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Elementary particles in a curved space. IV. Massless particles*
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If physics is stable with respect to a class of perturbations of the spacetime metric, including that of "small"

constant four-dimensional curvature, then it may be shown that (1) left-handed and right-handed neutrinos

are distinguished by a superselection rule; (2) magnetic monopoles cannot exist; (3) the conformal symmetry

associated with the field equations for massless particles with spin 0, &, and 1 is spontaneously

broken —except in the case of neutrinos with fixed chirality.

I. INTRODUCTION

The motivation for this investigation is to seek
an understanding of the enigmatic neutrino. The
neutrino, like the two other known massless par-
ticles, plays a major role in a fundamental inter-
action that is weak enough to be treated by con-
ventional methods, including perturbative quan-
tum field theory. Yet the only known reason why
the neutrino mass should vanish is that it then
becomes possible to reduce the number of degrees
of freedom —from four to two by means of the
chiral projector —,(1+ y, ). Even this is inaccurate
since, in fact, four types of neutrinos actually
exist: the left-handed v, and the right-handed
v„with their respective antiparticles. (We think
of v, and v„as the components of a single four-
component Dirac field. ) It is thus more precise
to say that masslessness makes the separation
of the left-handed and right-handed neutrino states
into invariant superselection subspaces possible.
(One of our results is that it also makes it neces-
sary. )

The idea that will be pursued here is to attempt
to gain some further insight into the meaning and
ramifications of masslessness by generalizing
the usual Minkowski-space arena to allow for the
possibility of a nonvanishing constant curvature.
The result will be directly relevant to flat-space
physics if we assume, as we shall do in the dis-
cussion that follows, that the mathematical de-
scription of physical phenomena is stable with
respect to a class of perturbations of the space-
time metric that includes the metric character-
ized by a "small" constant curvature. In other
words, the suggestion is made to invoke a prin-
ciple of continuity with respect to the curvature
( p) near p = 0, in order to impose new limitations
on physical theories. Our exercise may be help-
ful in guiding the development of physical theory
in another way too, for it is plausible that, when
several different notions appear to be basic to a
phenomenon in flat space, the more fundamental

among them is the one that remains so in a more
general context. The main results are the follow-
ing.

Theo~em I. Left-handed and right-handed neu-
trinos are distinguished by a superselection rule.
That is, they are characterized by different values
of an exactly conserved quantum number. This
follows from the more general conclusions con-
cerning the domain of the Hamiltonian that are
obtained in Sec. V.

Theorem II. Free magnetic monopoles cannot
coexist with electric charges. This is because
the field associated with a magnetic-monopole
source describes a state that is not in the domain
of the Hamiltonian. This is shown in Sec. VIII.

Theorem III. The field equations for massless
particles of spin 0, —,', and 1 are "conformally
invariant, "but the group of conformal transfor-
mations cannot (except in two special cases) be
implemented by unitary operators acting on the
physical states; this is simply because the do-
main of the Hamiltonian is not conformally in-
variant. The exceptions are the realistic case
of chiral neutrinos and the unrealistic case of
self-dual photons. In all other cases considered
the conformal invariance is spontaneously broken
(Secs. III, V, and VIII).

The problems of massless particles and con-
formal symmetry in curved spaces have been
studied extensively in the literature, ' but always
from the point of view of the formal invariance
of the field equations. The nature of our results
makes it clear what is the new element in this
paper, and also why it was necessary to restrict
ourselves to a space of constant curvature. '

de Sitter space can be visualized as (the cover-
ing space of) a hyperboloid y„' =—y,' —y,

' —y,
'

—y, '+ y,
' = p

' (where p is the curvature constant)
in a five-dimensional pseudo-Euclidean space
with signature + ———+.' The most useful set
of intrinsic coordinates is y, t, where the time t
is defined by Eg. (2.6). The group of motions is
the universal covering group of SO(3, 2) and the
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generators are denoted L„q, o., P =0, 1, 2, 3, 5.
The irreducible representations that are relevant
for elementary particles are denoted D(E„s).'
Here E, is the lowest among the eigenvalues E of
L» and s is the angular momentum of the lowest
eigenspace. Whenever we mention "the Casimir
operator" we mean the bilinear invariant Q. In
D(E„s) we have

Q —= —,
'

L„SL„B E,(E-—,—3) + s (s + 1) .

E-Eo
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In the flat-space limit p-0 the limits of L„„and
P&—=p'~'L» (p, , v=0, 1, 2, 3) become the generators
of the Poincare group. Thus, p'"E is the energy
and s is the spin. The mass, well defined only
in flat space, is given by

0 I 2 3 4 J

FIG. 1. Weight diagram for D(EO 0). Each dot repre-
sents an SO(3) irreducible (2J +1)-dimensional. multipl. et.
The patterns extend upwards without bound, in the angle
bounded by the two broken lines.

m=»mp'I'E (1.2)

A representation of the Poincard group with m40
is thus obtained as a limit that lets E,- . ' Con-
versely, any fixed choice of E, describes a par-
ticle that is massless in the flat-space limit.
This fact leaves a great deal of latitude for the
definition of "massless" in de Sitter space. We
expected that to study and perhaps resolve this
ambiguity would give us a deeper understanding
of the nature of masslessness. We therefore
studied low values of E„ looking for special
phenomena associated with particular representa-
tions. The results are as follows: (i) The very
remarkable Dirac singleton representations' have
too few states to allow a field-theoretical applica-
tion. (Details are not reported here. ) (ii) For
s =0, the only "special" values of E, are those
associated with conformal invariance, E,=1 or 2.
(iii) For s = —, the value E,= & is distinguished by
the existence of a chirality operator and by con-
formal invariance. (iv) For spin 1, only E,=2
is consistent with gauge invariance; this is also
the value associated with conformal invariance.
(v) For spin 2, only E,= 3 allows gauge invariance.
(Details are not reported here. )

The weight diagrams for s=0, —,', and 1 are
shown in Figs. 1, 2, and 3.

To complete this study of massless particles in
de Sitter space we should have considered s = 2

and s = 2 as well. In particular, the following
question suggests itself: Can Einstein's theory
of gravitation be reinterpreted as a field theory
of massless spin-2 gravitons in a space of con-
stant curvature? In the (unlikely) case that this
should be denied we would regard as fortuitous
the fact that it can be done in flat space. '

[Some unusual conventions: de Sitter space
coordinates y, n = 0, 1, 2, 3, 5; Dirac matrices
y~ = (y„y„y» y»i ); 'Q, 'g, 'A„, 'F„8 are the
"duals" of Q, g etc].

II. SPIN 0, GENERAL

Let Q(y) be a scalar field, on which the action
of the infinitesimal generators L„s of SO(3, 2) is
given by

L 8 =i(y 88 —y8e„) .

The second-order Casimir operator is

Q=2L„BL 8 N(N+ 3) —y——2s2,

&-=Xa~n

and the wave equation is

I. 0 -Eo(EO —3)] y(y) = o .

(2.1)

(2.2)

(2.3)

(2.4)

iL

E-Eo ~

2 4

)
— 4

0- 4
I

i/2

I I I I

3/2 5/2 7/2 8/2 J

FIG. 2. Weight diagram for D(EO, 2).

As was explained in the Introduction, E, is the
lowest value on the spectrum of Lo5.

Ashen E, is sufficiently positive one finds the
following complete set' of solutions of Eg. (2.4)'.

JEAN OEL 4N(y) "e"' '
I y I

'»
x,E,( K, /f —L ——,'-; E—, ——,'; —1/py') .

(2.5)
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Here C» is a normalization constant and

(y2 +y2)1/2(y2+ 1//p)l/2

e'""-=(y, -iy, )/I',

Z-=-;(E -E,—I.) .

(2.6)

E--Ep '

3 — x

~X oX

The function Q»„ is a simultaneous eigenfunction
of L», L', and 1.„, with eigenvalues E, L(L+1),
and M in the range

K Oy 1p ~ ~ ~ j L Op lp ~ ~ o
p

and, of course, M= —L, . . . , L. With a proper
choice of C» one has'

Ili~~ dX = &@@i&I.l, ~ 5g@~ q
2.7

(dy) =-dtd'y =2p "'5(y' —p ')d'y. (2 3)

These integrals converge when E,o —,'.
The action of the differential operators (2.1)

induces an algebraically irreducible matrix rep-
resentation of the SO(3, 2) algebra on the basis.
This representation will be denoted D(E„O). The
matrices are Hermitian if C» is determined by
(2.7). Using the same expressions for the C»
when E, - —,

' (analytic continuation in E,), one
finds that the algebraic representation remains
irreducible and Hermitian when —,'& E, - &.' The
representation can be integrated to an irreducible
representation of the SO(3, 2) group, by unitary
operators acting in a Hilbert space, if Ep& —, .
When Ep+ z we can define the Hilbert space by

(( „t )= J /"(v)t .(y)(&y), . (2.9)

When 3&Ep &
& this integral does not converge and

we have to define the Hilbert space as the set of
functions of the form

(- x

0 I 2 3 4 5

FIG. 3. Weight diagram for D(EO, 1). Each dot or
cross represents an So(3) irreducible multiplet. When

Ep = 2 the weights indicated by crosses belong to an in-
variant subspace that carries D (3, 0)-compare Fig. 1—
and the dots give the weight diagram for the represen-
tation D' (2, 1) used by electrodynamics.

that remain irreducible whew restricted to the
Poincare group IP Although the conformal group
in de Sitter space has the same structure as the
conformal group in flat space, there is no irre-
ducible representation whose SO(3, 2) restriction
is e(luivalent to D(E„O). However there is a very
well-known representation that reduces to the sum
of only two irreducible SO(3, 2) components, name-
ly, D(2, 0)+D(1, 0). These have the same value
of the Casimir operator, Q = —2, and may there-
fore be expected to have the same wave equation.
Please see the Appendix.

In fact, E(I. (2.4) has a second set of solutions,
'Q»„say, given by the same formula (2.5), but
with E, replaced by Ep 3 Ep Thus

4(X) Q» xA»)/(((X) (2.10)
Q»/)/~D(E„O) (E,=2)

'y» „~D(E,', 0) (E,' = 3 -E,= 1) .

with square summable coefficients (the l' norm):

(2.ii)

We wish to explore low values of E,. We want
to know what values of E, are "exceptional, " and
whether unitary representations in the range
& &Ep ~

& are relevant to field theory. The only
value of E, for which special phenomena have
been found is Ep= 2; this case is already known
to be of interest in connection with conformal
invariance.

III. SPIN 0 Ep =2

In flat space one is concerned with special ir-
reducible representations of the conformal group

The prescription given in the preceding section,
for normalizing the wave functions when Ep& ~,
determines all normalization constants except for
a single multiplicative factor common to all Qsz, „.

The operators L~, that with (2.1) complete the
algebra of infinitesimal conformal transforma-
tions, can be represented by (see the Appendix)

L()n p (3 BLBu f Jn)
A

&~- I/ag &~
I/2 ~~ (3.i)

They do not, in general, commute with Q, but the
wave e(luation (2.4) is nevertheless invariant if
the eigenvalue E,(E, —3) is e(equal to —2. They
are not symmetric with respect to (2.9), but this
is irrelevant since the basis functions 'Q»„are
not normalizable in that sense. The operators
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(2.1) and (3.1) induce on the basis functions Q»s,
'Q»„an irreducible matrix representation of the
conformal algebra. In particular, L~ transforms
the Q»„ into the 'Q»„and vice versa. The ma-
trices are Hermitian provided only that the pre-
viously undetermined common normalizer of all
the 'P»„ is chosen appropriately. The represen-
tation can be integrated in the same sense that
D(E„O) can be integrated when 2&8—o

~ o, on the
l' norm.

The wave equation (2.4), in terms of the vari-
ables y and t, reads

(3.7) as follows

H * — * H d'y (3.8)

In spherical coordinates (3.3) takes the form

H =r-'s„(r'+ pr4)s„- —,+ 2p.L
(3.9)

This is formally symmetric with respect to the
ordinary L' metric, hence, the failure of (3.8)
to vanish has to do with poor convergence in the
limit r ~. If Q, and Q, have the same angular
quantum numbers, then (3.8) reduces to

&=-s;(5;&+W; y;)s;+ 2p.

The canonical quantum-mechanical metric is
given by

(3.2)

(3.3)
l dr[(s„r~s„R,)*R,—R,*(&„r&„R,)], (3.10)

0

where R; (t, r) is the radial part of Q;(t, r, &).
the other terms are strongly convergent and there-
fore cancel out. Rearranging we get

d p4.~- l,4*'' 4*
pY

(3.4) l dr&„[(r S„R,)*R, R,*(r—&„R,)] .
0

(3.11)

it has some interesting properties. As far as the
Q»„are concerned one finds that orthonormality
as defined by (2.7) means exactly the same as

This vanishes if and only if

lim [(r S„R,)*R, R,*(r s-„R,)] =0.
f' ~00

(3.12)

(4»M& 4E'L'N') EE' 5LL' 4N' (3.5)

The 'p»„could not be normalized by (2.7), but
they are normalizable in the sense of (3.4). In
fact, the normalization condition

( 4»ss 48'L'lf ) Es LL ' (3.5 ')

is precisely the one that makes the matrices L~
Hermitian.

Thus, the 'Q»„seem to have gained respecta-
bility —but there is a catch: the lowest-energy
eigenfunctions

oooo (&o+'&o) a"d ~choo (&o+'&o) (3 6)

are not orthogonal, although their energies are
different. Orthogonality between two states with
unequal energies depends on the fact that (P,
-=p '"L„=id/dt )

r
= ) [(P,y, )+i&,y,

4,*is (P.A.—)1 d'X/pY'.

(3.7)

This vanishes if P~ is self-adjoint on a domain
D(P, ) with respect to the metric (3.4) and if Q „Q,
both belong to D(P,). Since the functions (3.6) are
not orthogonal they cannot both be in D(P,).

Using the wave equation (3.2) we can rewrite

Equation (2.5) shows that, as r-~, p»„behaves
like r '+ cr '+, while '$»„behaves like
y '+ c'x '+ ~ ~ ~ . Therefore, let us take

R, =a, (t) -'+ b,.(t) -'+ ~ ~, i =I, 2.
Then (3.12) reduces to

a,*b, —5, a, =0.

(3.13)

(3.14)

This means that, if Q =R(t, r) Y~„(D) and R (t, r)
has the expansion R =a(t)r '+ b(t)r '+ for
large r, then a(t)/b(t) must be a fixed real num-
ber (or infinite) —the same for all Q in D(P,). Be-
cause the energy spectrum associated with Q»„
[and hence with b(t)] is different from that of
'Q»„[i.e., a(t)], we conclude that the only pos-
sibilities are (i) a(t) =0, (ii) b(t) =0. Thus, D(P, )
may be taken to be spanned by the Q»or the
'P»„, but not by both.

It follows that the physical states do not carry
a representation of the conformal group (or even
the algebra), this in spite of the invariance of the
wave equation, and in spite of the fact that the
algebraic representation induced on the solutions
is equivalent to a unitary one. Vfe are in the
presence of a perfect example of a spontaneously
broken symmetry.

It may be objected that the argument was based
on the interpretation of the theory as a quantum-
mechanical system, that may be irrelevant since
a complete quantum-mechanical interpretation is
impossible in view of the appearance of negative-
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energy states. However, the requirement of
completeness with respect to (3.4) can be based
on the unitarity of the field-theoretical S matrix
in perturbation theory. The solution of the in-
homogeneous wave equation

(0+ 2)4(y) =f (y)

1S

where"

Here N = y 8 as before, and

I( Z0IBM~g 2 j2~6 yoi ~8

=N- ynyay8~8 (4.3)

The last expression for Q in (4.2) is an application
of Eq. (1.1) to the case s =-', , the others are
simple to verify directly.

Equation (4.2) shows that Q is essentially factor-
ized by w, so that an appropriate choice of wave
equation is

(K —N))c) = 0

D (y, y') =g y, (y)4,*(y')e(i - i') (3.15) or

(2iZ„B y„88 —N)( = 0 . (4 4)
Here the sum runs over the physical asymptotic
states. Thus

(Q+ &)I& (v, ) ')f()")(d)").f(y),

According to (4.2) the eigenvalue N of K is re-
lated to Eo by either Ep=-N- & or Eo=N+~2. We
may take P to be homogeneous of degree N, then
as (4.3) shows, Eq. (4.4) reduces to the simpler

which is equivalent to
ye~ e=0 (4.5)

Q 4g (y)Pg*(y')i& g f (y') Y„=f(y)

Therefore, the wave functions that enter into the
sum that defines D~(y, y') must be complete with
respect to (3.4). On the other hand, unitarity of
the S matrix requires that these wave functions
be precisely those of the physical asymptotic
states.

[The sum in (3.15), extended over the normal-
ized (j))~~„(y), was calculated in Ref. 3, for arbi-
trary Eo. Vfhen Zp =2 it reduces to

Q Ass. ~(y)AA, a(y') = (p/4&')(&' —1) ', (3 18)

2iZ~g y~88 —N dy (4.8)

The current

~8=2(C)Lacy 4

satisfies y& J&=0 and, if P satisfies (4.4),

(4.7)

However, this equation" does not by itself fix 8pj

therefore, it does not define an irreducible rep-
resentation, and it is not a suitable wave equation.
Equation (4.4) was proposed by Dirac.

The Lagrangian for (4.4) is [with P
—= g*r, and

the volume element (dy) defined by (2.8)]

with z —=py y'. In the limit p- 0 this becomes the
familiar (- I/2v')/(x —x')'. Similarly,

Q 'psg~(y)'Appal(y') = (p/4+)z(z' I) '- 01

88 Jg =0

—J +B.J'= 0.t
dt

(4.8)

(4.9)

which has the same flat-space limit. ]

IV. SPIN ~, GENERAL

Here we have introduced the variables i, y [see
Eq. (2.6)] and

Let g, (y), a=1, 2, 3, 4, be a spinor field. The
infinitesimal generators of SO(3, 2) are

L~s=i(y~s8 —yes~)+ ai(r~r8 rgr~)-

J' = (y J, —y, J,)Y ' = P I' g,
I'=1+i(r y/Y) exp(ir, p'~'t) .

Integrating (4.9) we find

(4.10)

(4.11)

(4 I)

where r„=(r„r,i), r„=(r„r, i), and r—„rare
the usual Dirac matrices. Vfe note the following
expressions for the Casimir operator:

Q = —'L„8L„8=N(N+ 3) —y'8'+ K+ —,

J'd y=od
dt

(4.12)

which expresses the fact that fJ'd'y is invariant
with respect to the transformations generated by
&o.

Since
=K(k+ 4)+ ~g

=Z, (E, —3) + —.'. (4 2)
=pl/2 L i d I pl/2y

o o5 dt 2 p (4.13)
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the time dependence of a stationary state is con-
tained in a factor of the form

The ground-state wave function is
I yN ~ rPOy-M-2g (4.2s)

exp[-ip"'(E+ 2r, )—t] .

It is convenient to reduce this to a pure phase
factor by introducing

g(t, y) -=exp(2 z p'" r.t)P(t, y) . (4.14)

Substituting this into the wave equation (4.4) we
obtain the Schrodinger equation

(4.15)

wth

I'=I'~, 2=1 +2r y/I',

a=-2'(yr', ir r a] —(N+2) p' 'r, .

(4.18)

(4.17)

As either (4.12) or (4.15) shows, the canonical
quantum-mechanical metric is

(4.18)

The matrix I' is Hermitian and positive definite.
When N is sufficiently negative one finds" for

(4.4) a complete, discrete system of basis vec-
tors (E«(y), simultaneous eigenvectors of L„,
L', and L». The spectrum is

1 IE Ep Oy 1y 2y ~ ~ ~ y. + g 7 2p ~ ~ ~
p
E Ep + p y

(4.19)

and E,= —N- —,'. The wave function for the ground
state is

4&»z , /2M
N N (4.2o)

4« —P4« (4.21)

where P is the matrix introduced by Giirsey and
Lee».

2p" rr-v-, r =2r. r, r, r2-
Indeed, one easily verifies that

(4.22)

where u is a constant spinor such that y, u = u.
The algebraic representation induced on SEJM by
the differential operators (4.1) is Hermitian and
irreducible if N&-2, that is, Ep)1. The wave
functions are normalizable in the metric (4.18)
under the same condition.

For other values of N one finds for (4.4) a dif-
ferent set of solutions, with essentially the same
properties, but with ground-state energy E,'
=N+-,' . They are given by

where u is a constant spinor satisfying ypu =u.
The algebraic representation induced on ')E~M by
(4.1) is Hermitian and irreducible if N& ——,; that
is, E,'& 1. Noting that I'rI'=r/p Y2, we see that
the wave functions are normalizable in the metric
(4.18) under the same condition.

To summarize: When N( —
& the first set of

solutions form a complete orthonormal basis for
the representation D( N- -—,', —,'). When ¹

—2

the second set of solutions carry the representa-
tion D(N+~2, —,'). When ——,& N& ——,

' both sets are
normalizable and this interval deserves some
further investigation. The midpoint, N= —2 (or
—N- —,

' =N+-,') is also the only case in which the
chiral projections —2'(1+ p) are defined on the do-
main of the Hamiltonian.

V. SPIN 2, Eo= z

The operators L„„ that with (4.1) complete the
algebra of infinitesimal conformal transforma-
tions, are (see the Appendix)

=P ($8LE — 2X )

=ip '"S„—i p'/2(N+ 1)y„+ip2' r/2y BrB. (5.1)

The commutator [L~, M] is equal to iy„(M + 2);
hence, our wave equation (4.4) is invariant only if
N = —2. In this case E,=E,=

& and the functions
'P" carry two identical copies of the repre-

sentation D(-,', —,') of SO(3, 2). Note that (4.21) re-
duces to

'g«= p)E«(when N= —2) (5.2)

ol
A

NE«WE«s (5.3)

P
—pI/2 yrI 0

The matrices P and P satisfy

p2 p2

(s.4)

(5.5)

The operators L„, transform the PM into the 'P"
and vice versa. Together, PM and 'g" carry a rep-
resentation of the conformal algebra. Unlike the
spin-0 case, however, this representation is re-
ducible. The operators (5.1) commute with P and
a pair of conjugate" irreducible representations
are induced in the chirality subspaces spanned by

fP, ~+2$ =o, (4.22) I N N 1+1 N
2 ( 4«+ 4«) -

2 4«. (s.s)

so that

(K —N)'P = —P(E+ N+ 4)g 4=0. (4.24)
As in the spin-0 case, we must determine which

states span D(P,) The analog of (.3.8) is
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J~ [(Ift,)'0, —Pi(&4.)]d'y.

Using (4.17) we reduce this to (i/2 times)

d y&' Y, yyo I'

The condition for this to vanish is, simply

(5.7)

(5.8)

parts of L 8 and note the formulas

M„8MB' =y„Bzys+ B„y'88 —y„(N+ 7)BB

—8„(N 2)—ys —5„8,

2M„BM B=N(N+3) —y Bz, N= yB—„
2 ~ag~nB 4

p

(~us~n8}ar ar Bays yaBT 25am

(6.2)

(6.3)

(6.4)

(6.5)

(5.9}

Asymptotically, up to a common factor,

gz„=r 'u+ r '(1 —iy y)v, (5.10)

'g,„=r 'r(l+z-r y)u. (5.11)

(ut, yy. yu,' —u,'~ yy yu, )dQ =0. (5.13)

This is identically zero in special cases —for ex-
ample, if P, and P, are in the same energy eigen-
space —because of the cancellations brought about
by the integration over angles. For P, to be self-
adjoint, however, D(P,) must be defined by the
condition that, if pa D(P,) then u' must be a
fixed real multiple of u—the same for all P.

A complete set of physical basis vectors that
span D(P, ) is given by

4's~u(y) =e'"4.u(y) (5.14)

where ~ is a fixed real number. If e =a zz/2, then
these states are states of fixed chirality; in that
case only do the physical states carry a (unitary,
irreducible) representation of the conformal
group.

One implication of this result is that, if neu-
trinos of both chiralities exist, then the states
must be distinguished by a superselection rule;
that is, by an exactly conserved quantum number
(the muonic number).

VI. SPIN-1 FIELDS

The spinors u and v depend on t and on the angles,
and both are in the positive eigenspace of y„' y
is the direction of y and r =

~ y ~
. Take, for i = 1, 2,

f; =r 'u; +r 'y(1+iy y)u,'+r '(1-i y y)v;; (5.12)

then (5.9) reduces to

The Casimir operator is thus

Q = 2 L~BL„8=N(N+ 3) —y'8'+ z+ 4. (6.6)

Because the equations

~n&e =o Xn&n =o (6.8)

are invariant, they must be satisfied in an irre-
ducible representation.

Differential subsidiary conditions give rise to
great difficulties when one attempts to introduce
interactions. The only known remedy is the
Fierz-Pauli scheme, which consists of finding
a Lagrangian such that both the wave equation and
the subsidiary condition are consequences of the
variational equations. We write down the most
general wave equation

(6.9)

with the following properties. (1) Equation (6.9)
is equivalent to the set (6.7), (6.8). (2) It is a dif-
ferential equation of second order. This means
that Z„B is a sum of Q5„8 and the type of terms
that occur on the right-hand side of Eq. (6.2),
plus a term of the form y ys, with seven arbi-
trary, complex coefficients. (3) The Lagrangian

A~~Z~BA. g dy (6.10)

must be real.
We find that Z 8 must be

2~8 =[(N+ Eo)(N'+ 3+ Eo) —y'8'] 5„8+y~ay8

+ y„Bzys+ B„y288 —y~(N+ 4)88 —8„(N+ 1)ys,

If E, is the lowest eigenvalue of 1.05, then by Eq.
(1.1) the value of Q is (E,—1)(E,—2) and the wave
equation is

[N(N + 3) —y'8' + z + 4 —(E, —1)(EO —2)]A = 0 .

(6.7)

Let A„(y), u =0, 1, 2, 3, 5, be a vector field. The
action of the infinitesimal generators L„s of
SO(3, 2} on this field is given by where a is an arbitrary real constant. Now

(6.11)

(L„BA)o= i(y„88 —ysB~)AO+i B~~A8 —i 580A„.

(6.1)

Let 1N' 8 and Z„B be the differential and constant

y„Z„BA&=[a —(E, —1)(E,—2)] y„A„,
B„g„BA8= —(Eo —l)(EO —2)B„A„+(N+ 5)ay~A„.

Equation (6.9) thus implies (6.8), unless
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(E,—1)(E,—2) =0. The only interesting exception-
al case is Ep=2, since there is no unitary rep-
resentation with E,= 1. The term y ay8 turns out
to be uninteresting and will henceforth be dropped.

This result is closely analogous to what is well
known in flat space: The Fierz-Pauli scheme is
applicable to spin-1 fields unless the mass van-
ishes. The failure of this scheme for electro-
dynamics is of course fundamental; it is the
sine qua non of local gauge invariance. The choice
E,=2 is the only one that can lead to gauge-in-
variant electrodynamics in de Sitter space.

Solutions of (6.9) of the form A„=B„A + y A'
do not exist unless (Ep —1)(Ep —2) =0, and in that
case they solve (6.9) identically. Hence, Eq.
(6.9), if E,=2, is gauge invariant; that is, in-
variant under the transformation

Here D, is the irreducible five-dimensional rep-
resentation. Using the known weight diagram for
D(E„O), we easily calculate that of D(E„1)—see
Fig. 1 and Fig. 3.

We take basis functions that are homogeneous
of degree —E, in y; thus

B„A„=y„A„=(N+ E,)A„=O. (7.2)

of L„, L', and L„, besides satisfying the wave
equation (6.7) and the subsidiary conditions (6.8).
The weight diagram, including the correct multi-
plicities, can be obtained by inspection of the
character of the representation, or very simply
by reduction of the product representation:

D, SD(Ep, 0) =D(E„1)$D(Ep+ 1, 0)SD(Ep —1, 0) .

(7.1)

&n-&n + ~nA+ ynA' (6.i2)

with arbitrary scalar fields A and A'. The wave
equation (6.7) is invariant under (6.12) only if
A and A' are restricted by QA =@A'=0. The
choice between the fully gauge invariant (6.9) and
the less invariant (6.7) has a well-known exact
analog in flat space.

Locally gauge-invariant electrodynamics in
de Sitter space is constructed by minimal cou-
pling substitution

n- n-ze&n (6.18)

VII. SPIN-1 BASIS

It is not very difficult to write down the most
general A„(y) that is a simultaneous eigenvector

into the field equations for charged particles.
These field equations involve only in the com-
bination y 88- y88„; therefore, it would be more
accurate to give the minimal substitution in the
form

yp ss —yssp - yn ss —yss„—ie(ynA s —ysAn)1

(6.14)

which shows that the component y A' is uncoupled.
In the Appendix we show that this theory takes the
familiar generally covariant form when it is ex-
pressed in terms of intrinsic spacetime variables.

Then t& reduces to -2 and the wave equation to
&'A —0

The ground state is the unique triplet that satis-
fies (7.2) and

(L„—E,)AE"=0= (iL(p —L )AE' ~ ' (7 8)

namely (n = 0, 1, 2, 8, 5; d is polarization vector)

d'y zd. yA p ~ (d) = (gp+ fop) p

yp+ zy5 yp+ zy5

(7.4)

2 d, aAEp+ l,p + AEp+ 1~1 + AEp+ 1,2 (7 5)3

where the singlet wave function is

Acting with the generators (6.1) on (7.4) we obtain
the wave functions for all the states of the weight
diagram in Fig. 3. The matrix representation of
SO(3, 2) thus induced on the basis vectors is ir-
reducible, and can be made Hermitian by suitable
normalization of the basis, provided E, &2. We
show explicitly what happens in the limiting case
Ep=2.

Applying the raising operators iL)p+ L'5 to
(7.4) we obtain the nine states with E =E, + 1,
J=O, 1, and 2:

a, (fI,, + L,,)AEp ~ '(d)

, (E.+ i)y' . - f(E„+1)y'
y +zy, " ' '

y +zy,
(7.6)

Next we calculate

d, (iL)p —L,. )A. '' ". = —(E, —2)A "(d) (7.7)

which shows, when compared with (7.5), that the

representation cannot be made Hermitian if Ep
(2 15

When E,=2 the right-hand side of (7.7) vanishes,
and this suggests that, when Ep=2, the state
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A""'~(s y'+y )(y. +~y, ) ' (v.8)

which belongs to an invariant subspace of "gauge
fields" of the form

A„=(s„y2+ y„)A . (v.9)

It is clear that this subspace carries the repre-
sentation D(3, 0), so that the basis states that
span it have the weights of that representation.
These basis states are indicated by crosses in
Fig. 3. Let W denote this invariant subspace.

Let Wbe the space spanned by all the basis
states, then a unitary irreducible representation
is induced in the quotient space W/W'. This is
the representation that must be associated with
photons. We denote it D'(2, 1) to distinguish it
from the limit of the family D(Z„1); thus

(v. lo)lim D(E„1)=D'(2, 1)@D(3,0) .
Ep~2

The weight diagram for D'(2, 1) is given by Fig. 3
when the crosses are ignored. All the weights
are simple and there are no states with J=0.

Note that the electromagnetic field carries an
irreducible representation of the de Sitter group
in a somewhat abstract manner. The generators
of D'(2, 1) are not precisely the differential op-
erators (6.1). Instead, they are given by (6.1)
with the additional instruction that states belong-
ing to W' are to be ignored whenever they appear.

A. ""is the ground state of an invariant sub-
space. That this is indeed the case is shown by
the fact that, when Z, ~ 2, the wave function (7.6)
reduces to

VIII. SPIN 1. CONFORMAL INVARIANCE

The generators L, that with (6.1) complete the
conformal algebra are (see the Appendix)

Lmi =p (ysLB —&y )

=ip ''8 -sp' Ny +Z

Z A, = ip"'(y, A„—5„y&Aq) .
(8.1)

These operators take a solution of the fully gauge-
invariant wave equation (6.9) into another solution;
hence, (6.9) is invariant under infinitesimal con-
formal transformations. Furthermore, the
SO(3, 2)-invariant subspace of fields of the form
y A + 8 A' remains invariant under conformal
transformations as well; therefore, terms of this
form may be ignored in the following calculations.

Consider the ground state (7.4); the compact)
generators L«, i =1, 2, 3, have the following effect
when E,=2:

Expressing this fact somewhat elliptically we
may say that the electromagnetic field is not
strictly a vector field. Once again, this conclu-
sion is in close accord with the situation in flat
space.

As regards questions of completeness and the
identification of the physical states, there is a
further complication that we have neglected to
mention. When E,=2 there is a second set of so-
lutions of the wave equation (6.9), and on them,
a second copy of D'(2. 1). This is the subject of
the next section.

a;I„,Aa 'H)=ip "'(y, a.iy) ' ~ i. '", pa yt) i 'i 'i '
)0+ ZP5

Adding a gauge term, namely,

g2 pQ'gd'p- 0'd
2(yo+ &ys)

we reduce this to
X/2

a, L«Aso"(d) =, , (0, (axd)xy, 0) .
2(yo+ ty5

(8.2)

Also, the lowering operator gives

(L„,+ zL„)A'o"(d) =s,. = 0, (8.3)

while L,, + iL65 applied to the state (8.2) gives
zero. The meaning of these results is as follows.

The six states given by (7.4) and (8.2) carry a

representation of the compact subalgebra SO(4)
=SU(2))SSU(2) of the conformal algebra; namely,
in conventional notation, the representation
D(1, 0)SD(0, 1) of SO(4). These states are the
ground states of a fully reducible (into two irre-
ducible components) representation of the con-
formal algebra. Suitable normalization of the
basis makes this representation Hermitian and
integrable in the l' sense. An irreducible rep-
resentation of the conformal group is obtained
by taking for ground states three suitable linear
combinations of (7.4) and (8.2); these are close
analogs of the chiral projections associated with
spin- —,

' fields.
Let A~~~", 'A~ "denote the basis vectors of the

pair of SO(3, 2) representations having as ground
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states (7.4), (8.2), respectively. We seek an
analog of the chiral operator P of the spin--,' theory,
defined by

evant part of H is, as in the case of spin 0,

(8.14)

IABJNP'ASSN P2 (8.4)
For A. , and A, we take linear combinations of
A~~'" and 'A~~'". Asymptotically

ns n s s n&

ns — as —PSnXy ys PSslyFny .

Then the field equation (6.9) reduces to

B„F~s=0.

(8.5)

(8.6)

(8.7)

Since no local operator with these properties exist
we try to relate the corresponding field strengths.
Define

AEON ~r-2e tAESN ~r-If
Ot (X P IX IX 0 (8.15)

where e„and f„depend on t and on the angles.
Take, for i =1, 2,

A,„=r 'f, +r 'e,„+~ (8.16)

Inserting (8.6) and (8.14) into (8.13), we get,
following precisely the procedure of the two pre-
vious cases, that the vanishing of (8.13) leads to

Evidently, another solution is given by

Z/2
P g~sy~, XyF~T (8.8)

,* e, —e,*, dQ =0. (8.17)

Hence, if A„ is a solution of the wave equation,
then another solution is given up to a gradient by

Aa = » ~nsya7 Xs~y Ao X (8.9)

When we apply this transformation to (7.4) we ob-
tain (8.2); hence, (8.9) defines the operator P:

'A =PA (8.10)

A, cosp'~'t-A, sinp'"t) . (8.12)

This transformation is analogous to (4.14). The
analog of (3.8) and (5.7) is

The conformal transformations commute with P,
and the chiral projections (I+ P)/2 give two con-
jugate'4 irreducible representations of the con-
formal group.

In order to decide whether the conformal group
is implemented on the physical states, we repeat
the analysis already applied to spin-0 and to spin-
& fields. It should be noted that our procedure
cannot be fully justified in this case because of
the problems of indefinite metric associated with

gauge invariance.
Since we are concerned with matrix elements

between states that are represented by wave func-
tions that satisfy the subsidiary conditions (6.8),
the wave operator (6.11) can be simplified to

(8.11)

In order to reduce the time dependence of A~~ "
to a simple exponential factor we define

A„—= (A, cosp' 't+ A, sinp' 't, A,

Therefore, to make I', self-adjoint the domain
D(P, ) must be characterized by e„=cf„, where c
is a fixed real number.

The conclusions regarding implementability of
the conformal group on the physical states are
thus precisely the same in electrodynamics as in
neutrino theory. Nature, however, has elected
quite different options in each case.

As far as I know, a complete Lagrangian field
theory of photons interacting with both electric
and magnetic charges does not exist. Let us
therefore define a monopole as follows: Suppose
that F„'s is the electromagnetic field for a state
in which the only source is an electric charge,
and let 'F's be the dual of F's. Then, if a state
exists for which 'F's is the electromagnetic field,
its source will be called a magnetic charge or
monopole. Now our results show that, if F's de-
scribes a state in D(P,), then '+08 does not, hence
magnetic charges cannot coexist with electric
charges.
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APPENDIX

The conformal group is the invariance group
of the light cone. It has the same structure in
de Sitter space as in flat space; namely, it is
the twofold covering group of SO(4, 2). Let z„be
the six real coordinates of pseudo-Euclidean space
with the metric given by

A~A, -A, HA, dy, (8.13) gAB A 8 A 0 I, 2 3 5 ~62 — 2 2 2 2 2 2 ~

where H s is the ~&-independent part of the wave
operator for A~. It is evident that the only rel- then 80(4, 2) is the pseudo-orthogonal linear group
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of transformations z-Az that leave z„' invariant.
Consider the cone z„'= 0 and define

state only if l = —Ep. This additional constraint,
together with Eq. (1.1), finally gives

zgx„= ", p, =o 123.
z5+ z6

(A2) ) = —Ep= —s —1. (A11)

y =pa~ — n =0, 1, 2, 3, 5
6

then the transformations z Az induce the con-
formal group of transformations on the four-di-
mensional de Sitter space with coordinates y~,
X.'=1/p.

Let f(z) be a function defined on the cone z„'=0;
thenthe generators of f(z)- f(A 'z) are the set of
fifteen diff erential operators

IAB=Z(ZA B —ZB A) ~ (A4)

The transformations z- Az induce the conformal
group of transformations on the four-dimensional
Minkowski space with coordinates x„and the usual
metric. Similarly, if we put

p( )x=( z+ z) 'f(z).

Thus, for scalar fields:

(A12)

j( ) =[2/(I ")le(~). (A13)

These conjectures are all verified in the cases
s = 0, —,', 1." In the case of electrodynamics, how-
ever, the formulas hold for the operators that
act on & 6 rather than A. The conformal degree
of A„ is —1, as indicated by Eq. (8.1). This can
be shown directly, either from the invariance of
(6.9) or from the invariance of the subspace of
gauge fields.

In Minkowski space, (A5) is replaced by

Suppose f(z) is homogeneous of degree l (the de-
gree of homogeneity is a conformal invariant),
and define

Also

(dy) =[2/(1+ x')]4d4x, (A14)

P(y) =z, 'f(z).
Then the action of L~ on Q(y) is given by

(A5) e+ 2=-[2/(I+ ")1-'(s/»")'[2/(I+ ~)]-,
(A15}

I~ =p''(yeL~+zly„). (A6)

The most convenient way of including spin is to
take (A6) as the general definition of L~; the
commutation relations for SO(4, 2) are satisfied
by I~ provided only that I 8 satisfy those of
SO(3, 2). The number l is called the conformal
degree of the representation.

The special representations encountered in our
work have very peculiar algebraic properties.
From (A6) there follows by direct computation

'p'"[L-, Q]=y, (L», L A]-21(l+2)y„,

(A7)

where Q= B L„BL„Bis the SO(3, 2) Casimir oper-
ator. The relationship between Q and the wave
operator suggests that, in a conformally invariant
theory, the left-hand side vanishes, which would
imply that

(LBA, LCA]=2l(l+2)cBc ~

Putting B = C = 6 we get

L-L- = —2l(l+ 2)

and then, putting B=C =P and summing:

Q =2l(l+ 2).

(A8)

(A10)

On the other hand, one may easily verify that the
lowering operator L6p+ iL„annihilates the ground

so that the Lagrangian, in the case of conformal
invariance (E,= 1}, reduces to that of the massless
Klein-Gordon equation in Minkowski space.

However, the mapping between de Sitter space
and Minkowski space is singular, and the causal
structure is not preserved. In fact,

p(y —y„')'=[2/(I+ x')][2/(1+ x")](x„—x„')'.

(A16)

The separation between y and y' is spacelike,
lightlike, or timelike in the de Sitter group in-
variant sense if the left-hand side is negative,
zero, or positive. We see that this notion is not
Poincard invariant. In particular, a three-di. men-
sional surface that is de Sitter spacelike is not
Minkowski spacelike. This means that the defin-
ition of the quantum-mechanical metric is dif-
ferent for the two interpretations, so that the
results obtained in de Sitter space do not auto-
matically apply to flat space.

Intrinsic coordinates for de Sitter space will be
denoted x", p. =0, 1, 2, 3. It is convenient to take
x"(y) to be homogeneous of degree zero in y„.
When dealing with intrinsic coordinates for the
curved manifold it is necessary to distinguish
between covariant and contravariant indices. De-
fine
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y„„-=ay„/sx", x„"-=ex "/sy,
then

Xn3ep 3a aV

P P
&asnV = &V7

P ~ P&+Q +i/( g 7 X(x p ScxP gpv

(-g) ' 'eq(-g)' '=x"s„y„,=-y „s„x".

Define E„s as in Eq. (8.5), and

E""=x"x" E A" =— x" A„

Then E„„=B„A„—B„A„and the field equation (6.9)
reads

~ (-g)"E""+p(&o —1)(& —2)(-k)'"A"=0.
The substitution (6.14) takes the form 8„-8„ie-A„
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