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Time-evolution problem in Regge calculus'
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The simplectic approximation to Einstein's equations ("Regge calculus" ) is derived by considering the net to
be actually a (singular) Riemannian manifold. Specific nets for open and closed spaces are introduced in terms
of which one can formulate the general time-evolution problem, which thereby reduces to the repeated
solution of finite sets of coupled nonlinear (algebraic) equations. The initial-value problem is also formulated
in simplectic terms.

I. INTRODUCTION

In order to prepare a problem in continuum
physics for machine solution one almost always
rewrites the basic partial differential equations
(field equations) in discrete form. In other words,
one samples the field quantities at finely spaced,
selected points, and replaces derivatives by differ-
ences. "Discretization" using a net of simplexes
is altogether different from this "partial differ-
ence" scheme.

Rather than fill spacetime with a grid of points
one divides it into a net of simplexes. Instead of
replacing derivatives by diff erences one seeks the
simplectic anaIogs of the fundamental quantities
and operations of the continuum theory. (The ana-
logy is even so close as to be a singular instance
of the continuum case. ) The simplectic version of
a field (1 will call this a thatch for short) may be
associated to any of the simplexes of the net, not
necessarily just to points, with the tensor charac-
ter of the thatch expressed by its mode of defini-
tion on the simplexes, rather than through many
components.

As far as numerical calculations go, the sim-
plectic approach can, when applicable, be expected
to be more efficient both because it is more gene-
tically related to the continuum case, and because,
for that very reason, it makes sense even as a
very crude approximation. It also provides a co-
ordinate-free way to express the solution and in
general avoids the problems deriving from the
need to work within a particular coordinate or
"gauge" condition. What is probably most valuable
is that it is no harder to apply to complex topo-
logies than to simple ones. '

Even without these "practical" advantages sim-
plectic methods would be of some interest for the
insight they furnish into the corresponding con-
tinuum equations. And they might even offer a
clue to possible discontinuous replacements for
field theory that some people see as indicated by

the "renormalization" and "quantum gravity" prob-
lems.

Regge' introduced a simpletic approach to the
spacetime metric, and Collins and Williams ap-
plied it to the time-symmetric initial-value prob-
lem for various topologies. It is interesting that
closely related methods have flourished recently
in engineering under the name "finite element
methods. "

After deriving the basic thatch equations in Sec.
II we introduce two nets in terms of which the gen-
eral time-evolution and initial-value problems can
be formulated for closed and open spaces, respec-
tively. This leads to a concrete prescription for
carrying out actual calculations, although the key
questions of existence and stability of solutions
are not discussed.

Two appendixes are devoted to clearing up cer-
tain technical points (arising from the indefinite-
ness of the metric) not covered in Hegge's treat-
ment. ' For further details the reader is referred
to my thesis, ' on which this paper is largely based.

II. METRIC NETS

A. The metric thatch

One endows the net Z with metrical character by
assigning to each leg [ij] of the net a "length"—
or rather, the square of a length —/, &'.' Consider,
then, a particular cell o ~ Z4 with vertices 0, 1, 2, 3, 4
(in other words, o = [01234]). Just as the three
edges of a triangle determine its internal geometry
(it is "rigid"), the 10 leg lengths of o determine
its internal geometry. More formally, embed v

linearly in R'. If, under the embedding, the ver-
tex [i] corresponds to the point x„then we seek a
(constant) metric g„,for R' such that for all i,j,
l, &'= g„„(x,—x&}"(x, - x&}". Since there are ten
l,&' and ten independent components of g„„,g„„
must be uniquely determined. An explicit formula
for it appears in Ref. 4.

It is not, however, enough that the l„'define a
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metric g»(c) for the interior of o. In order that
o can be a "piece" of spacetime the metric must
have the signature -+++. (This is the analog of
the triangle inequality in the Euclidean plane. ) In
numerical work one must check the signature at
each stage.

Having defined a (flat) metric for the interior of
each cell we can now "glue" these metrics together
at the interface between any two cells, in the ob-
vious way. To be more precise one can introduce
a coordinate system in terms of which g„,is con-
stant throughout the two simplexes 0, p and thus
provide (the interior of) v, p with a differentiable
structure. Doing this for every pair of cells in
Z~ we define a flat (pseudo-) Riemannian structure
for all of the net except the boundaries of the inter-
faces between cells. At these latter points, the
points of U Z, (the set-theoretic union of all 2-
simplexes or "bones, " which Regge calls the
"skeleton" ), it may be impossible to find a coor-
dinate system to cover smoothly all the cells
which meet there. It is on these bones that the
curvature is concentrated.

A two-dimensional example may clarify this.
Any two of the four triangular faces of a tetrahed-
ron join smoothly along their common edge. In
fact, after removing the other faces, one could
flatten them to lie in a plane without at all altering
their intrinsic geometry. However, there is no
coordinate patch covering a vertex and in which

g;, (x) is a smooth function of position. The tetra-
hedron's intrinsic geometry is everywhere flat
except at the four vertices (the "bones") where
all the curvature is concentrated. In general the
bones are of dimension two less than the mani-
fold itself.

B. The "defect" of a bone

Consider the tetrahedron again. Near any parti-
cular vertex it is metrically like a cone and the
deviation from flatness at the vertex can be char-
acterized by the "defect angle, " were one to cut
and flatten the cone. [For a regula. r tetrahedron
this angle is 2v —3(v/3) = v. ] It is easy to see that
this characterization of the "defect" of a bone ac-
cords with the usual definition in terms of the non-
integrability of parallel transport (see Fig. 1).

In four dimensions the bones are 2-simplexes,
but the notion of defect still applies. Since a net
with metric thatch is flat everywhere but the bones,
parallel transport around a loop has no effect un-
less the loop links some bone, and then the result
depends only on which bones are linked with what
orientation and in what order. In other words, it
depends only on the homotopy class of the loop.

Think, now, of a single bone and a loop which
circles it once. The space "surrounding" the bone

ga&e
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FIG. 1. "Unrolled" cone illustrating the relation of the
defect angle 8 to the nonintegrability of parallel trans-
port around the bone (vertex).

comprises a "ring" of 4-simplexes (cells) whose
mutual intersection is the bone itself. The loop
begins in one of these, encounters the others in
cyclical order, and returns finally to its point of
departure. It is easy to see that a vector parallel
to the bone remains unchanged throughout the
whole process. Since parallel transport around
any loop produces a Lorentz transformation, what
we can call the "circulator" of the bone will there-
fore be a Lorentz transformation which holds
fixed the points of a 2-dimensional subspace (that
of the bone). There are three cases depending on
whether the bone is timelike, spacelike, or null.
For a timelike bone the most general circulator is
rotation through an angle 8 [if t' = t and z' = z then
the most general Lorentz transformation is x' = x
cos8 —y sin8, y' = y cos8+ x sin8 (8 = 0 is not the
same as 8 = 2v though)]. For a spacelike bone the
most general circulator is a "boost" with parame-
ter q (if x' = x, y' = y then t' = t coshtl —z sinht),
z' = z cosh —t sinhrl). And for a null bone the most
general circulator is also characterized by a sin-
gle parameter, which, however, is not dimension-
less and can be fixed in magnitude only relative to
the specific bone.

C. The action

As described above, a metric thatch induces in
a net the structure of a (singular) Riemannian
manifold. We show now that the continuum expres-
sion for the action S = ——,'JR dV makes sense for
this manifold, and evaluate it in terms of a sum
over the bones.

Since the manifold is flat everywhere outside
the bones, the only contribution to 3„,8 and a
fortiori to 8 is from the neighborhood of a bone.
But consider parallel transport around a loop
linking some bone, which is a measure of R„,
there. Since the result is the same no matter
where along the bone the loop links it, we see that
the bone is homogeneous, and its contribution to
S will be proportional to its area. Consider, for
example, a timelike bone, infinitely extended and
find the action per unit area.
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Let the bone be the t-z plane= ((txyz)lx= y = 0}
and let it have defect 8. If 8= 0, then, replacing
the coordinates x, y by r, (t), one has for the metric
tensor g« = -1, g„=1, g„„=1, g& = r' with all
other components vanishing. We introduce the
defect by deleting the "wedge" 2~- 8 ~ (I) &2m from
the spacetime and "expanding" Q to cover the re-
mainder smoothly, with the result

8 2

grr= 1~ g@@= 1 ——r .

This metric has a "cusp" at r = 0. In order to
work with diff erentiable functions we will "smooth"
the cusp temporarily. Thus we evaluate R for the
metric

g 1 g ~2 X(r)

with

e'"= r2 for small r

d(-d)"'drdd = -2 1 ———
d)

I Ct2

21T

which is plainly independent of the degree of
smoothing in the function X(r).

Extending the integration over the whole bone,

8 -g '"dr dP dz dt = 8 dz dt

= 8A.

For a spacelike bone, one finds by a similar
analysis ,' 1-R-(-g)'"d'x = qA in which t), the
"boost parameter" is defined to be positive for a
spacelike defect, which a little thought shows

(Fig. 2) to be equivalent to a timelike "infect" or
"excess." For a null bone one must work with a
three-dimensional metric, but finds without too
much more trouble that 8, and therefore S, van-
ishes.

e' = r' 1 —— for large r.
27t'

The only nonvanishing Christoffel symbols are

D. The thatch equations

We have just found that each bone contributes to
the action in an amount gA where g stands for the
defect (called "q" or "8"above) and A is the area,
considered as a positive number. Summing over
all the bones we can write

Defining R„"„e-=I',", 8+ I'„"I'~8 —(o —p) and

R~, „=&"+ (A.r)'

R = 2[X"+ (A')']

(-g)'" = (-g„g..g„g~~)"'
= (grrAe)

=e

Thus,

R(-g)"' = 2[X"+ (X')']e

S, = P q(b) A (b ) .
QEZ2

The "equations of motion" of the metrical thatch
require that 5S, = 0 for all variations of the thatch-
in other words, for any variation of the square leg
lengths, l;,2. Carrying out the variation,

5S~= gb 5A b + 5qb A 5

But now, just as in the continuum theory, the
second term vanishes identically (see Appendix B),
and we are left with

bSd = Q q(b)bA(b).

whence

= 2(e')",

g -g "'drdy= —2m e" "gr
0

= -2v(e~)' l,
".

Let us express the variation with respect to a sin-
gle element I„'of the thatch. If [ijk] e Z, is a
bone of the net, then its area is

&(ij k') = d l[[ij&]]l"'

in which, if we set x= L;,', y = l»', z = I,„.', then

[[ijk]]=—x + y'+ z2 —2(xy+ yz+ zx).
But near r = 0, one has e = r~(e )'=1, while
near r= ~,

e =r 1 ——~(e )'=1 ——.8 ), , 8
2r 2'

Thus

Thus

where + is the sign of [[ijk]].' Calling this sign
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(a) timelike bone S = GA (b) t imelike bone S = -6A

(c) spacelike bone S = qA (d) spacelike bone S = qA

(e) boost versus rotation

FIG. 2. Typical examples of the action for a bone of areaA. Speckl. ed areas indicate overlap. Cases (c} and (d} re-
present the same circulator for the reason indicated in (e}, namely that a boost —as opposed to a rotation —turns the two

axes in opposite directions.

o(ij k) we get finally

be E2

G(tq) = *g e(ilk)q(ijk)
0 EZO A(igk

x (l&&
—i&a

—isa ),
in which 6(ijk) is 1 if i,j, k are the vertices of

some 2-simplex (bone) and 0 otherwise. The

(2)

"empty-space" thatch equations result from set-
ting G(ij) = 0 for all legs [ij]aZ, .

E. Examples in two and three dimensions

In two dimensions the elements of Z„,{the
bones) are 0-dimensional and curvature is con-
centrated entirely on the vertices. Since the
"volume" of a point never changes, the variations
(2) vanish identically, which implies that 8, is in-
dependent of the metric thatch l„'.In fact, it is
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well known that for a two-dimensional manifold
(of signature ++) the integral of the curvature de-
pends only on the topology of the manifold (Gauss-
Bonnet theorem'). In two dimensions, then,

In three dimensions the bones coincide with the
legs and Eq. (2) becomes

Then the variational equations, G(ij }= 0, require
that all defects q vanish —the simplectic version
of the mell-known fact that Einstein's equations
have only trivial solutions in three dimensions.

F. The thatch equations with source term

If there are other terms in the action besides
S, then the variational equations will read

G(ij) = T(ij) (4)

in which, of course, T(ij) -results from varying
these other terms with respect to I,&'. Since T(ij)
must represent "matter" we can say that, sim-
plectically, "energy-momentum is concentrated in
the legs of the net, " even though curvature is dif-
fused throughout Z, . And in fact, because of the
identity valid in two dimensions, G(ij)—= 0 (see also
previous subsection), it is literally true that G(ij)
vanishes outside the 1-simplexes of our singular
Riemannian manif old.

G. Coordinate invariance

As pointed out in the Introduction, the simplectic
approach provides a coordinate-free method to
specify a spacetime geometry. Just for this rea-
son, the well-known coordinate invariance of the
continuum formulation finds no analog here. It
is not true, for example, that, corresponding to a
given solution of G(ij }= 0 there are an infinite
number of others with the same boundary condi-
tions. '

A soap-film analogy may serve to clarify this.
Aside from the difference in dimension and in sig-
nature the "empty-space" problem is very similar
to that of approximating a minimal surface (soap
film) by a polyhedron. Once the number and con-
nectivity of the faces have been chosen, there will
be a unique choice for the vertices which minimizes
the total surface area as depicted schematically in
Fig. 3. Thus, despite the coordinate ambiguity
in an analytical solution, the thatch solution is
unique.

Calculationally this is probably an advantage since
it relieves one from the need to choose any "gauge
condition" in order to define the time-evolution
problem. On the other hand, it leaves one with

FIG. 3. A good and a bad way to approximate a curve
with 4 segments.

less freedom to adjust the net should the thatch
begin to go singular during the course of a calcula-
tion. What one can adjust is the topological charac-
ter of the net; in fact, it is probably this freedom
of topology' rather than any numerical freedom of
the leg lengths which corresponds to the coordinate
or "gauge" freedom in the continuum.

Unfortunately there is one geometry which does
possess a full gauge freedom: flat space. Here,
as is also clear from the soap-film analogy, the
simplectic approximation to the metric is exact
(all the defects vanish) and each vertex of Z has a
fourfold freedom to move without affecting the
geometry. This means that the time-evolution
equations must become underdetermining in the
flat-space limit. In other words, both the attempt
to produce very accurate solutions with fine nets
and the treatment of asymptotically flat metrics
can be expected to present extra calculational dif-
ficul ties.

III. NETS FOR OPEN AND CLOSED SPACETIMES

A. A simplectic net for R4

The most natural path to arrive at a decomposi-
tion of R' into 4-simplexes is this: Cover or
"tile" R' by rectangular regions of which at most
five intersect at any point; the nerve" of this
covering will furnish the desired net (Fig. 4).
Having taken this path, however, it appears that
the answer can be gained directly, and most clear-
ly presented in "affine" coordinates, which more-
over are perfectly suited to the symmetries of the
net. IAffine coordinates are coordinates in terms
of an overcomplete basis (n+ 1 vectors). The
vector components as well as the basis vectors
are required to sum to zero. If it is more con-
venient the reader can reduce everything to the
usual situation merely by neglecting, e.g. , the
fifth coordinate. ]

We will describe the net by specifying Zp and Zy
(that is, the "network" or "graph" formed by the
legs). Then the following simple rule (which just
expresses that Z is a nerve) defines Z~ for k
=2, 3 4'

Any k+ 1 vertices span a k-simplex of the net if
and only if they are mutually joined by legs.

Zp comprises all the points of the lattice gener-
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ated by the 5 basis vectors (e„j= 0, . . . , 4), with

components (e, )' = 6I —~. More explicitly, it con-
sists of the following:

(i) all vectors with integral components (recall
that affine vector components sum to zero};

(ii) vectors differing from those of (i) by one
of the following 30 (= 10+ 20) vectors:

+—', (4 —1 —1 —1 —1), + —,'(-1 4 —1 —1 —1),

z5 (1 —1 —1-1 4),

+ 5(33 —2 —2 —2), s —,'(3 —2 3 —2 —2), . . . ,

+-,'(-2 —2 —2 33).

Finally, any pair of vertices which differ by a
vector of the type (ii) (equivalently by a vector all
of whose components are less than 1 in absolute
value) determine a leg of the net.

This completes the definition of the net. In the
rest of this subsection we verify that it is in fact
a triangulation of R', and we expose some of its
properties:

(a) All vertices of the net are equivalent. This
follows from the definition of Z, which is invariant
under translation through any lattice vector.

(b) The "isotropic group" of all symmetries of
Z fixing the origin, comprises the 5t permutations
of the coordinates with or without an overall sign
change. It has therefore 240 elements.

(c) The cells (4-simplexes) of the net fill R4

without gaps and without any overlap. In other
words, the net really is a net. To prove this we
note that if any flaw or overlap occurs, it must
occur also in the neighborhood of some vertex.
Then by (a) it is enough to look near the origin
(00000). lt is easy to see that the only cells that
come near the origin are those related by one of
the symmetries (b) to the cello, with vertices

—', (00000), —,'(4 —1 —1 —1 —1), —,'(3 3 —2 —2 —2),

—,
'

(2 2 2 —3 —3), —,'(1111—4) .

I

I

I

t

I

FIG. 4. A famil. iar simplectic net for R as the "nerve"
of a tiling.

But this subset of the vectors of type (ii) (see
above) is characterized by the ordering x' ~ x'
&x' &r' &x' for its coordinates. Furthermore, any
point interior to vo is a convex sum (with positive
coefficients) of the vertices of o, and thus enjoys
the same ordering. On the other hand, any point
in the neighborhood of the origin has some order-
ing of coordinates and will thus belong to that cell
(or those cells if it is on a boundary) whose ver-
tices are those of cr, with coordinates permuted to
match that ordering. Since there are exactly 5t
possible orderings and the same number of cells
("-o," is the same as o,), the assertion is proved.

Finally we introduce some general definitions
preparatory to listing some "incidence numbers"
for the net.

Definition: o
~ P (a and P are incident) if and only

if n is a subsimplex of P or vice versa.
Definition: S (p}=m-star of p= (o.cZ„:a

~ p).
Definition: I(m, k) =cardS (P) = number of m-

simplexes in the m-star of a k-simplex P. [I(m, k)
may have several values if there are k-simplexes
in the net inequivalent under any net symmetry. ]
Thus, for example, it will always be true that

(i+ k
m &k~ I(m, k)=, the binomial coefficient.

Here are some easily checked" incidence numbers
of interest or relevance:

I(1, 0) = 30, I(2, 1) = 8, 14,

I(4, 0) = 120, I(4, 2) = 4, 6 .

Notice that legs and bones both come in two in-
equivalent types. On the other hand, 0-, 3-, and
4-simplexes come in one type only.

B. Asimplectic net for S3 XR

The spherical character of the net to be des-
cribed is based on the 4-dimensional analog of the
octahedron, a "regular polyhedron" with four
pairs of "antipodal" vertices (Fig. 5). Each of
these eight vertices implies, for the net, an
event which recure periodically (with period 4} at
the same position in space and simultaneous to the
antipodal event. The 4 pairs are staggered in
phase by 0, 1, 2, 3, respectively. A precise des-
cription follows.

Let the vertices be represented as [t] or [t~] in
which t is an integer. Then two vertices [t,] and

[t,] or [t~] and [tg] determine a leg in Z, if and

only if ~t, —t,
~

~4, while [t,] and [I,*] determine a
leg if and only if ~t, —t, ~

~3. (Of course, [t~] is
the vertex "antipodal" to [t], and t is the "time. ")
As before we complete the description of Z as the
"nerve" determined by Zo and Z„sothat, e.g. ,
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In the next section we examine the time-evolution
and initial-value problems in terms of these nets.

IV. THE TOPOLOGICAL STRUCTURE OF

THE THATCH EQUATIONS

A. General considerations

FIG. 5. A regular "polyhedron" in 4 dimensions, re-
presenting a constant-time cross section of the net of
Sec. GIB.

any 5 mutually connected vertices determine a
cell of the net.

Let us show that Z is topologically a 4-dimen-
sional manifold without boundaries. I claim that
this is equivalent to the following conditions:

(1) Every simplex belongs to at least one 4-
simplex.

(2) Every 3-simplex belongs to exactly two 4-
simplex es.
(1) says that every point of Z has a 4-dimensional
"environment, " while (2) rules out any boundaries
or "bifurcations. " Detailed verification of (1) and
(2) is an easy, if slightly tedious, matter.

Next we indicate why Z is homeomorphic to
S3 & R. In the first place we can embed it in R x R

by the scheme

in which x is the vector in R4:

(1 0 0 0) if t -=1 (mod 4),

(0 1 0 0) if t =-2 (mod 4),

(0 0 1 0} if t= 3(mod 4)—,

(0001) if t=-4 (mod 4).

Then it is easy to see that Z ( R'&& R is a "cylinder"
of the form Bx R in which B is just the polyhedron
pictured in Fig. 5. Since B is thereby homeomor-
phic to the sphere S„Zis homeornorphic to S, x R.

Here are some incidence numbers for this net:

I(1, 0}= 14, I(2, 1) = 6, 8, 10,

I(4, 0) = 40, I(4, 2) = 4, 6.
Finally, we remark that this net for S3x R can
support only a crude approximation to any parti-
cular 4-geometry. Unlike the net for R' which has
no intrinsic scale and can be cast as finely as de-
sired over any continuous spacetime, this one
cannot be refined without producing a topologically
distinct net.

In the case of a purely metric thatch the basic
data l,&' for the action principle involve one num-
ber for each legof the net. Accordingly there is a
single variational equation associated to each leg.
What other legs of the net are involved by such an
equation?

A single term in the action (1) pertains to all the
cells of 6~(b) We .would thus expect the variational
equation of a leg A. to involve all the legs of

g,[$,[S,(X)]]. But because of the identity discussed
in Appendix B the thatch equation (3) involves only

8~(&). This is no doubt the simplectic equivalent of
Einstein's equations being only second-order des-
pite that the Lagrangian R is itself already second-
order in the metric tensor.

If y, e6,[&&~(X)], then we will say that "X implicates

B. The time-evolution problem

In this subsection we assume that everything is
known up to a given "time" and consider the prob-
lem of carrying the solution forward a step. The
next subsection will examine the problem of how

to "begin" a solution.
Take first the case of the spatially closed net

described above. (We discuss this in more detail
because there are fewer simplexes to deal with-
a closed space has less "space" than an open one. )
Suppose known all thatch quantities pertaining to
legs previous to t = 3 (we will say for short that
"all legs previous to t = 3 are known") and consider
how to extend this knowledge to t ~ 4 by means of
the thatch equations. In fact, only legs lying whol-
ly after t = -3 occur in the same equation with any
unknown leg, so it is enough to assume these
known. We will call the subnet lying wholly be-
tween t = +3 an "initial couche. "

Consider, for example, the leg [04]. Since
S,([4]) includes six other legs lying prior to t = 4,
the most we can really hope for is to find seven
equations in terms of which to solve for these
seven "new" legs. Happily there are exactly seven
legs which implicate both new and couche legs.
They are, as is easily checked, the seven extend-
ing forward in time from [0]. To express the sit-
uation in more detail, we have seven new legs

[4 0], [4 1],[4 1*],[4 2], [4 2*],[4 3], [4 3~]

and for them the equations of the seven legs
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[0 1],[0 1~], [0 2], [0 2*],[0 3],[0 3*],[0 4].
In other words, the seven "retarded" legs in

6,([4]) are determined by the equations of the
seven "advanced" legs in 8,([0]). By symmetry
the advanced legs of 8,[0*]will similarly deter-
mine the retarded legs of S,[4*], and together
these include all the unknown legs prior to t = 4.
Having thus advanced from t = 3 to t = 4, we can
continue indefinitely, and we see that each step
requires the solution of two sets of seven equations
in seven unknowns. Unfortunately, the equations
are nonlinear in the l&&'.

Notice, by the way, that in this scheme all
equations are utilized (as they must be since there
is exactly one for each leg) so that a solution
which begins consistent will remain so.

Turn now to the time-evolution problem for the
open-space net. We take the first affine coordinate
as "time" and assume known all legs prior to

e= 3

In the previous case it could be considered a
convenience that the 14 new legs for t ~4 fell into
two sets, each of which could be solved for separ-
ately. In this ease, however, it is crucial that
the equations fall into finite clusters in order to
avoid solving for an infinite number of unknown

legs subject to boundary conditions at spatial in-
finity, etc. Fortunately the situation turns out to
be completely analogous to the previous one with,
e.g. , the advanced legs of S,((00000)) providing
exactly enough equations to determine the retarded
legs of 6,(-5(4 —1 —1 —1 —1)). The only difference
is that there are 15 new legs in each cluster and

an infinite number of clusters rather than only
two.

C. The initial-value problem

In contrast to the continuum case the initial-value
problem involves thatch equations of exactly the
same type as does the time-evolution problem.
Where it differs from the latter is in its "topologi-
cal" structure —in the relation of what is to be
found to what is specified.

We begin again with the case of S, x R. As dis-
cussed in the last section, the problem is to spec-
ify consistently all the legs of the "initial couche"
contained between t = + 3. Of the 66 couche legs
there are 18 which implicate only legs of the
couche and therefore which imply constraints on
the initial-value data. Specifically, they are, as
is readily checked,

[-1 3], [-2 2], [-3 1],
[ 1*3*] [ 2*2*] [ 3~1*]

[-1 2], [-1 2*], [-2 1], [-2 1*],

The scheme which suggests itself is this: to
specify freely all the couche legs except for the
18 listed above, and then to solve for the latter
by using the 18 constraints which they themselves
provide.

As far as S, & R is concerned then, beginning a
solution involves the one-time solution of 18 equa-
tions in 18 unknowns, while continuing one begun
involves the repeated solution of two sets of seven
equations in seven unknowns.

In many respects the initial-value problem for
the net of R4 is similar to that just discussed. On
the other hand, the infinity of initial-value data
raises whole new problems which may or may not
be severe. Only further theoretical investigation
or experience with practical application will
clarify some of these questions.

At any rate, the initial couche for this net may
be taken as the subnet lying wholly between t = —-',

and t = + ', . (Except for the conventional factor of
—, this is just like the previous case. ) Observing
that a constraint leg is one which implicates only
couche legs (in other words, whose 4-star is in
the couche) one can count, without too much
trouble, 72 couche legs for each vertex at t = 0, of
which 17 imply constraints. We can therefore
specify Q of the couche legs and solve for the
remainder in terms of those specified and of ap-
propriate boundary conditions at "spatial infinity. "

And it is easy to see what the boundary conditions
should be. Assuming that we pick the "constraint
legs" as unspecified, and if we specify all others
in a region Q of the couche, then some of the con-
straint legs near the boundary of Q will remain
undetermined —namely those implicating legs out-
side Q. To specify these in addition to the noncon-
straint legs in Q is to impose boundary conditions
at ~.

Unfortunately there will be, in any practical
case, so many initial-value equations (almost 17
for each vertex at t = 0) that a direct solution is
probably out of the question. Instead one would

probably rely on a relaxation method, which, one
hopes would be appropriate since the initial-value
equations ought, in some sense, to be "elliptic"
in analogy with the continuum ease.

Alternatively, one might hope to begin some-
where at the "center" of the couche and proceed
outward, specifying data until some leg (which
must be still free) becomes determined by those
already specified. Assuming that such a procedure
is possible, there is the further requirement that



12 TIME -EVOLUTION PROBL EM IN REGGE CALC UL US 393

it be stable in the sense of not leading to some sort
of untenable behavior at spatial infinity. Again,
these questions need further study.

Lorentz transf ormation
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(A3)

APPENDIX A: THE CIRCULATOR OF A NULL BONE, AND

HOW IT ENTERS INTO THE THATCH EQUATIONS

Because a null bone is unlikely to arise in the
course of an actual calculation we have relegated
its discussion to an appendix. W'e discuss it here,
not only for logical completeness, but also for the
illumination shed by a "singular case" on a more
familiar situation.

1. Parametrization of null rotations

As we have seen in Sec. IIB the most general
circulator of a bone is a Lorentz transformation
fixing some 2-dimensional subspace of spacetime.
When the bone is timelike (spacelike) such a trans-
formation is a rotation (boost) characterized by an
invariant parameter called the angle (rapidity).
Similarly, the possible circulators of a null bone
also comprise a one-parameter set. But, unlike
the angle and the rapidity this parameter is not a
Lorentz invariant (it is not "dimensionless").
Nonetheless, there is an invariant implied by the
relation af the circulator to its specific bone, as
we now show.

LetM be a 4-dimensional vector space, with a
basis e„.. . , e4 in terms of which the scalar pro-
duct is

changes A. by a factor of n.
To examine this circumstance let 8' be any

"surface tensor" in the fixed subspace and set

ypv = ( g) ~yvaa+ (A4)

In particular, we can imagine that e~ and e, span
a bone b, that

1B= 2te Ae (A5)

0 0 0 1

0000
1000
0 0 0 0

or comparing with (A2),

(A6)

In other words, V (= V,") is the infinitesimal gen-
erator for A, whence A(X) = e . Noting that

and that A(A) is the circulator of t/. Iln applica-
tion to a net we would refer all tensors to an arbi-
trarily chosen cell of S,(b).] Then we calculate
successively

( g)1/2 II23 II32 & y y I

Thus e, is null and, together with e„spans a null

2-subspace, , of M. What is the most general
Lorentz transformation fixing e2 and es (and
hence dI)? It is

V'=- VVV= 0

we can express A finally in the form

A(X) = e = 1+ /I. V+ —,'/I. 'V . (A8)

+1 00
0 1 0 0

A yll +II 0( g)1/2 & IInB (A9)

The previous paragraph shows that, relative to
8 and A, X is invariantly defined by the relations
(A4) and (A8). Furthermore, (A4) in the form

0 0 0 1

Since a circulator preserves orientation, we can
ignore the minus signs and write simply A(A).
Then

shows that V has "dimensions" of I.', from which,
with (A8), X must have "dimensions" of L ' The.
case of a non-null bone is precisely analogous
except for one thing: One can normalize V through
the requirement

so that A. plays the role of an angle. Nevertheless,
it is not an invariant because, for example, the

and define 8 or q relative to this dimensionless
tensor. Inthepresentcase, however, V. V =-4B B
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yp +pa( g)1/2& ~a 8

XV

(A10)

(A11)

Calculating as in the previous section one finds

= 0, and one is thrown back on (A9) with its linear
dependence on B.

2. An expression for the defect of a spacelike bone

Consider a pure boost A and some surface tensor
B"" in the plane fixed by A. As before define

sums. For a timelike bone (++ quotient space)
the two are obviously equivalent, but for a space-
like bone (-+ quotient space) the definition of
"angle" involves some subtlety, it being evident,
for example, that 6I cannot increase continuously
from 0 to 271 during a complete circuit of the bone.

The basic property of angle is additivity on
segments of the plane, so that 8(x, y) in Fig. 6 is
independent of where z intervenes. But this ad-
ditivity is tied up with the relation

q = ~(2(a, a))'", (A12)
x ycos8(x, y) =

~

(B2)

where t! is the defect of Sec. IIC if A is the
circulator corresponding to circulation in the
sense indicated by V"'."

The important point now is that A. is a continuous
function of the metric thatch L;,

' as can be seen
from (A10) and (All) since A and g are themselves
continuous. Thus as b becomes null, A. goes over
into the null parameter A. of the previous subsec-
tion.

3. Contribution of a null bone to G(ij)

which might, therefore, be able to define 9 in
general. However, whenever x or y is timelike
there will be an ambiguity in the sign of the right-
hand side, not to mention that cos8 itself deter-
mines 8 (which is in general a complex number)
only up to a sign. There are two consistent ways
(complex conjugates of each other) to resolve
these ambiguities, and the following defines one of
them.

If x, y are vectors, then define

If 5 = [ijk]EZ„ t-hen from Eq. (3}its contribution
to G(ij) is

x = X, X'",

~
x A y ~

= (xA y ~
x A y) =—((xA y, x hy) j2!) I2,

(B3)

(A13)

—SX(lu' —I;a —l,„), (A14)

with X defined by (A4) and (A8). This is b's con-
tribution to G(ij )

APPENDIX B: PROOF THAT ZAbq=O

If b is null, then A and (see Sec. II C) q vanish,
leading to 0/0. We can, however, evaluate (A13)
as a limit.

As before we refer everything to some cell in

Q, (b) and work with b spacelike. Then, in the first
place, o(b) = -1 and

A(k) = (-,'(a, a))"'
Combining these with (A12}furnishes for (A13)

in which the root is by definition positive imaginary
or positive real for negative or positive argument,
respectively. Then we determine 8 from the
formulas

cos8=

/xn. y [

and complete the definition by stipulating

0 & Re6I & vr.

Let us check, for example, the cosine of the ad-
ditivity condition illustrated in Fig. 6. To ensure
that z is "between" x and y we can conveniently
put (since the magnitude of x is irrelevant)

In deriving the metrical thatch equations we
used the identity

QA(b)6q(b) = 0, (»)

z = tx+ (1 —t)y, 0 &t &1. (B6)

where the sum is over all the bones of the net.
Regge2 has proved this for a positive-definite
metric; this appendix extends his proof to the
signature -+++.

1. Spacetime "Trigonometry"

The notion of defect can be defined either in
terms of parallel transport or in terms of angular Fl.G. 6. 8 (x', y) =8 (x,z)+8 (z, y).
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Then our condition reduces as follows:

cos8(x, y) = cos[8(x, z)+ 8(z, y)],

cos8(x, y) = cos8(x, z) cos8(z, y)

—sin8(x, z) sin8(z, y),

(x, y) ( x, z) ( z, y) x n z I I
z n y I

2. Derivation of the identity

If oEZ, is a cell of the net, then let F(j ) repre-
sent the face opposite vertex j, B(jk) the bone op-
posite [jk] (geometrically the intersection of F,
and F,), and 8(j, k) the angle contained between
F(j) and F(k). We will prove the following.

Lemma.

Izl'&» v&= &» z&&z y&
—l«zllzny I

IB(jk)Ib8(j, k}= 0
A, jg a

(B10)

The final equality is readily verified using (B3)
and (B6).

From (B4) it is easy to work out the path of
(9 in the complex plane during a complete circuit
of a spacelike bone (Fig. I}. Taking differences
shows that an angle within region I or ID is posi-
tive pure imaginary, while one in II or IV is nega-
tive imaginary.

Finally, what is the formula for the action S in
terms of defect angles as defined above? Let (9 be
the defect, B a tensor representing the bone, and

IBI= &BIB&"' (B7)

with the same convention that
I
B

I

- + i or +1. In
fac, if A is the (real) area of the bone as used
in Sec. IID, then

A =
I IB I I (i.e., absolute value of IB I)

and a detailed check of the sign conventions as
indicated, e.g. , by Fig. 2, reveals a simple formu-
la for S valid in all cases:

if 5 denotes a variation in the squared lengths
L»' of the legs of o. Then the desired identity
(Bl) will result from summing over all the cells
of the net:

g IB(b)Ib8(b)= 0,
b

or by (B8)

i Ab Gab =0.

The following derivation of the identity (B10)
rests on three facts. The first follows directly
f rom Stokes's theorem:

F(f) = 0. (Bll)

The second involves the volume Io I
of o and the

sine of 8(i j}:
lo I= lsin8(f j) IF(f& I IF(j }I&IB&fj& I

IA(b)II(b)= IBI8(b),

IS=+ IBI8(b).

(B8)

(B9)

which follows by elementary geometrical reason-
ing since formulas such as area= —,

' base &height
remain valid under the definitions given in sub-
section 1 of Appendix B as one can check easily.

llaag

( Il

/

0 ~ Re&

FIG. 7. The dashed lines are "at the point at infinity" in the complex 8 plane.
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Finally, we need the identity

&Hf) IF(j )& = —IF(f) I IF(j) I co«(f j),
which is similarly easily checked. [The minus
sign merely reflects that F(i} and F(j) face each
other if both are given, say, outward orientation. ]

Now we calculate

icos 8 = —sin8 58,

)B(58 = —)B (/sine 5cos0

IB( ~) I [-5coss(f j)]sine i j)

=-'~-'IF(&[IF(j)I| & (
IF(f) I IF(j) I

= l —[&&F(f) i F(j)& —&F(f) IF( j)&&» IF(f) I

—&F(f}~F(j}&~in~F(j}~].

Now if we sum on i [j] the third [second] term
vanishes by (811}since F(i) [F(j)] enters only

linearly. The same argument applies to the first
term, completing the proof of the lemma.

APPENDIX C: NOTATIONAL CONUENTIONS

The metric g„,has signature -+++.
If a, b, c are vectors, then

apb = a 3 b -b(3a,

aab hc = aobS c+ b Scsa+c(sab
—c Sb Sa -b Sa8 c —a(3cSb, etc.

Z = the net for spacetime.
Z = set of all m simplexes of Z.
"Vertices, " "legs, " "bones, " "cells" refer, res-

pectively, to Zp Zy Zg Zg.
[jkl]: an element of Z, with vertices [j], [k],

[f].
S„(a)= them-star of a.
S„[S~(a)]= the m-star of the p-star of a.
&v, (u& = v"(u„, &ru, y& = (u'8y „etc.
&&u~ Q = &&u, Q&/m! form-forms u&, Q.
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See Appendix C for definitions of Z4, tij], etc.
The unlikely possibility that A = 0 is considered in de-
tail in Appendix A.

'See Regge (Ref. 2) for a beautiful proof of this from
Euler 's theorem.

Except for the singular case of zero curvature.
9"Topology" here refers to the number and interconnec-

tion of the cells chosen to approximate a given mani-
fold, not necessarily to the overall connectivity of the
manifold itself.

' P. Alexandroff, Elementary Concepts of Topology
(Dover, New York, 1961). The nerve comprises a ver-
tex for each set in the covering, an edge for each pair
of overlapping sets, a 2-simpl. ex for each triplet of
mutually overlapping sets, etc.
In deriving such relations it is often convenient to char-
acterize a simplex by its barycenter, for example, era

above by the vector —, (2 1 0-1-2), which helps clarify
the action of the symmetry group.

~ ei f "indicates" the sense e f.


