosner diagram
which guarantees consistency between the (inter-
nal) spectrum of singularities and the entering
(external) spectrum of particles Since .poles and
normal thresholds occur only in channels with
discontinuities, strong ordering limits such sin-
gularities to channels formed from adjacent lines.
Also implied by "planar unitarity" is the exchange
degeneracy of Regge singularities and thus the
absence from the planar S matrix of an isolated,
leading, even-charge-conjugation pole immediate-
ly identifiable as the Pomeron. Another important
feature is the absence of Regge branch points,
which do not arise until nonplanar discontinuity
products enter at the subsequent levels of the
topological expansion. We need consider Regge
singularities no more complicated than poles.
There is, however, no implication of strict linear-
ity for Hegge trajectories. The presence of nor-
mal threshold branch points precludes exact lin-
earity.

Assuming amplitudes to be determined by their
discontinuities (a key aspect of Regge asymptotic
behavior), the solution, if any, of the nonlinear
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FIG. 2. An example of a planar four-line connected-part discontinuity. The dots remind us that intermediate states
in the bilinear products correspond to stable particles, while + indicates the side of the cut on which the product mem-
ber is to be evaluated.

planar discontinuity equations may be taken as a
definition of the planar S matrix. Despite the ab-
sence of any proof that a solution exists, we are
anticipating the above-enumerated general proper-
ties which any solution of the planar equations
must possess.

The degree of arbitrariness permitted to the
planar S matrix by its nonlinear constraining
equations is a question of prime importance. For
example, there is the question of how arbitrarily
the internal quantum numbers may be assigned,
or we may ask about the trajectory intercepts
and residues (see Refs. 2 and 8—10). Despite
their obvious importance these are not issues
considered in the present paper, which concerns
itself with the relation between the planar approxi-
mation and the first correction thereto. We make
the assumption, following Veneziano, that the
leading planar Regge poles bear a recognizably
close correspondence with the two leading nonets
of roughly exchange-degenerate physical trajector-
ies (p,f, &u, etc.). The question to be studied here
is how the Pomeron manifests itself in a systema-
tic first correction to the planar approximation.
More specifically, how is the Pomeron related to
the leading planar trajectories? The answer to
this question unavoidably has much to say about
physical trajectories other than the Pomeron.

III. AN INTEGRAL EQUATION FOR THE CYLINDER
CORRECTION TO THE PLANAR S MATRIX

The intermediate-state counting rules that justi-
fy the planar S matrix as a starting approximation
lead to a comparably simple prescription for the

first correction thereto. After the planar compo-
nents, the next most important terms to include
in a bilinear discontinuity product are those where
matching changes of line ordering occur in the two
members of a product. At this level of approxi-
mation each product member is itself planar and
changes in order can be represented by a twist
notation, as illustrated in Fig. 3. The first cor-
rections to a planar discontinuity product such as
that shown in Fig. 4 are then given by terms of
the form in Fig. 5, the twists on the two sides
of the "ladder" always matching in position. It
is important to recognize that all such terms
share the topology of a cylinder, although the
twist notation is better suited to relations that
must be expressed on a plane sheet of paper. We
shall refer to the sum of all terms of the type
shown in Fig. 5 as the "cylinder discontinuity. "
That such an entity might be associated with the
Pomeron in a dual unitarity scheme was proposed
many years ago." " The reader, however, is
cautioned not to interpret pictures such as in Fig.
5 in the perturbative sense (eighth order in some
coupling parameter) in which such diagrams have
often been used in the past. Their meaning here
derives only from topological considerations.

An essential aspect of the topological expansion
is illustrated by the products in Fig. 5. Compar-
ing to the planar product in Fig. 4 one sees that
fewer intermediate states occur in the cylinder
products in Fig. 5, the triple sum over internal
indices having been reduced to a double sum. Pro-
vided that twists occur in matched pairs, one may
easily verify that any cylinder product —indepen-
dent of the number of twists —has one fewer sum

m, m', m g ~[
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FIG. 3. A change in order of a five-line connected
part represented by a twist. FIG. 4. A planar discontinuity product.
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FIQ. 5. Four examples of the first corrections to the planar discontinuity product shown in Fig. 4.
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FIG. 6. A diagrammatic representation of the infinite
series which generates the complete cylinder discon-
tinuity of the four-line amplitude. The object contained
within the dotted line box represents the cylinder oper-
ator Cg.

over internal indices than the corresponding plan-
ar product. The over-all cylinder discontinuity
thus tends to be smaller than the planar discon-
tinuity by a factor of the order of 1/N, where N
is the number of different values assignable to
an internal index (i.e., the number of different
quarks). Different values of the internal index
contribute different proportions of the sums over
intermediate states (e.g. , index values carrying
zero strangeness are quantitatively most impor-
tant), so the 1/N estimate is not precise. With
SU„symmetry it can be shown that the cylinder
couples only to the SU„singlet; the 1/N factor
then merely reflects the relative weight of this
singlet representation. (We wish to thank G. Ven-
eziano for correspondence about this point, which
often causes confusion. ) Veneziano showed that
products more complicated topologically than the
cylinder lose further sums over internal indices
and should correspondingly be even smaller, the
expected order-of-magnitude reduction factor
being (1/N) when m internal sums are lost

Although any nonzero number of twist-pairs is
topologically equivalent to a single twist-pair, a

meaning can be given to separate diagrams of the
type shown in Fig. 5 by associating each in multi-
peripheral fashion with a region of phase space
where the momentum transfer across each twisted
link is small. If the major contribution arises
from such regions —without important overlap-
the complete cylinder discontinuity may be sche-
matically represented as the series in Fig. 6 if
a meaning can be found for "sewing" together
adjacent planar discontinuities across a pair of
twisted links. It is plausible that the required
meaning can be achieved through the helicity pole
expansion that has been used to decompose inclu-
sive cross sections, the twist merely replacing
a Regge-link physical signature factor e '"+ 1
by a factor l. Chan et al.' have, in fact, sug-
gested that the successive individual terms of
Fig. 6 be interpreted physically at t=0 as pro-
portional to the partial cross sections for produc-
tion of successive numbers of "multiperipheral
clusters" —each cluster corresponding to a com-
plete planar discontinuity. Although we shall not
attempt in this paper to develop a detailed helicity-
pole representation of the twisted links, we take
for granted that such a representation can be
found —making the series in Fig. 6 meaningful.

Given such an assumption we can transform our
products into the J plane by standard projection
techniques. "~" An analogous problem has been
solved for multi-Regge models, showing that each
separate discontinuity in a chain of the type shown
in Fig. 6 is to be evaluated at the common values
of J and t attached to the entire chain. Since for
the purposes of the present paper we do not need
the detailed Regge-index labeling of the planar
discontinuities, we refer the reader to Refs. 16
and 17 for examples of how the nondiagonal labels
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may be chosen and then summed and integrated in
forming the product of adjacent discontinuities.
Although approximations are sometimes introduced
in handling the phase space of multi-Regge models,
the J-plane projection requires no approximation—
resting on no more than Lorentz invariance. Such
a projection makes easier the task of formulating
an integral equation.

It may be seen from Fig. 6 that the cylinder com-
municates along its axis only with states carrying
zero additive quantum numbers —states that may
be classified by a single quark index together with
an orientation. We may have, that is, either

or
2

As the quark arrows indicate, if two states are
equivalent except for this orientation they are
charge conjugates of one another. Introducing
the notation of a twist operator C, corresponding
to the box in the second term of Fig. 6, it follows
that a single application of C, on a state of one

orientation produces a superposition of states of
the opposite orientation.

A planar discontinuity that participates in the
cylinder chain is supposed to be decomposable
into simple Regge poles; see Fig. 7 where the
index y labels the sequence of poles corresponding
to quark type i. We may attempt to use these
poles as the basis for a Hilbert space. Each such
pole carries an orientation, even though in the
planar S matrix the two orientations are equivalent
(a manifestation of exchange degeneracy), and we
have noted that the twist operator reverses the
orientation. It is then natural to construct a space
of states that are symmetric or antisymmetric
combinations of the two orientations. The symme-
tric states are even under charge-conjugation (C
=+) while the antisymmetric states are odd (C=-).
The twist operator C, does not mix states of oppo-
site charge-conjugation symmetry, and corre-
sponding matrix elements of C, in the two sub-
spaces have the same magnitude. The relative
sign of C, is, however, opposite in the two sub-

l

y L
I

FIG. 7. The decomposition of a planar discontinuity in-
to a sum over Regge poles. The index y labels the se-
quence of poles corresponding to the quark type i.

spaces. That is,

C, =-C,+. (3.1)

=P +PC, A. ,

with the formal solution,

A. = (P-' —C,)-'.

(3.2)

(3.3)

Even though this closed form is only schematic, it
facilitates an extremely important inference to
which we now' turn attention.

IV. SHIFT OF PLANAR POLES COMMUNICATING

QITH THE CYLINDER

Where are the poles of A —the sum of planar
and cylinder components? To approach this ques-
tion let us split the space based on planar poles
into two subspaces according to a criterion of
"communication" with the twist operator. Com-
bining the two indices i and y into a single index
n and designating a planar basis state by (n), we
define a superposition (k) of basis states as non-
communicating if C,~k) =0. (For example, when
there is SU„symmetry, the only irreducible re-
presentations that communicate are SU„singlets. )

Using planar Regge poles (of well-defined C) as
a basis we are now in a position to formulate an
integral equation for the cylinder correction to
the planar 8 matrix. Focusing on the t channel
(along the axis of the cylinder), the problem sche-
matically is that of summing the series of Fig. 8,
where it is understood that there are separate
series for even and odd charge conjugation. By
attaching appropriate residue factors at left and

right and summing over planar poles, as in Fig.
7, the physical discontinuity may be constructed
from the series in Fig. 8, but the analysis will
be simplified if such "end effects" are deferred
until the final stage of the calculation. The most
essential questions concern the interior of the
cylinder, not the ends.

Although the cylinder correction is constituted
by all terms of Fig. 8 beyond the first, it is con-
venient to study the sum of planar and cylinder
contributions, i.e., the entire series. Thinking
of linear operators in the space of planar Regge
poles, at fixed values of J and t as well as definite
charge conjugation, the leading term of Fig. 8 may
be described as a diagonal "propagator" and de-
signated by the symbol P (P sug. gests both "plan-
ar" and "propagator. ") Assuming the kernal C,P
to be Fredholm (acting on an arbitrary state, it
leads to a normalizable superposition of states),
the entire series may be written as an integral
equation

A. =P +PCzP+PCjPC jP +' ' '
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FIG. 8. The series representing the sum of the planar Regge pole a& plus the cylinder correction thereto. The
t

series is formally summed via the integral Eq. (3.2).

By a standard procedure two complementary sub-
spaces may then be identified, one containing only
noncommunicating states while, within the other,
all possible superpositions communicate with C, .
Within the former subspace the cylinder has no
effect and A =P, while within the latter subspace
C, has no zero eigenvalues and thereby possesses
an inverse.

By construction the planar poles reside in the
propagator P while the twist operator Cy built
from planar residues, contains no poles. Within
the noncommunicating subspace the poles of A. are
evidently the same as the planar poles of P, but in
the communicating subspace Eg. (3.3) tells us that
planar poles are uniformly absent from A. That
is, P ' tends to zero (i.e., to the null operator)
as 4-u„so A tends to the finite limit —C, '. In
other words, the cylinder correction annihilates
all planar poles that communicate with the cylind-
er.

At the same time the sum A develops new poles
at points where

det(1 —C,P) = 0, (4.1)

and by examining the limit of small C, one finds
the familiar quantum-mechanical adiabatic rule
that the new poles are in one-to-one correspon-
dence with the original planar poles. The cylind-
er thus may be considered as a perturbation that
shifts those planar poles with which it communicates,
without generating new poles.

It is straightforward, in fact, to derive from
(4.1) a, familiar-looking perturbation expansion
for the shift of a trajectory originally at z„:

(n[C, [n')(n'[ C,[n)
n 1 &n —n&

(4.2)

Here we mean by ~n) a state in the cylinder-com-
municating subspace —which may be a superposi-
tion of the original planar states if there is de-
generacy of the latter. Note that because C,
= —C~+ the first-order shift of an even charge-con-
jugation trajectory is opposite to that of the cor-
responding odd charge-conjugation trajectory al-
though, to the extent that second- and higher-or-

(n "[ft„[n')=g"„„g"„., (4.4)

but a mixing has been introduced —given to lowest
order by the familiar-looking formula

(n /C, [n)
gn ™ ~

n'&n &n &n'
(4.5)

In Sec. VII we discuss a nonperturbative calcula-
tion of the shifts in trajectory and residue when
the cylinder coupling bebveen only a small number
of planar poles is included. Near t =0 the shifts
turn out to be sufficiently large that it is worth
going beyond the lowest order of a weak-coupling
expansion but the qualitative picture at t =0 can
still be described as a perturbation. In any event
the magnitude of the cylinder shift depends upon
t and, as discussed below, the shift becomes ex-
tremely small for t a1 GeV'. The one-to-one con-
nection between shifted and unshifted poles is
therefore guaranteed to be unambiguous if traced
to the region where physical particles appear on
Hegge trajectories.

V. THE LEADING PLANAR TRAJECTORIES
AND THEIR CYLINDER SHIFTS

For t near 0 and Oa Js 1 it is believed that for
each charge conjugation there exist three planar
trajectories. These correspond to the conserved
internal quantum numbers, electric charge and
strangeness, a possible way of attaching the quark
index i to the quantum-number combinations being

der terms in the expansion (4.2) are appreciable,
there will be an asymmetry in the magnitudes of
upward and downward shifts. In any event, ex-
change degeneracy is lifted.

At the same time that the cylinder shifts the
position of a planar trajectory there will be a
modification of residue. In the original planar
basis the residue matrix for each pole is (by con-
struction) of the form

(4.3)

After the cylinder shift, the residue of each pole
is still factorizable:
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as follows:

1 0 0

2 1 0

3 0 1

Nothing is gained by employing fractional charge
and strangeness so long as we do not attempt to
consider baryon number. Making integral assign-
ments may help to emphasize that the boundary
lines of dual diagrams are not equivalent to the
quarks in naive models. To understand the ex-
perimental significance of the cylinder shift of
these trajectories, it is essential to consider
SU, and SU, symmetry, because it will turn out
that the shift is larger than the breaking of SU,
symmetry (at least near t =0) but smaller than

8U3 symmetry

breaking�.

SU, symmetry makes
i=1 equivalent to i=2 while SU, symmetry makes
all three values of i equivalent to each other. For
our purposes it is appropriate to impose the form-
er condition but not the latter.

Labeling the three leading planar trajectories
by the quark index i=1, 2, 3, those two correspond-
ing to i= I and 2 (no strange quark) will thus be
taken as degenerate at u, (t), while the third
(strange quark) trajectory will be designated as
n, (t). Symmetric and antisymmetric combinations
of i =1 and i =2 correspond to I =0 and I =1, re-
spectively, and since, with SU, symmetry of pole
residues, the twist operator C, is symmetric
under 1 2 interchange, the cylinder communi-
cates only with I =0 and the I =1 trajectory under-
goes no cylinder shift. Neglecting nonplanar
shifts of order higher than the cylinder, we are
then led to identify the planar trajectory no(t) with
the physically observed exchange-degenerate p
and A, trajectories (We e.mphasize once again
that planar trajectories are not required to be
linear. ) An unambiguous base is thereby secured—
from which all shifts may be measured.

There is unfortunately no such direct way to
fix a, (t) (which is purely I =0). It is empirically
observed, however —from the near degeneracy of
&u and p masses, as well as f and A, masses —that
for ta1 GeV' the cylinder shift is small. We may
confidently assume, therefore, that the conserved

p and f ' particles lie close to the (strange-quark)
planar trajectory n, (t), and one thereby finds an
interval of about 0.4 in J between o.,(t) and a.,(t)
in the region of moderate t, with the former (non-
strange quark) trajectory lying higher. The origin
of this substantial gap remains unknown, but the
fact that a, & no does not contradict any tenets of
the topological expansion. Conceivably, the gap

I 5—

jo—

+o=P,Ap~
O.5—

a~
3

0
I

0.5
1

I.o
t (GeV~)

I

1.5 2.0

FIG. 9. The leading trajectory pattern after the cylin-
der correction has displaced the I =0 states. The scale
of the t =0 splitting shown here is fixed by the choice
txp —(x3 =0.37q cEp —%~=0.14.

may turn out to be a consequence of planar unitar-
ity when the full content of this nonlinear and dif-
ficult-to-analyze constraint becomes understood.
The fact that n, =o., simplifies our task and must
be recognized in confronting the data but neither
SU, nor SU, symmetry is essential to the topologi-
cal expansion.

Let us now consider how the four leading I =0
planar trajectories —two of each charge conjuga-
tion —are shifted by the cylinder. Recall that the
leading pair has a common trajectory n, (t)—de-
generate with the physical p-A, trajectory. The
positive charge-conjugation member of this pair
we call f while the negative charge-conjugation
member we call e, since the physical f(2+) and

~(I ) particles lie close to o.o(t). Which goes up

and which goes down as a result of the cylinder
shiftg'

At t =0 the positive definiteness of the discon-
tinuity products from which we started translates
unequivocally into an ujuaxd displacement for the
leading trajectory of even charge conjugation.
Thus f moves above p-A, while ~ moves below,
the upward displacement according to (4.2) being
larger in magnitude than the downward. If SU,
symmetry were exact, i.e., if o., =z„ it can be
shown that there would be no downward shift of
the + at all. This point is illustrated in Sec. VII.
The shifted f at t =0 thus plays the role of the
Pomeron, while the same cylinder mechanism
that endows the Pomeron with its special promin-
ence breaks p-& degeneracy —pushing ~ down, al-
though not as far as f is pushed up.

What is happening to the pair of Regge poles,
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f ' and P, associated with strange quarks, whose
planar trajectory is a, (t)—about 0.4 units of J
below no(t)? To the extent that SU, symmetry has
any meaning (see Sec. VII), the even charge-con-
jugation trajectory is again shifted upward. Thus
we expect the physical f ' to lie above o., and the
physical P to lie below, the over-all descending
order of the six leading trajectories being f,
p-A„&u, f ', P. A semiquantitative estimate of
the various intercepts is given in Sec. VII. (See
Fig. 9.)

The residues of the four I =0 poles are also
modified by the cylinder. The mixing given by Eq.
(4.5) means that the physical f (the Pomeron) will
possess some strange-quark content, as does the
physical &o, even though the planar f and u are
purely nonstrange. The p and A, trajectories, on
the other hand, mill continue to have purely non-
strange quark content, while f ' and P will acquire
a nonstrange admixture into their predominantly
strange-quark character. Detailed predictions
are given in Sec. VII. Here we remark only that
the couplings predicted for the physical f turn out
to be entirely compatible with those observed for
the Pomeron.

VI. VIABILITY OF THE POMERON-f IDENTITY

The identity of Pomeron and f is not commonly
assumed in Regge phenomenology; the standard
picture contains an f, exchange degenerate with

p, ~,A„plus a Pomeron whose intercept is about
0.5 units higher. Since the standard picture has
worked well, the reader may be skeptical that
the picture presented here can be experimentally
viable. Although we have not investigated all pos-
sible confrontations with data, me dram comfort
first of all from the extensive studies of Dash"
and collaborators' who successfully fitted large
quantities of moderate-energy scattering measure-
ments with a single high-lying Regge vacuum-type
trajectory. A recent analysis of total cross sec-
tion data within the even more restrictive frame-
work described in the following section of this
paper gives us further encouragement. At the
present time we are unaware of experimental
facts that conflict with our picture, although, as
explained in Appendix B, measurement of mm total
cross sections in the few-GeV region may distin-
guish our picture from the conventional one.

An important aspect of the detailed predictions
in the following section (see also Ref. 3) is their
compatibility with a set of Pomeron coupling
rules proposed by Carlitz, Green, and Zee (CGZ)"
and known as the "f-dominated" Pomeron. 2"

These rules have been strikingly successful but
their motivation as presented by CGZ left obscure

the status of the physical f. Our approach not
only yields the CGZ rules while clarifying the
posture of the f but gives a corresponding set of
rules for all six leading trajectories. From the
standpoint of om analysis, in fact, it might be
appropriate to speak of a "p-dominated Pomeron, "
since physical Pomeron properties can in our
model be predicted from those of the physical p.
(We are indebted to Chan Hong-Mo for this re-
mark. )

What is the relation between our picture and that
given by the conventional weak-coupling expansion
of dual resonance models (DRM)?" 23 The lowest
order of the latter —the so-called tree approxima-
tion —has many features in common with the plan-
ar 8 matrix, while at the next order a nonplanar
loop appears —with the topology of a cylinder.
This nonplanar loop introduces a new singularity
not present in the tree approximation, that tenta-
tively has been identified with the Pomeron. How

can we reconcile this conventional picture with
that based on the topological expansions

First of all, a weak coupling expansion is in-
advisable according to considerations explored
by Veneziano, Chan, and collaborators, ' "who
showed that unitarity together with Regge behavior
determines the magnitude of the coupling. If ar-
bitrarily weak coupling is excluded, results from
the conventional expansion must be regarded with
skepticism. Secondly, the new singularity that
appears in the nonplanar dual loop has in all mod-
els to date been a pole only for an unphysical num-
ber of space-time dimensions. The pole intercept,
furthermore, is at J = 2, not J = 1. In four dimen-
sions the new singularity is a branch point lying
well below 1. It is only an optimistic conjecture
that, as the dual model improves, the loop singu-
larity will not only survive but will have proper-
ties close to those of the physical Pomeron.

On the other side of the coin, we have here
failed to prove that in the topological expansion
nem singularities do not arise at the cylinder
level —having begged the question by assuming
the cylinder kernel to be Fredholm. It is probable
that an infinite sequence of Regge poles (daughters)
is needed to satisfy the planar discontinuity condi-
tions, and the nondiagonal variables in our inte-
gral equation (e.g. , Reggeon helicities and mass-
es) span an infinite domain; so there is room on
several counts for new singularities to appear in
the solution of the equation. We see no reason,
however, for such singularities to appear near
the top of the J spectrum. Since estimates of the
upward shift of the f place its physical intercept
in the neighborhood of J=1,4 and since the origin
of this shift is precisely the unitarity (diffractive)
mechanism associated with the Pomeron, we feel
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identification of Pomeron with f to be compelling.
We remark finally that if, after all, a brand

new pole with vacuum quantum numbers is gen-
erated by the cylinder, it will be difficult to avoid
a corresponding (even though lower-lying) odd-
charge-conjugation pole. This point has been dis-
cussed by Freund and Nambu, "who stress the
necessity in the conventional picture of finding a
particle like the u but slightly more massive.

VII. A SIMPLE MODEL FOR THE CYLINDER

Having developed a technical framework for the
cylinder level of the topological expansion and
recognized the broad implications thereof, let us
now take a more concrete look at the situation.
The model described in this section employs two
supplementary simplifications: (1) neglect of the
influence on the leading six trajectories from low-
er-lying trajectories, and (2) assumption of SU,
symmetry for the matrix elements of the twist op-
erator C, between the six leading states.

The accuracy of the first assumption —that of
nearest-neighbor dominance —can ultimately be
checked, since all matrix elements of C, are de-
terminable from the planar 8 matrix. We have,
in fact, identified and will discuss elsewhere cer-
tain interesting influences on leading trajectories
by trajectories lying just below the top six, but
we have found nothing to undermine the familiar
phenomenon that the greatest influence on a state
arises from nearest neighbors. The second as-
sumption —assigning all SU, -symmetry breaking
to the planar propagator via the difference between
np and n, —is based on the belief that planar
Regge-pole residues should be relatively more
symmetric than are pole positions. The corre-
sponding assumption in Breit-Wigner data fitting
has been strikingly successful —reduced widths
showing substantially more accurate SU, symme-
try than do resonance energies (masses). The dif-
ference between zp and a, will inevitably induce
some symmetry breaking in the matrix elements
of C„but the effect is less important than in P—
where all J singularities have been concentrated.
. For the I =0 subspace we then have

—Qp

0
1z-.,)

„(2 W2l

(v2 1 f

(7.1)

where O.p, n„and k are each functions of t, while

for the noncommunicating I = 1 subspace

P 1
C,' =0.J np

(7.2)

The leading six trajectories are thus described
by three parameters at each value of t. The param-
eter 0, as well as np and ~„ is determined by
the planar S matrix (e.g. , from planar triple-
Regge couplings) and has in effect been so cal-
culated at t =0 in Ref. 8, but we shall here regard
0 as a free parameter —to be fitted to experiment.
As will be seen in Appendix B, our value at t =0
accords satisfactorily with the calculation of Ref.
8.

Readers experienced with multi-Regge dynam-
ics may be puzzled by. the absence from C, of fact-
ors (t —u, ) ', where o., is proportional to the sum
of the helicities in the two-Reggeon connecting
loop. It is necessary in this regard to remember
that the planar amplitude in avoiding Regge cuts
has zeros in triple-Regge vertices precisely ar-
ranged to cancel such singular loop factors. Ex-
ponential factors in the propagator P are some-
times included in multiperipheral models so as to
represent threshold effects but when our model is
expanded to encompass complex poles in the plan-
ar Regge spectrum, we automatically will be tak-
ing threshold effects into account. The inconsist-
ency of including an exponential factor in P would
then be apparent. Our neglect of threshold com-
plications may thus be viewed as compatible with
our particular truncation of the planar spectrum.
To summarize, we believe that the simple J de-
pendence takenin (7.1) is defensible.

The model embodied in (7.1) and (7.2) may be
viewed as a refined version of a model proposed
several years ago by Lee." Our improvements
are (1) recognition of the cylinder as the second
level in a systematic expansion, (2) avoidance of
unnecessary and unjustifiable kinematic approxi-
mations of the Chew-Pignotti type, by working in
the J plane, and (3) inclusion of SU, -symmetry
breaking. Point (1) allows us to see that awkward
terms in the discontinuity product, neglected by
Lee without justification, in fact correspond to a
level of the topological expansion beyond the cylin-
der and are correspondingly smaller by factors
1/N. We furthermore separate the simple pertur-
bative problem of the cylinder shift from the far
more difficult bootstrap calculation of planar pa-
rameters. In Lee's model the planar and cylinder
levels were treated as parallel.

It is straightforward to solve the integral equa-
tion (3.2) with the simple forms (7.1). The reader
will recognize our problem is that of diagonalizing
a 2x2 mass matrix in the presence of an interac-
tion. Shifts in trajectories are equivalent to shifts
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Qf = Qp+2k+

Qfi —Q3+k—

2k
+ ~ ~ ~

Qp —Q3

2k'
+ ~ ~ ~

Qp —Q3

(7.3')

in accord with the perturbation formula (4.2),
whereas in the limit where Q, —Q, is small com-
pared to k one has

of masses, and one finds two new even charge-con-
jugation eigenvalues corresponding to the trajec-
tory positions

of fl —2fn.,+n, +3k+[(n, —a,, +k)'+8k'j'

(7 3)

while the two new odd charge-conjugation trajector-
ies (to and Q) are given by a similar formula with

k replaced by —k. It is easy to verify that if k is
small compared to o., —o,„expanding (7.3) yields

I f)= cos9'I0)+ sin6'I 3),

I f '& = —s intI'I 0&+ cos O'I 3&,

(7.5)

where by straightforward calculation

further than m moves down may be attributed to
these symmetry considerations or alternatively
one may appeal to the notion of level "repulsion"
and observe that all lower trajectories tend to
push up the highest trajectory. Since the self-in-
duced shift of each even charge-conjugation tra-
jectory is upward, the self and mutual shifts here
reinforce, but for the leading trajectory of odd

charge conjugation the self-shift and the mutual
shift tend to cancel.

If we designate the original I =0 planar basis
states by I 0) and I 3), corresponding to the trajec-
tories Q, and Q„respectively, the two new states
of even charge-conjugation are

Qf s (2Qo+ 03) + 3k,

Qf i - 3(Qo+ 2(x~) . (7.3")
2+ v8k

Qp —Q3+k
(7.6)

The corresponding formulas for the odd charge-
conjugation trajectories are

Q =Q —2k+ +'''
(d 0

0 3

2k'
+ ~ 0 0

Qp —Q3

for weak cylinder coupling and

o. =-', (n, +2m, ),
o.e = —,'(2o.,+ u, ) —3k

(7.4)

(7.4')

for cylinder couplings larger than SU, -symmetry
breaking.

Although at first sight it looks strange in the
latter case that Q and Qf not only are equal but
are independent of k, we recall that with SU, sym-
metry the cylinder couples only to SU, singlets.
It is easy to show that in the symmetry limit u
and f' become members of octets and so do not
communicate with the cylinder. In the same limit

f and P become pure singlets and communicate
maximally. he important fact that f moves up

At the same time the odd charge-conjugation states
I to) and

I P) are given by corresponding formulas
with a mixing angle 8 determined from Eq. (7.6)
with k replaced by —k. For many purposes the
following alternative mixing-angle formulas are
more convenient:

tan0 Gf —CRo 0 2 (txf i —Q~)

W2 (nf —o.,) nf, —txo

Q~ —
ciao v 2 (Q e —otg)

W2 ((1~—czs ) cx s —Qo

(7.7)

The foregoing form for tan8' corresponds to that
proposed by Carlitz, Green, and Zee if one under-
stands Qf to be their Pomeron trajectory, while

Q, and Q, are the trajectories which they called
f andf'"

Following CGZ we may use Eqs. (7.7) (see Ap-
pendix A) to compute ratios of various Reggeon-
particle couplings in terms of ratios of trajectory
displacements. We present a representative sam-
ple of these ratios in Table I. Note that we are
now able to calculate many more ratios of cou-
pling constants, all with the same general form.

TABLE I. V", is the coupling of Reggeon x st the aa vertex.

& (o) —~, (o)
~.(o) —0'3 (o) ~

Ratio 7Hf
f

717

2+H

7%P
2+H

P

Formal expression
1+ Pf

2
(1+ rf )coso+ (1—r~) cos 0
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An illustrative numerical application of our
simple model is presented in Appendix 8 where
we review experimental facts about total cross
sections, all of which are consistent with k(t = 0)
lying between 0.1 and 0.2. Even this weak cylin-
der coupling is sufficient to give the f (Pomeron)
a dominant position and to force its couplings to
lie roughly midway between those of an SU, sin-
glet and those of an "ideal" mixture like the physi-
cal f particle. Such a Pomeron might well be de-
scribed as "schizophrenic" although not quite in
the same sense as proposed by Chew and Snider. "

Our simple model allows trajectory and cou-
pling shifts to be determined by a single parame-
ter at each value of t, not just at t=0. Thus,
mass differences between physical particles (e.g. ,

p and &u) allow the determination of k at appropri-
ate nonzero positive values of t and Eqs. ('l. 't) be-
come predictions for mixing angles (e.g. ,
or f,f ' mixing). (We have defined 8~ such that
these angles are rotations toward zero away from
the ideal quark mixing angle arccot&2 )We. are
thereby led to recognize that the symmetry-break-
ing phenomena discussed by CGZ at t =0 for the
I'ome~on is but one manifestation of a general
mechanism which is also responsible for viola-
tipn, pf the rule pf Ij,zuka, Okubp, and Zweig 8

for Physical Particles (IOZ rule).
In Appendix B it is found that for ta1 GeV' the

value of k lies between 0.01 and 0.02—much small-
er than at t =0. We find this empirical fact strik-
ing. The phenomenon that as t becomes more posi-
tive the cylinder correction becomes smaller and
the planar approximation better shall henceforth
be referred to as asymptotic planarity. In prin-
ciple this decrease in magnitude should be pre-
dictable from a knowledge of the planar S matrix
(triple-Regge couplings), but no explicit calcula-
tion has yet been performed. We nevertheless
draw encouragement from the following consider-
ation: A small slope for the Pomeron trajectory
at t = 0 is implied by the rapid decrease of k(t).
That is to say, if the displacement of f (Pomeron)
above p shrinks to a tiny magnitude by the time

ap reaches 4=1, the height of ef at t= m&' cannot
be much above its height at t =0 (see Fig. 9). Con-
versely, generation from the planar S matrix of
the small Pomeron slope at t =0 implies a content
within planar amplitudes that will produce a rapid
decrease of k(t) as t grows. The success of Ref.
8 in calculating the Pomeron slope is therefore
encouraging to the prospect of understanding
asymptotic planarity.

Many of the physical effects associated with the
cylinder kernel have recently received attention
in quark models where they are associated with
gluons. Low" has proposed a model where the

Pomeron is conceived as arising from gluon ex-
change. Appelquist and Politzer" have discussed
the validity of the IQZ rule also within the quark-
gluon framework. We find it striking that both in
the latter model and in our topological framework
the validity of the IOZ rule depends on character-
istic couplings becoming weaker as t (or m ) in-
creases. In the field theoretical approach gluon
coupling constants become small (asymptotic free-
dom) while in the S-matrix approach cylinder cou-
plings k(t) become small (asymptotic planarity).

The prospect that physical effects attributed to
gluons are to be understood through properties of
the planar S matrix increases dramatically any
estimate of the ultimate impact on particle physics
by the topological expansion.
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a 5 g~P
Cabg ~ Za~gb~gc'~a'b g (A1)

APPENDIX A: CROSSING SYMMETRY

AND PHYSICAL AMPLITUDES

As in standard DRM, the complete planar N-
line connected part is obtained by summing over
the —,'(N —1)! inequivalent external line permuta-
tions of an ordered N-point function of the type
shown in Fig. 1. (Two permutations are equiva-
lent if related by a cyclic or an anticyclic permu-
tation. ) Similarly at the cylinder level, in order
to satisfy crossing symmetry one must sum over
several cylinder configurations, although in the
text we concentrated on one discontinuity of a
particular cylinder. We were justified in so doing
insofar as we were studying individual Regge
poles. Here we explain how physical crossing-
symmetric amplitudes are to be constructed from
the primitive planar and cylinder discontinuities
discussed in the text. We begin with the construc-
tion of a physical three-Reggeon vertex, which
will include the "end effects" referred to in Sec.
III. In appropriate pole-dominant limits where
branch points are unimportant, we are then in a
position to construct physical connected parts.

Suppose we are given the (planar) coupling G~~,
between three planar Regge poles. What is the
corresponding coupling between cylinder-shifted
poles? In terms of the cylinder mixing coefficients
g„, the answer is evidently
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a straightforward rule that accomodates the con-
sistent cylinder renormalization of both "internal"
and "external" particles. Crossing symmetry is
assured.

The construction of the planar couplings G,&,

for states of well-defined isospin and charge con-
jugation has been discussed recently in Ref. 5,
which develops the relation between Chan-Paton
factors and the quark-line boundaries of the planar
dual diagram. We have nothing new to propose in
this connection.

As an example of the use of (Al) let us consider
the couplings that control the ratio of high-energy
total cross sections of + and Q. These would be

G&&z and G z, where each of the P(&o) trajector-
ies is taken at t=m@'( m') while the f (Pomeron)
is taken at t=0. In the approximation of Sec. VII
we have the following nonvanishing mixing coeffi-
cients to consider:

g~ =g@= cos8

gy = cos8

gf~, = sine'.

(A2)

G f cos' 8 cos 8+G„ f + sin' 8 sino+ G @@f

(A4)

If SU, symmetry is assumed for the planar cou-
plings, one has additionally the condition

G yyyt —W2G~~f p (A5)

The corresponding nonvanishing planar couplings
are G&z and G„&, so from (Al) we have

G@@z=cos'8 sin8'G&@f +gin'8 cos8'G

(A3)
and

so

G+~q icos'8 (t=mz') sin8+(t=0)+sin'8 (t=m+') cos8'(t=0)
G ~z cos'8 (t=m„') cos8+(t=0)+csin'8 (t=m„') sin8+(t=0) ' (A6)

To the extent that 8 is negligibly small at t =m&',
m ' the ratio reduces to &2tan8+(t =0)—the result
of Carlitz, Green, and Zee. The ratios listed in
Sec. VII are obtained in a similar fashion.

To construct an amplitude from discontinuties
one must add the contribution from right and left
cuts. Not surprisingly, when this is done for both
cylinder and planar discontinuities one finds the
usual signature factors for shifted Regge poles.
For example, the f (Pomeron) contribution car-
ries a factor exp(- i 7taz)+1, while the e contri-
bution carries a factor exp( —isa„)-1.

Cylinders along the s and u axes have not been
considered here. With respect to the J plane for
the t channel, these cylinders give rise to Regge-
Regge cuts with the Finkelstein" selection rules
(allowing certain exotics), but such cuts lie below
those singularities that have received attention in
this paper.

APPENDIX B: PRELIMINARY CONFRONTATION
WITH MODERATE-ENERGY DATA

For two different reasons we confine attention
to moderate energies: (1) Terms beyond the cylin-
der in the topological expansion increase in im-
portance with energy. Pomeron-Pomeron and
Pomeron-Reggeon cuts, in particular, have not
yet appeared by the cylinder level —carrying ad-
ditional 1/N factors —but such cuts are neverthe-
less expected to increase in relative magnitude

with energy and ultimately to play a significant
role. (2) Confinement of attention to the six lead-
ing trajectories ignores degrees of freedom like
baryon number that go beyond charge and strange-
ness. At energies sufficiently high to excite such
additional degrees of freedom the simple model
of Sec. VII requires extension. In particular, the
experimental fact that total cross sections begin
to increase at higher energies is not representable
by the six-trajectory model. Inclusion of addition-
al high-threshold degrees of freedom, such as
baryon number, can accommodate the rise with-
our altering the moderate-energy prediction"'"
(the cylinder coupling with lower-lying trajector-
ies can push the f above J= 1.), but before making
a serious study of such threshold complications
we thought it worthwhile and instructive to con-
front the simple model with moderate-energy
data.

This preliminary analysis takes its parameters
to accord with op(0) =0.57+0.01 and o. (0) =0.43
+0.01 as determined from total cross section dif-
ferences between 4 and 200 GeV." These inter-
cepts are consistent with data confined to ener-
gies where baryon-antibaryon production is neg-
ligible, but the displacement o. (0) —o. (0) is not
accurately determined from such energies. This
displacement we use to set the scale of the cylin-
der shift at t=0.

A first question is whether such a modest down-
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ward shift of cu can be compatible with the sub-
stantial upward f-shift needed if the f is tobe
identified as the Pomeron. In this connection the
precise value of u, (0) is not crucial. Taking a, (0)
=0.2, together with uo(0) =a (0) =0.57, we find
from Eq. (7.8) that k(0) =0.10 is required to shift
n (0) from 0.57 down to 0.43. Such a value for
k(0) moves n~(0) up to 0.81. If we wish to move
n~(0) all the way from 0.57 up to1.0, one requires
k(0) =0.17; the &u trajectory is then pushed down

only to 0.39. Realizing that Dash and collabora-
tors" have been able to fit all available elastic
and diffractive-dissociation data up to 30 GeV
with a single vacuum trajectory of intercept 0.85,
we are assured that a value of k(0) somewhere
between 0.10 and 0.20 can produce an adequately
prominent Pomeron while at the same time giving
the more modest p-& displacement indicated by
experiment.

There is at present no experimental evidence to
support our prediction that p-A., degeneracy is
less broken than p-f. Tests at t =0 based on total
cross sections are consistent with p-A, degener-
acy but are insensitive to trajectory shifts of the
order 0.1. Data for t& 0 are expected theoretical-
ly to be more sensitive to Regge cuts and are
found, in fact, to be incompatible with a simple
Regge-pole description. The accuracy of p-A,
degeneracy is therefore difficult to determine,
either for t =0 or for t& 0.

A specific choice for k implies, by the consid-
erations of Appendix A, definite ratios of Regge-
on couplings to m and K. One finds, up to a com-
mon multiplicative factor,

y~ =2, y"„~ =0,

yK, yK
P Ag

y„=2cos8+, y, = —2sin8+, (B1)

r =~2tan8"=f
Qy —Q3

r =v2tang =
QQ) Q3

One may ask whether experiments on mN and KN
total cross sections are compatible with these
ratios when k(0) has a value compatible with tra-
jectory intercepts. A preliminary study by
Stevens" has given an affirmative answer for
energies between 4 and 30 GeV, extending the

y-=cos8'+v2 sin8+, y' = —sin8'+@2 cos8',

y„=o, y~ =0,

yz
——cos8 —v2 sin8, yg= —sin8 —~2cos8

Certain of these ratios are reproduced in Table I
in terms of the parameters

check already made by CGZ for the most easily
measured ratio y„/y, . [Stevens was able to fit
K'P and m'P total cross sections over this moder-
ate-energy interval with f, p, A„&u trajectories
and residues that are compatible with the model
of Sec. VII if k(0) =0.15, n, (0) =0.57, n, (0) =0.2.]

It is well known that the qualitative behavior of
exotic versus nonexotic total cross sections is
nicely explained in terms of the conventional pic-
ture where a Pomeron with an intercept near J=1
is added to a set of exchange-degenerate trajec-
tories. The difference between the present for-
mulation of two-component duality (the background
is dual to the full cylinder contribution, not just
the Pomeron piece) and the traditional formula-
tion can be described as the difference between
the strong and weak versions of the Harari-Freund
ansatz.

The strong Harari-Freund ansatz says that
exotic cross sections are relatively flat —a state-
ment which is a consequence of exact exchange
degeneracy. The contribution from the Reggeons
exactly cancel each other, leaving only the Porn-
eron of intercept approximately 1. The weak
version of the ansatz requires only that total
cross sections for nonexotic s-channel processes
are larger than corresponding exotic cross sec-
tions. In our model we expect exotic cross sec-
tions to rise toward their asymptotic Pomeron-
dominated behavior. For example, in m'n' and
K+w+ only the f and p trajectories contribute, with
roughly equal strength but opposite sign. Since
nz(0) is significantly larger than a~(0) even though
still less than 1, we expect these cross sections
to show a rising tendency at low energies that may
provide a test capable of distinguishing the two
different versions of the Harari-Freund ansatz.

If only the weak version holds how are we to
explain the relatively flat pp and K'P total cross
sections T The explanation lies in the circum-
stance that these reactions involve a more com-
plicated system of poles and residues. We refer
the reader to the details of the K+P fit" for an ex-
ample of how the energy variation arising from
different components can mutually compensate.

Suppose we continue our model to the positive-t
region and apply it to the physical-particle mass
differences between p and &g and between f and A, .
These differences are sufficiently small that the
first-order perturbation should be amply accur-
ate, and the signs of the observed differences are
as expected if k(t) does not change sign, but the
differences are so small that the finite width of
resonances becomes a limitation. The complex
mass is the position of the pole, whose real part
may be shifted from the Breit-Wigner resonance
"mass" quoted in the standard tables by a sub-
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stantial fraction of the width. The best that can
be done in the absence of more precise knowledge
of the pole positions is a rough estimate that in
this positive-t region 0.01 ~ jp S0.04.

Even though the mass shifts are only crudely
known, their small magnitude suffices to explain
via Eqs. (7.7) the extraordinary validity of the

IOZ rule. If we turn the question around and ask
for the magnitude of the cylinder coupling needed
to explain the observed decay of the P into non-
strange particles, we find k(t =m&') =0.02. De-
tails of this calculation will be presented in a
separate paper" that considers a variety of physi-
cal phenomena related to asymptotic planarity.
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