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New treatment of the bound-state problem in quantum field theory
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A new formalism for the description of the two-body system and well suited to the bound-state problem is
developed within the context of quantum electrodynamics. The resulting two-body equation is a two-time,
covariant, functional-differential one which, in the center-of-mass frame, reduces to a single-time, Schrodinger-

type equation. Application of this equation is illustrated by calculating several known recoil and structure
corrections to the energy levels of positronium and hydrogen. Further extensions and applications of the
formalism are discussed.

I. INTRODUCTION

The Bethe-Salpeter (BS) equation' is the only
existing formalism capable of dealing with the
bound-state problem in quantum field theory in
a general way. In applications to the two-body
quantum-electrodynamic bound systems, where
rather precise comparisons with experiments are
made, and iri other applications, the BS equation
has been found remarkably awkward to work with.
In fact, the difficulty of handling the BS equation
has encouraged the development of alternative
ways of dealing with particular aspects of the prob-
lem. ' However, these methods are limited in
their scope, and cannot be comsidered as satis-
factory alternatives to the BS formalism.

In this paper, we shall develop a new and gen-
eral two-body equation, applicable to the bound
as well as scattering states, which will remove
some of the undesirable features of the BS equa-
tion. The formalism will be conveniently developed
from Schwinger's' functional formulation and with-
in the context of QED. The resulting equation will
be a functional-differential one whose outstanding
feature (in contradistinction to the BS equation) is
that, while being a two-time equation in a general
coordinate system, it reduces to a single-time
one in the rest frame of the two-body system,
where it assumes a Schrodinger form with the
energy eigenvalue appearing linearly.

The plan of the paper is as follows: In Sec. II,
we present the derivation of the two-body equation
and some general remarks. In Sec. IIIA, we out-
line an approximation procedure for the application
of our equations to the calculation of non-self-
energy corrections to the energy levels of the
hydrogen and positronium atoms. Here we obtain
the Dirac and Breit equations, for the said atoms,
respectively, as natural limits of our equation.
Section III B presents the perturbation scheme
appropr iate to functional-diff erential equations.

In Secs. IIIC and IIID, we present illustrative cal-
culations of some (known} recoil and size effects
in positronium and hydrogen. Section IV contains
conclusions and remarks on applications and fur-
ther extension of this work.

II. DERIVATION OF THE TWO-BODY EQUATION

We start by recording some of the necessary
definitions and results of the variational formula-
tion. ' The usual interaction Hamiltonian for the
fermion-photon system is augmented by the addi-
tion of the external current term 4"9„, where 5„
denotes the electromagnetic field operator. The
fermion Green's function in the presence of J is
defined by (all states and operators refer to the
Heisenberg picture)

«, outlT[y. (x)qs(y)1 I J, tn&

(J, out~ J, in)

and it obeys the equation

y„P,"-eA" (x) —ie ~, —m S (x, y)

= &"'(x—y), (1)

where
~ J, in) (~ J, out)) represents the incoming

(outgoing} vacuum in the presence of the external
source, and A is the vacuum expectation value of
the electromagnetic potential (in the presence of
the external source}:

(J, out~8"
~
J, in)

(J, out~ J, in)

The photon Green's function is defined by

&A, (x)D„,(,y) —SJ.( ),
and it obeys the equation (here written in the Lo-
rentz gauge)
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0„'D~„(x,y) =g„„&")(x—y) —ietr y„ &~"(xi

(2)
On eliminating J in favor of A, Eqs. (1) and (2)
become
Z„$"(x, y) =&"'(x—y), (1')

.'D",.(x, y) =g„.6")(»-y)

~$"(x,x)
'|}A) (ZJ

(2')

2„-=y„p)' —eA" (x) —ie d'zD"„"(z,x) 6&A, (z The two-particle Green's function for the fermi-
on fields (a) and (f)) is defined by

(A, out( T[p"(x)p'"(y))I)"'(x')it)"'(y')](A, in)

The BS equation may be obtained by considering the effect of the operator Z„"', ' ' on K".
Thus far we have recorded some known results of the variational formulation preliminary to our deriva-

tion. The latter is based on a consideration of the structure resulting from an additive application of the
operators Z„"' and S„' '. Thus we consider

[y"'P"2"'+y' 'P"2' ']K"(x y~x' y')=y"'P"6' '(x-x'}$' ' (y y')+y"'P"6' '(y-y'}$"'"(x x') (3)

where P)' is the total momentum of the two-body system Equ. ation (3) is quite awkward to handle owing
to the appearance of the one-particle Green's functions on the right-hand side. However, we actually
only need an equation for the two-body amplitude, X"(x, y), defined by

(A, outI &[0"(x)0'"(y}]I o.,A, in)
(A, out~A, in)

where X" represents the amplitude corresponding to the two-body state
~ n, A, in) in the presence of the

external source A and reduces to the physical amplitude p upon setting A equal to zero. The prescription
for extracting y from K has been given by Gell-Mann and Low. ' Upon effecting this prescription, one
obtains the homogeneous equation

n) [+(a)Z( ) + ~ib)Z &I)] xA( yx) P (5)

where n" =P"/(P')'+ is the (four) velocity of the state
~
n, in) . Equation (5) is our two-body equation. The

supplementary equation for the photon Green's function follows from (2') by the inclusion of the currents
generated by the fields (a} and (b). Thus

(Zg &A ~(z)
(6)

Clearly Eqs. (1'), (5), and (6) constitute a closed
system of numerical functional differential equa-
tions which serve to determine p" and thereby X.
The physical information such as the scattering
amplitude for scattering states and energy levels
for bound states are then obtained from X in the
usual manner.

We now proceed to comment on the significant
features of Eq. (5}. First, we note that in the
center-of-mass frame where n" =go)', Eq. (5) re-
duces to

(r"'&"'+r"'&„"')x"(», y) = o.
Owing to the occurrence of the time derivatives
in the combination 8/sx, +e/ey, in Eq. (7), the
relative time x -yo may be eliminated from the

equation, leaving the common time t =x'=y' and
an equation of the Schrodinger type,

where H involves neither time derivatives nor the
energy of the state represented by x". Evidently,
the requirement of covariance allows a Schrd-
dinger-type description only in a particular frame,
and in fact in the only physically significant one.
Moreover, the assumption of this form in the
center-of-mass frame leads to a genuine eigen-
value problem, in contrast to the BS equation.

Other significant properties of Eq. (5) will be
demonstrated in the following section where it
will be applied to the hydrogen and positronium
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atoms. Here we conclude our remarks by noting
that the formal equivalence of Eqs. (1'), (5), and

(6) to the Feynman-Dyson series may be demon-
strated by a perturbation expansion of the former.

n)((7&'&I &'& + 7«' L &()&)X»(z X) = 0

where

I ( & +( ) P)) (,( ) A)((&)

(8)

III. SELECTED APPLICATIONS

A. Approximation procedure

Here we will describe an approximation procedure
which will be applied to the calculation of some
(known} recoil and size effects in the positronium
and hydrogen atoms. We may therefore eliminate
all self-energy effects from Eqs. (1'), (5}, and
(6). This may be accomplished by dropping the
fermion-loop contributions in Eq. (6), thereby
replacing DA by D~ (the Feynman propagator), and
preventing the emission and absorption of a photon
by the same fermion by means of associating two
different external fields A and B with the fields
(a) and (t)}. In this manner Eqs. (5) and (6) reduce
to

-ie() d'zD~" z-x, -m& ),6B'(z)

L (&& y(&) P)) &x(&)B)((y}
p

d4 D~" -y -m~»

In terms of Feynman diagrams, Eq. (8) contains
all possible graphs where (1) the photon lines are
simple (i.e., no polarization effects), and (2) they
do not begin and end on the same fermion line. In
short, all non-self-energy diagrams are included.
We also note here that Eq. (8) is both covariant
and gauge invariant.

At this juncture we will adopt the Coulomb gauge

~-ik' x

eye ()=-(y ) "f~ D
'
k'+ ze n —l&'

and proceed in the center-of-mass frame. Equation (8) then takes the form

&
—

f
X"'(z,y) =(l + &)XA'(x, y) (~0 =y' =t),

h =I&&'&+n&b& V =U&" +V&" I&") = ()."'p +P")~")
x (10}

(a) f 4U("=e"' A' x +i d'zDc'8-x 5B' ej(" A' x +i d'zDc' z-x 6Bj(

where Iz"' and U ' are correspondingly defined.
It is now possible to extract the Coulomb potential as the static part of the interaction. We introduce

the transformation
t

(x, y)=expI-C d [e"eA"( cx) ce Be(cy
I
y)((xX, y)

Note that in the physical limit of A, B-0, X and X are equivalent. The substitution of (11}in (10}and the
consequent functional differentiations yield

XA)) (h + ly + U(cy) + U(b )XA&&&

st
(12)

where
t t

V~=ie"' d zD~ z-x 0 -i d7 e' 'B 7y +ie' ' d zD~' z -y 0, -i d7 e"A &x
6BO z Z cD

and

4m IX-yl '

t
U" =e'" i d zD~' z-x « —o.,"A' x + d~~'A'&, x +z d'zD& z -x &BJ.6BO z 6B'(z
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and similarly for U'". Note that the electrostatic
interaction expressed in transformation (11) can
equivalently be viewed as an infinite series of
"static photon" exchanges by considering the ex-
ponential as expanded (in powers of e). We shall
refer to this fact shortly.

At this point the infinite-proton-mass limit for
the hydrogen atom may be derived. We let (a) be
the proton and of very large mass. Then a."' may
be dropped and x set equal to zero (i.e., proton at
the origin). Consequently, of all functional vari-
ables only B survives, which may be set equal to
zero, ' leaving as the physical limit the desired
equation

8 &(P) &(e)
i l&n(t, y) = m&~&+I&"&+ yn(&), y).st '

4&&[yf

In the BS treatment, the derivation of the above
limit (i.e., m"&/m&~&-0) requires the considera-
tion of an infinite number of irreducible diagrams. '
This circumstance is understood in the light of the
remark at the end of the above paragraph.

Another limit of interest applies to the case of
comparable masses. It will be noted that after the
extraction of the Coulomb potential above, only
nonstatic contributions of the interaction have
survived in Eq. (12). Thus when U is omitted
therefrom, we obtain as the static-interaction
limit of our two-body equation

(14)

which is (the time-dependent version of) the Breit
equation (without the so-called magnetic term).

It will be noted that the above limits (i.e. , the
Dirac and Breit equations} have been obtained here
in a natural and straightforward way, in contrast
to the rather contrived procedures of the other
methods.

Having obtained the lowest-order equations ap-
propriate to the hydrogen and positronium atoms,
we turn in Sec. III B to the development of a suit-
able perturbation theory.

B. Perturbation theory

Here we shall be concerned with developing a
stationary-state perturbation theory for an equa-
tion of the form

() „-&.) It&=)&l&&,

where functional operators are entirely contained
in U, and the Coulomb potential is included in Ho.

The novel feature of (15) is that because of the
occurrence of functional derivatives, the calcula-
tion of the energy levels of stationary states in-
volves a time-dependent problem, as will be seen
in the following.

I et the solutions of the unperturbed equation be
e "~'

~ n), so that

(e„-a, )~n) =0.

I.et e 's~'~N, A, t) be that solution of (15) which in
the limit of no external fields (i.e., A-0) reduces
to e 's~'~N), which solution in turn reduces to
e "~'~n) in the absence of the perturbation term
U. Our aim is the calculation of the energy shift
n, „=E„—e„. Note that while ~N) is time indepen-
dent, ~N, A, f) definitely depends upon f on account
of the presence of the external field which effec-
tively destroys time translation invariance until
it is set equal to zero.

The equation satisfied by ~N, A, f) is

i —+e —Ho NA) I' = U —A„NA I, . 16
~

~

The Green's function associated with (16) is de-
fined by

z +~„-H, G t, f,
" =5 ~-t' .

~~

~

The question of the boundary conditions satisfied
by G is a nontrivial matter, since H, involves the
sum of two Dirac Hamiltonians (as well as the
Coulomb potential). Indeed, one must refer to
Eq. (3), whence (16) has originated, and discover
the fate of the boundary conditions as they travel
from the former (where, of course, they are
known) to the latter. Remarkably, and not too sur-
prisingly, they rest on the fact that U is charac-
teristically a sum of U" and U' ', each of which
involves the coordinates of one of the particles
only [cf. Eq. (12)]. Thus the application of G will
always involve terms of the form GU"&~/) or
GU&" ~P) . Then G may be written

G(f, t') = ie '&"o--
x [g(i f )g' g(f i)P-]

where the projection operators are those of par-
ticle (a) [(b)] when G is acting on U'" [U"']. In
short, G obeys the usual Feynman conditions with
respect to the particle whose coordinates appear
to the right of it in U.

Equation (16) may be inverted using G:

+f&d& G«& )&v&t )-'~ &I,N, A, t'&, ''
(ia}

with the formal solution

~N, A) = [i —G(U -~„)]-'~») .
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t&, "& =lim(n(U~n),
A~O

(20)

which is the analog of the usual result. The sec-
ond-order shift is obtained from

lim(n~(U —b, u' —a„'o'}[1+G(U—A„"')]~n) =0,
A~O

or
b, &'& =lim(n~(U —a„"&)G(U-A„"')~n) .

A O

(21)

If 6„"'happens to vanish, as is the case in some
of our applications, then

A&o& =lim(n~UGU~n) (A"' =0).
A~O

Clearly, higher-order terms are obtainable by
means of a straightforward, although lengthier,
calculation.

(22)

C. Application to positronium

Here we shall apply Eq. (12}to the derivation of
the so-called Coulomb correction to the posi-

Since
~
N) is time independent, we have, using

(16},

0 =lim(n~(ia/St+@„—Ho —U+A„}(NtAt t)
A~O

=iim(n((A„- U)(N, a, t) .
A~O

The last condition, namely

lim(n~(U —b.„)[1—G(U —A„)] '~n) =0, (19)
A~O

is the basis for an order-mise determination of
t) „by means of an expansion in some (small) pa-
rameter, usually the coupling strength.

As an example, we shall consider the usual per-
turbative expansion where U is considered to be a
first-order quantity. Then the first-order energy
shift is given by

tronium energy levels. ' This derivation will also
demonstrate the application of the boundary condi-
tions stated in the last subsection.

The Coulomb correction A~ does not involve the
transverse part of the electromagnetic interaction.
We therefore drop that part and use (12) with

Uc&a& = ie&4& d4zDOO(z z)c 6fto( g )
t

+ i c( ' ' d7' &dti (~, x)
~ oo

and correspondingly for U

The desired correction is obtained from the
second- and fourth-order contributions of the per-
turbation expansion of (19};

A„' = A„'(2) +A„c(4),

A„(2)= lim (n~U GU ~n),
AO. aO O

b, c(4)= lim (n~UcGUcGUcGUc~n).
AO. aO O

Let us note here that the designation of the order
of our perturbation terms refers to the fact that
Uc is O(e), and completely ignores the occurrence
of the expansion parameter e in the unperturbed
wave functions. Thus the leading contribution to
b, c [= O(e&om "&)] is contained in the second- and
fourth-order terms of our perturbation series.
Moreover, we may neglect the Coulomb potential
in t" and use Go, the free propagator, in its place.
Effecting this replacement and taking account of
the functional operations, we may write

A'(2) = iim (n~(U'&'&G, U'&'&+U'&'&G. U'&'&)~n) .
AO. aO O

The boundary conditions on Go may now be speci-
fied according to (17):

(2)—= tim (-i)f dt ((Ue[t"(t)e '"" ' '" ' '[e(t —t )t) '' —e(t 't)'d ' '[U '-' '(t')
AO, aO O

+U '"(t)e ""o ' '" ' '[e(t —t')A"" —e(t' —t)A "]U "'(t')}~n) .
We now perform the functional differentiations, carry out the time integration, and obtain

Ac(2)= Jr d(x —y)dx'dy'X~ (x —y)[6(x —x')A "&(y,y')+6(y —y')A "(x,x')], , X~(x'-y'),

(23)

where ys denotes the Breit wave function corresponding to the state ~n) and c( is the fine-structure con-
stant. Equation (23) is identical to Eq. (3.3) of Ref. 6 with their AEc, standing for our t),„(2).

The calculation of b, c(4) does not involve new features not encountered above. We shall not reproduce
the calculation here but only mention the fact that the corresponding result of Ref. 6 (their b,Ec,) is ob-
tained for Ac(4}, which together with n, c(2) add up to the Coulomb correction.

D. Application to hydrogen

Our first task here is the illustration of the use of the Foldy-Wouthuysen (FW) transformation with the
present formalism for the derivation of the recoil corrections to the fine structure of the hydrogen atom.
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Referring to Eq. (12), we take the particles (a) and (t)) to be the proton and the electron, and consider
the following FW transformation on the coordinates of the proton:

(u)
(AB B(s)(AB S n(P) [p eT(x}]

t
T'(x) = A'(x)+ dr 'y'yA'(T, x)+i ) d'z Dc (z —x) 6~,~ 00

c 6fti z

The resulting equation for PB correct to O(1/m(~)) is

i —jAB (t, x, y }= [Is,"'+Vc(x —y) + m
'~'+ V'] )tAB (t, x, y), (24)

where

It remains to calculate the lowest-order energy shifts due to the various contributions to V'.
The simplest term in V' is the proton kinetic energy p„'/2m(~). To the order under consideration, it is

a trivial matter to show that this term gives rise to the so-called reduced-mass corrections. '
Next we note that the terms containing A.' and B will only contribute to the Coulomb correction, which

was calculated above for positronium. Thus we drop these, and turn to the transverse contributions

dt'd -x dx'dy'p ~ y-x

2
d'z Dc (z —x) .. .p„' G(t, x, y~t', x', y')n"' B(t', y')m"' ~B'~z ~

2

(i, )
d'z Dci(z -y) .. . G(t, x, y~t', x', y')p„~ X(t', x') XB(y' x'), -m'' &A'jz )

4
dt' dt" d y —x dx' dy' dx" dy" X„~ y —x

(26)

d'zd4z'Dci(z x)D~(z' —x),.
( }-,(,} G(t, x, y~t', x', y')n"' B(t', y')

x (t', x'G, (t"xy", y") Bt(tt",, y") t. fd x txt"tt' (x —y) G(tx, y t x(', y,')',
x J~d'zy n"'D~'(z' y') -G(t' x' y'~t" x" y")X(x") X(x") g (y"-x").

)) c 6~ ( ) ff (26)

These are, respectively, the single- and double-transverse contributions. There are other terms con-
tributing to b,„,but not to the lowest order. Moreover, we may now take the limit of infinite proton
mass, and eliminate the proton coordinates from (25} and (26). In this way, (25}becomes

2

dt'dydy'p„p„'G, y t', y' cv,-"D~~~ t'-t, y' +e,."'D~ t'-t, y' 0 t, y t', y' p'„y„y',

(27}

where now GB (as well as )(B) refers to the Dirac equation (13). It is now a trivial matter to reduce (27}to
(4.12}of Ref. 7, where it is shown to be the usual single-transverse-photon correction.

Next we take L~~ to the infinite-proton-mass limit and obtain

4

p)
dt'dt" dydy'dy")( t(y)

[G'(t, yl t', y') n,"'D".(t - t', y')G'(t', y'I t", y")nl"Dc(t - t",y")

+ n,"'D'c(t" t,y)G (t,y~ t', y')n-„"'Dc'(t" t', y')G (t', y'~t",-y")]. (28)

The dominant part of (28) may be obtained by neglecting the Coulomb interaction in G and retaining the
spin-independent part of the interaction. This procedure, after some integration, yields
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-e4
dpdp'dkx ~ ' E '-k, k, k —p g

where

IF- r -)=
4qq'(q +q') (q'+ m'e') —EE

q
(q &&&(e)}E EE

(29)
1 ) q'(E —m"') q(E+m"')

qqq'E [[q+E—m"'][(E—m"')' —q"] [q'+8+m"'][(E+m"')' —q']I
Here E' = (m "&)'+k'. The leading contribution to b.rr may now be extracted according to the procedure of
Ref. 7. In fact, applying that procedure to (29} immediately reduces our Err to their AErr, the double-
tr ansver se-photon contribution.

So far we have considered all spin. -independent contributions to V' and have obtained the significant re-
coil corrections to the hydrogen fine structure. We now turn to a consideration of the effects of the finite
size of the proton, and calculate some correction terms to the hyperfine structure of hydrogen.

To account for the finite-size effects, we shall use the usual replacement y]"A„(x)-Jd'g I'&'(x —g)A„(]E)
for the proton interaction term, where

(30)

Here I'" is the usual vertex function, and E, are the form factors. If we let

f (x)= td4ke ' '
FE(k )Ei =1 2

1
(2 &[)4

then

I'"( )x=r"f,(x)+
2 (,) ~".P„"f,(x),

and if we also define p" (x) =PI'"(x), we shall have

p'(x)=f((x}+
2 (e) n p„f,(x),

P(x)= f, (x)+ (&,) f, (x) o. + — p«P f (x).

Note that f, and f, depend on x' only.
With the above inclusion of the vertex function, the development of the two-body equation proceeds as

before, and one gets for the analog of E(I. (10}

i —y"'(x, y) = [I&"'+a"' + U"'(x) + U"'(y)] y"'(x, y), x' = y' = t
8

(31)

where

'V(V)=xef d'&P'(x' —)) d( ) 4v(d'ep"(e —&) 4E,

d' p — A' +' d' D"

and U"' is the same as U'E' of (10).
The Coulomb potential of the extended proton is extracted by means of the transformation

t
(x y)=exp( 4 dv' e d')f (v —qx —()d {4)—e,e (vy) &v" (x, y),.

The resulting equation for (Ps is

&
—j"'(x y) =[a&'&+a&'&+ V,(x —y)+U&" (x)+U&'&(y)] j"'(x y) (32)



3894 M. HQS SE IN PAR TOVI 12

where

V („-) d, ( g($', x -7)

t
ri"'(x) rr"'=(x) ef -d (f'(x - k)A (F)'eu-"' Vf dv f d &f'(v —Px , R)-A (k)'

(33)

Equation (32) is now in a proper form for the application of the perturbation methods developed above, and

may be used for a systematic derivation of the proton size effects. Here we shall illustrate the method by
deriving the Fermi and the so-called nonrelativistic size corrections to the hyperfine structure of hydro-
gen.

The part of U'~'(x) which contributes to the sought-after corrections is

ig (P)-e d (y,.~, x- + (p) e'"(x'p„'
2 x — A. +i d gD~~ g — ~,. +U ' g =—V'.2m"' x 2 c gyp

Therefore, the desired corrections are given by

~f = Iim (n~v'av'~n).

Note that hs is the correction to the energy levels of that (modified) Dirac equation which is obtained from
(32) when U'~'+U"' is omitted.

As before, we shall conveniently extract the leading contributions by effecting a FVf transformation on
the proton coordinates. When this is done, the spin-dependent part of the above expression, after some
computation, reduces to

(P)
4„=-ie dt'd y —x dy'dx' „y-x

x d (T' &Vg@ x —$ ~ Q tqxqy t x ~y Dc p — & ~ -x +c.c ~ y (34)

where g„=f, + zf„and c.c. stands for "complex conjugate. " It is convenient now to divide 6„" into two
parts, b, ~ and 6'„, corresponding to a splitting of g„(x) into (I + a)&"'(x) and g„(x)—(1+z)&"'(x). Clearly,
A~ represents the correction for a point proton of anomalous magnetic moment K, and 4„'is the size ef-
fect.

Considering 6„, we calculate it in the infinite-proton-mass limit and then obtain the reduced-mass cor-
rection thereto. The first of these is readily obtained from (34) in the limit m'~'/m"'» l. It is (neglecting
the difference Vc —Vc)

f(&)

(1+m}
& &

~ (n~VV && n"'~n),2m(~)

where ~n) represents a solution of Eq. (13). The above matrix element is easily shown to be (1+~2cP)E~,
where E~ is Fermi splitting, and 2cPE~ is the Breit correction. To obtain the reduced-mass correction
to E~, we consider a FW transformation on the electron coordinates in (34), whereupon the latter reduces,
after some manipulation, to

1 1+I(
2m"' 2m' ' (n s~[o"' pg'~'p —o"' o'~'P' V ]~n s).

Here ~n, s) is a nonrelativistic Coulomb wave function with the reduced mass m"'m'~'/(I"'+m'~-'), The
correction to Ez thus obtained is -3(m' '/m'~')Ez, which, together with the Breit correction, lead to the
usual result

(e)
F 3 2 m

1+2@ —3 (p) E'~ .

Finally we consider the size effect 4„. This contribution is adequately approximated in the infinite-
proton-mass and nonrelativistic electron limit, where it is given by

(35)
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Here $'„represents the nonrelativistic, modified,
Coulomb wave function (i.e., Vc instead of Vc},
and G„=E,+zI"2. Upon performing the y' integra-
tion in (35), A„'reduces to Eq. (3.15) of Ref. 7,
where it is shown to be the nonrelativistic size
correction.

The two correction terms obtained above consti-
tute the major recoil and size-effect contributions
to the hyperf inc splitting of hydrogen.

r

r

pp pp- k p2

FIG. 1. Kxampl. e of a two-scalar-meson-exchange di-
agram.

IV. DISCUSSION AND CONCLUSION

In this work we have developed a new method
of dealing with the two-body system in quantum
field theory that is well-suited to the bound-state
problem. We have demonstrated the capabilities
of this method by applying it to the calculation
of known effects, providing at the same time a
means of comparison with other methods, prin-
cipally, the BS formalism.

The method as developed so far is incomplete
in one important aspect, to wit, renormalization.
The development of the renormalization algorithm
in the present context is clearly the next step in
this program. Since the renormalization procedure
hinges on covariance, one should expect an em-
phasis on the manifestly covariant form of the
equations. Of these, only (5}need be considered

as a new element, since the renormalization of
S" and D" is as in the usual theory.

The applications presented in this paper pertain
to bound systems. As mentioned before, the two-
body amplitude y contains the scattering informa-
tion as well. In fact, a straightforward perturba-
tion expansion of the scattering amplitude obtained
from (5) and (6) is the same as the usual Feynman-
Dyson series, as expected. The same expansion
as obtained from the single-time version of the
equation in the center-of-mass frame, on the
other hand, while still equivalent to the Feynman-
Dyson series, gives rise to diagrams that are
neither of the Feynman type, nor of the old-fash-
ioned variety. Figure 1 shows an example in neu-
tral scalar coupling. The contribution of this dia-
gram is, aside from inessential factors,

u" ()&')I'" (P') Jd(ad~'dk(aP —P —d'+is) '[w" —(K+P,' —P )' —d'+ie)

x(~'+W-h&-'& -h'-", -+ie(")-'(~+~'+W-h&'& —h&'& +i~&'&)-'
p,' p,'-%

x ((u+w —h'" - —h'"+ ie "&) 'u" (p, )u"'(p, ),pl- h P2

where p, represents the mass of the exchanged scalar particle, and W is the total energy. Moreover,
is a small positive (negative} quantity according as particle (a} is in a positive- (negative-) energy state.
In other words,

(~+W h(i)& h&&'&+ i&«&) & —(~+W h«& h&&i& + if)-&A «& +(&+W h& & h&» i&)-&A-«&

where e is positive. This "ie rule" follows from
the boundary conditions stated in Sec. III 8 [cf.
Eq. (7)]. As usual, all topologically distinct dia-
grams, and additionally all different time order-
ings thereof, must be included. When these are
put together appropriately, one recovers the cor-
responding Feynman-diagram contributions.

As exemplified in the derivations of Sec. IIIA,
the present formalism is an effective method of
obtaining various limits and reductions of field-
theoretical interactions. Thus application to the
derivation of an effective nucleon-nucleon inter-
action for use with an equation of the Breit type
[e.g. , Eq. (14)] would be worthwhile. Also, the

investigation of the electromagnetic interaction of
the nucleons in connection with the isotopic non-
invariance of the nuclear force is a particularly
suitable problem. Finally, an investigation of the
possibilities of nonperturbative applications of Eq.
(5}to scattering problems is indicated.
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