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Irreducible representations of the 3+2 de Sitter group are associated with free Dirac fields in a space of
constant, positive curvature.

I. INTRODUCTION

Our program is to transfer conventional physical
theory to the arena of a space of constant positive
curvature. The role ordinarily played by the Poin-
care group is here assumed by the de Sitter group
SO(3, 2). Irreducible representations of this group,
suitable for describing massive elementary parti-
cles, were found in I.' Details for the case of
spinless fields were given in II'; here we present
analogous results for spin —,. Previous work in
this field' has mostly concentrated on the ease of
negative curvature —in this case the group is
SO(4, 1)—in spite of the well-known difficulty of
an energy spectrum with no lower bound.

Our approach to quantized free Dirac fields (in
Sec. 1V) is quite different from that of previous
work. It is based on a Fock space construction
over the discrete one-particle eigenstates of en-
ergy and angular momentum that span an irreduc-
ible representation.

in a five-dimensional pseudo-Euclidean space of
signature + ———+. While this is an adequate
setting for some true representations of SO(3, 2)
it is not suitable for the more general case of re-
presentations up to a factor (representations of
the universal covering group) that we wish to in-
clude. Let C* be the cone (2.1) with the origin b„
=0 removed, then the appropriate carrier space
is the universal covering C* of C*; this is isomor-
phic to C*SI, where I is the set of integers.
Nevertheless, we indicate functions on C* as,
e.g. , g(b), as if they were fu'nctions on C. Their
true nature will be evident.

A spinor is a set of four functions g, (b), a
=1, 2, 3, 4. The de Sitter group acts on the set of
spinors as follows:

T(A): g,(b)-[D(A)g], (b) = S( A)„.g, .( A'b) .
(2.2)

The matrices S(A) are the four dimensional real-
ization of SO(3, 2) given by

II. WAVE FUNCTIONS IN MOMENTUM SPACE

A. General considerations

S(A) =exp[-,' i6 8Z s],

where

(2.3)

(2.4)

b„b —= b —b +b 2=0,

b~=b 2+b 2+b 3
1 2 3

(2.1)

The de Sitter group is the connected part of the
group of pseudoorthogonal, real, five-dimension-
al matrices. The metric is + ———+. If L 8 is
the matrix

(L~B)» =5»85„

then a parametrization of A is given by the sp in-
dependent components of the real, antisymmetric
tensor 8 8 through the formula

A(8) =exp(8„& L"8) .
The simplest realization of the group action is

in terms of functions defined over the real cone
C:

and

r" =(r", i). (2.5)

(A 'b)„=b + 8„8b8,

the generators are

L„8= i(b„s8 —bBs~)+Z„B.

(2.6)

(2.7)

The basis functions will be taken to be homoge-
neous in b~. Since the operator b" commutes
with all the generators, the degree of homogenity
must be fixed in an irreducible representation:

b s g(b) =Ng(b) . (2.8)

The y~, p. =0, 1, 2, 3, are the usual Dirac matrices.
From now on the spinor index a will be dropped
whenever possible. For the infinitesimal trans-
formations
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—,'L„8L"~g(b) = Qg(b) . (2.9)

The Casimir operator also reduces to a multiple
of the identity

important. Recall that (2.18) is associated with
the wave equation y" b~g(b) =0, while (2.17) can
he related to y" s„g( b) = 0.

Now

gL~s L"8 =N(N+3)+ g +2iZ"Bb„88,

so we have

2 i Z"8b s~g(b) = ~g(b),

(2.10)

(2.11)

B. Basis vectors for the casey b =0

Any solution of Eq. (2.13) that is also an eigen-
function of I», L», and J', with eigenvalues 8,
M, and J'(J'+1), is a linear combination of two
spinors of the form

where v is likewise fixed. The value of ~ is re-
lated to the value of ¹ by direct calculations we
find that

(2.12)

y"b„g(b) =0 (2.13)

is equivalent to (2.11) with z = N —3.-To discuss
the invariant differential equation

Equation (2.9) has the character of a wave equa-
tion: It helps to project out an irreducible repre-
sentation. Simpler, though essentially equivalent,
wave equations can be found, however. The oper-
ator y b is not invariant, but its null space is
invariant. It is easy to verify that the equation

~ (8-1/2) /2

g Jg«(b) Y"bgt'g~s, (b),
Q 5

(2.19)

where b is the direction of b and

(2.20)

The factor y"b„ takes care of (2.13). Since the
rank of this matrix is 2, there is some ambiguity
in the choice of the ~g's. We have taken

J+M 1/2

2J

y"s g(b)=o (2.14) J«2g 7-t/g, N+t/g

we must first define an extension of g(b) off the
cone. The extension is obviously not unique. [In
particular, if g(b) is an extension, then so is
g(b)+cb"b„, where c is a constant spinor. j Rough-
ly, the existence of an extension that satisfies
(2.14) is equivalent to (2.11)with z =N.

Finally, ~ and X are related to the lowest value
E,= min(E) of the eige—nvalue E of the operator L„.
The Casimir operator can be written

Q = J + Lo, (L~, —3) + (i I.;0+ L;g)(i L;o —L;5)

J+1-M
2J+2 YJ+ 1/2, M -1/2

J+1+M
2J+2 FJ+1/2, M+ 1/2

(2.21)

(
(2.15)

g' =—g in. ' =total angular momentum) .
j&j

The lowest eigenspace is annihilated by the lower-
ing operator i L;, —L;„while E =EQ and J' = —,';
hence Q reduces to

Q =E,(E, —3) +-', . (2.16)

Comparison with (2.10)-(2.12) yields four distinct
possibilitie s:

lt' =N, E, = N ——,
' (or Eo=N-+ —,'), (2.17)

Eo =N+ —,
' (or Eo = N+ —,') . (2.18)-

The values enclosed in parentheses will be less

Ex«(b) = (E,~)'gE«(b)- (2.22)

the basis for a unitary matrix representation of
the group. The coefficients may be found by the
requirement that L«+ zL&, be mutually Hermitian
adjoint. Because the Q J~ already form a normal-.
ized basis for the rotation subgroup, the coeffic-
ients are independent of M and it is sufficient to
consider the case M = 2, i = 3. After simple, but
lengthy calculations one finds

Next, we want to determine the range of the in-
dices, and normalization coefficients (E,Z), that
make
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(2+~ I )1/2(2J + 3)1/2 N -E-j
(ZL30+ L35)gE11/2 —

4g 4+ E+N- J —1
g E pl, J'+l, l/2

N E--J (~ 1)1/2(~+1)1/2 N -E+J
EEkl J' l/2~(~+') E+N+~+1 4J E+N+J+1

(2.23a)

27+1) (2J+3) / E
( 30 35)ZEJ1/2' + E+N- J gE 4 1 3

J'+ 1,l/2

E~g+I (2J+1)1/2(2J ])1/2 N -E+J +1
~

+4J'(8+ 1) E+N-J 8$ &1 3
J', 1/2 gE %12J-1,1/2 '

+ +
(2.23b)

Inspection of (2.23) reveals the existence of sever-
al invariant subspaces. Qf course, J and M are
restricted to half-odd-integer values, and the
fractional part of E is an invariant. Hermiticity
of Lp5 requires E to be real, but its fractional
part is otherwise arbitrary for a representation
of the universal covering group of SO(3, 2). In
practice we fix this number by fixing E,= min(E).

Equations (2.23) show that gE+~„and gE,&,E. be-
long to the same irreducible representation only
if E -E' is even, while ggJg and g~ J.„are con-

y =(E -E,) -(J --.').
(i) If N+E ——,

' is integer, then the subspace

(2.24)

nected only if E -E' is odd. This state of affairs
is illustrated in Pigs. 1 and 2.

Equations (2.23) show that a finer decomposition,
based on the sign of E+J or E-J, is possible for
special values of ¹ Since we are interested in
representations in which E is bounded below we
discuss only two cases.

Let k be the integer

4
E-Eo

8
2 I 0

8 0,8 P
0+ 0 8 0~ +/

J'

2 8 (P P +r
/

/
+ — +

///
o 0 + — +

l

F--Eo

4 Q
/0

/ /

2

2 I 0/ r

8 .0,0+
/

/

0 8 — +r
/

0 8 — +

— + - +

I/2 5/2 5/2 7/2 9/2
i/2 5/2 5/2 7/2 9/2

FIG. 1. The weights associated with {2.24) are shown
circled. The signs refer to the superscript on the
basis functions.

FIG. 2. The weights associated with the subspace W+

are shown circled, they are the weights of the represen-
tation induced in {W+ W )//W . The remaining weights
belong to W .
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spanned by

k=0, 2, . . .
1Eo= -N+y

+zan, k —1 3
(2.25)

is invariant. It carries an irreducible representa-
tion if N& —;.The weight diagram is shown in
Fig. l. Each circled point represents the (28+1)-
dimensional subspace spanned by g~~„ for fixed
E and J and the sign refers to the superscript.

(ii) If E -N ——, is integer, consider the subspace
W' spanned by

ggggy k Op 2p ~ ~ ~

E =N+~,
ggJ'Qyk ly3p ~ ~ ~

(2.26)

and the complimentary subspace & defined sim-
ilarly, but with negative values of k. The weight
diagrams for both are shown in Fig. 2. The sub-
space 5 is invariant, and the quotient space
(W'63 W )/W carries an irreducible representa-
tion if N & —~.

As far as algebraic structure is concerned, the
above two irreducible representations (for the
same value of E,) are identical. Only the first
is realized by differential operators; neverthe-
less, the second is the one we prefer. The rea-
son is the same as in the case of spin-0 represen-
tations and has to do with the possibility of defin-
ing the invariant norm by means of an integral,
as we shall see. There is a natural bijection be-
tween W' and (W' SW )/W that allows us to de-
fine a representation in 5 '. This differs from
(2.23) in that any basis function that belongs to

appearing on the right-hand side is to be
ignored. We obtain a representation in 9 ', but
the action is not given by the differential opera-
tors.

Returning now to the question of the coefficients
in (2.22), we use (2.23), impose Hermiticity on
the matrices that act on I'~~„, and obtain for Ep

5=N+~

(E, ——.')!(E, —2)!(K+Z)!K!
(
—', )!(K+ED+J —1)!(K+E —2)!

This infinite renormalization of the basis vectors
in W reduces matrix elements of operators that
connect W, to W to zero, thus automatically ac-
complishing the required modification of (2.23),
as discussed in the preceding paragraph. The
functions

F(b) = Q CgF~(b) (2.30)

with norm

Plc,l'(~. (2.31)

Next, we shall find a means to express the norm
in the form of an integral.

C. Function space for the case y b, =o

The following development is possible only for
the case E,=N+ —', . The difficulty that is encount-
ered when one tries to treat the case E, =

& -N is
exactly the same as for spin-0 representations. ~

The basis functions are given by (2.22) and (2.19)
in terms of the isotropic five vector b . In order
to obtain a compact domain for integration, we de-
fine angles 8 and P by the direction 5 of b, and a
third angle u by

Fs~u(b) b =0 2

u=(E -E,) -(Z--.')
BN

(2.29)

form the basis for an irreducible, and if E,)1,
Hermitian, integrable representation of the alge-
bra. The generators are given by differential op-
erators except for the rule that all basis functions
belonging to 9', that appear as a differential op-
erator acts on a function (2.29), is to be erased,
or equivalently, by (2.22), (2.23), and (2.27).

As (2.29) shows, the sign-index is redundant
and may henceforth be suppressed. The indices
EJM will sometimes be indicated collectively by
the single letter I.

The Hilbert space in which our representation
is integrable consists of the functions

(2.27a) e'" = (b, + ib, )/l bl . (2.32)

~) (E, —g)!(E, —2)!(K+J + 1)!K!
(
—)!(K+E, +J —1)!(K+E, —1)!

(2.27b)

The homogeneity of F(b) allows these functions to
be replaced by functions depending only on the
angles

where

K—= integral part of —,
'

k =0, 1, 2, . . . . (2.28)

According to (2.22) and (2.27), the normalized
basis functions E~~& are infinite if K= —1, —2, . . .

F(b) =(2m)' 'lbl '(b, —ib, ) 0+' 'H(5, u).

In particular,

a„„(b,u) =(2~) "(E,Z)e-
x(1 —e""r b)'JJg (b)

(2.33)

(2.34)
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from which it is seen that (2.31) implies that
H(b, u) has an analytic extension into the domain
[e'"f & 1.

It is now straightforward to find an integral ker-
nel K such that

f(b) =(2m)' '(b, +ib, ) -() ' 'h(5, u). (2.41)

This is dual to F(b) is the sense that it can be ex-
pressed formally as

(F, F') -=+CHIC,
'

H*(b, u)y, K(b, u; b', u')

x H'(b, u ') du du ' dQdQ', (2.35)

f(b)- (b"b') " 'E(b') 5(b")d'b',

so that (2.38) reduces to

E+ b b O b'd'b.

(2.42)

namely,

K(b, u; b', u')

= (87/)-2[e22&)b'-H&+ I 21() ~ $'eb&)b'-"&]-eo-2&

(2.36)

This must be understood, for real u-u ', as the
boundary value of a function analytic in (e'~"

The special case of (2.35),

Of course, these integrals must be regularized
before they make any sense; nevertheless, (2.42)
strongly suggests that the functions f(b) satisfy
(2.14): y"s„E(b)=0. In fact, (2.42) gives the ex-
tension of (2.41) off the cone that one needs to
satisfy this wave equation. ]

The normalized basis functions he~„(b, u) are de-
fined by (2.38) and (2.34). Explicit integration
gives

he~„(b, u ) = (2)T) '~'o.e~e '" s so&

&rr = IIq* b, u ypK b, u b u'

xHzy(b', u ') dudu'dQdQ' (2.37)
with

(2.43)

can easily be verified by direct integration.
[The result (2.35)-(2.36) can also be derived as

follows. The invariant integral

(2.38)

is only logarithmically divergent when the expo-
nent has the value shown. Changing variables and
ignoring the divergent factor Jdb, db,'/b, b,' one ob-
tains (2.35) with (2.36). This formal procedure
can be made rigorous by smearing over N].

D. Function space for thecasey 3 =0

1 g+Eo-1
(E,J)' E, —1' 1 g+J+Eo" (E,J)- E,-l

K J+Z+1
K+Eo —1 ' J+K+Eo

It is easy to verify that

(2.44a)

(2.44b)

err A JQ bp u ypHz g „,u dudQ (2.45)

For later reference we note that (2.31) guarantees
that h=+Cih~ has an analytic extension in the do-
main [e'"[&l.

So far we have investigated functions satisfying
(2.13). The alternative, (2.14), may be studied in

a similar way, but the results are obtained much
more easily as follows. Let a function h(5, u),
"dual" to H(b, u), be defined by

h(bu) fH(bu;2', )H(b, ', =,)d udA'. u(2.u29)

With this definition the inner product (2.35) takes
the simple form

E. Momentum space

The projection of the cone b b =0 on the "mo-
mentum" hyperboloid P "p& ——m' is given by

p „=i m b q/b„m =p'~'E, . — (2.46)

Since the functions F(b) and f(b) are homogeneous,
functions of P &

are obtainable by setting

212(P) b so+5/2E(b) (2.47a)

( , ) H(HHH')= fh (bu)y H'(b=u)dud(). , ,

(2.40)

((P) -=b '""f(b),
Because y b I'=0,

(y "P„-m) +(P) = 0 .

(2.47b7

(2.48)

[We may also define a function f (b), We have discussed the equation y"8„f (b)—follow-
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ing (2 ~ 14) and following (2.42)—and it is obvious
that it is simpler to replace this equation by the
invariant equation (2.11)with x =N = E—,——,':

2 i Z"8b„asf (b) =Nf (b) .
This yields a wave equation for $(p) that can
easily be verified directly:

( my"8„+p "a„+E, +—,') y(P) =0. (2.49)

The action of the generators is given by (2.7) and
reduces to

L„„=M,„+Z„, M„„=-i(p„s„-p„s„) (2.50)

on either 4'(p) or $(p). Acting on @(p},

1/2 1 ~ ~),
Pq ——p' Lq, = 1+2 P„—2p rp+E M(vp

0 0

(+, +') = f '(~)~p(~)(4&,

(dp), -=d'p5(p™)8(p,),
while the new basis functions are

(2 ~ 53)

+„.(p) =(~,~)( 2 ) &' "(o)S.~(k),

(2 ~ 54)

*'(p +m) (p +m)

that is, over real p„, provided the factors z
are replaced by suitable distributions. The result
is that the inner product takes the form

while on g(P)

Pp g i,
p, P

0
(2 ~ 51}

1 —ill~ &~u(p) .
P0

The distributions S' ao(P} are defined by

A ~
'

p
'

(2 ~ 55)

P = 1+ -- p —2pf y ——p Mji 2g 0 I @ P~
0 0

=p„——p L„,+ p„(y p, ™).
0 0

(2 ~ 52)

~(z)z 'dz,

Equation (2.46) signals the need for an analytic
continuation from real b„ to P&. Nor have we
forgotten the complication explained just after Eq.
(2 ~ 29}~ We now show that this unpleasantness
evaporates on carrying out the continuation to real
P$0

The problem is to rewrite (2.39) in terms of 4'

and g, integrating over real p„. The integral
(2.39) may be interpreted as a contour integral in
the plane of z = e'", the contour being the unit
circle. According to the remark just after (2.45),
I *(b, u) is the boundary value of a function that is
analytic for

~ a~ &1. The functions H(b, u} are not
analytic there, in fact, (2.34) shows that the basis
functions have poles at z = 0. We can easily find a
set of functions H(b, u) that is dense in Hilbert
space and that is analytic in

~
z

~

&1 except for
poles at z = 0, but it is sufficient to consider the
basis vectors. We are thus led to consider the
integral

(". & j'"(ebs(9, Y=N'(S')(&t) ~(dO')„(267)

((P) = J~ &(P, P')~ (P')(dp')„ (2.58)

] 2m &0+ &/&

If(p P') = 4—p„p. .
The sum formula.

P 6 (P)PF(p')r.

(2 ~ 59)

A-(p p.) 1
2Eo+ (rP ™)(yp'-m)

(2 60)
1 ppi +~2

is easily obtained from invariance and the fact
that only four terms contribute when p' = 0.

If ~I) = ~EZM& are orthonormal basis states, then

PO(PO™) ~( }r P) ™(2 56)
g) m ~P &0+m &=0

The inner product (2 ~ 53) can also be expressed
entirely in terms of 4'(p) —but not in terms of
(C'(p) ~ Here is a collection of formulas that follow
immediately from our earlier results' concerning
the functions H and 5:

where A. (z) is analytic for ~z~&1and the contour
is a simple curve in

~
z

~

&1 enclosing the origin.
This integral is equal to the real integral

A(x) —
i

5("'(x)dx.
0

pc, lI&= fe(g(q&(dp&.

P P dP+~

where

(2 ~ 61)

In this way the original integrals, over
~

z~ =1,
can be rewritten as integrals over the real axis; I

p&= py,*(p)li&, Ip)=- ge,*(p)li&, (2.62)
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I v) = f b' (b.)(lb)

=
fbi�(b)lb).

(2.63}

2zZ y(vs 8$ = K$ (3.5)

with the same value of z as adopted in Sec. II,
namely,

1K=-Eo —g. (3.6)
All this is very similar to corresponding results
for spin 0.

The appearance of distributions marvelously re-
moves the unpleasantness referred to after (2.52).
The partial integration that is implied by (2.56)
has the effect that the differential operators al-
ways end up acting on )t(p) rather than on 4'(p),
and finally allows the direct identification between
generators and differential operators expressed
by (2.50)-(2.52).

Actually (3.5}, (3.6) implies (3.4); for "squaring"
(3.5) gives

g(zan+3) =N(N+3) —p '8„'

or

q =~(~+4)+-,'=Z, (Z, -S)+-,'-.

Equation (3.5} is the wave equation proposed by
Dirac. ' As shown by Gursey and Lee it can be
replaced by'

III. WAVE FUNCTIONS IN CONFIGURATION SPACE » g(y) =0. (3.7)

A. General considerations

Configuration space is the covering space of the

hype rboloid (3.8)

The simplest way to achieve this is to impose the
homogeneity condition

Ng(y) = y "& A(y) = ~0(y)

cx — 2 ~2 2 1
5 X0.=$0 -y +75 = p (3.1) In this case Eq. (3.7) is equivalent to (3.5}, (3.6).

Of course we also have
We consider spinor functions P, (y) on which the
action of the de Sitter group is exactly the same
as on the spinor functions g, (b) The s.pinor index
will be suppressed.

In an irreducible representation the Casimir
operator

eg g(y)=0.

B. Basis functions

The simplest derivation of basis functions

!!)zz~2((y) satisfying (3.7) and (3.8) is through the
Fourier transform

=N(N+3)- p-'s„s +2zZ"'y.s, +-,' (3.2)
b(v) f~ " "v(-b)b »(b"ba'" (3 9)

es=[E.(E.—3) !1&.
Similarly, we must have

(3.4)

must be fixed. Vfe have simplified the writing
by defining the operator

(3.3}

The idea of reducing N to a constant by imposing
a fixed degree of homogeneity on g(y) is seen by
(3.1) to be both possible and artificial. The value
of Q that is of interest is, of course, that given
by (2.16):

Then (3.7) and (3.8) follow from y b„E(b) = 0 and
the fact that E(b) is homogeneous of degree -~ —S.
The factor y"b„ in E~~„(b)—Eq. (2.19)—can be
replaced by iy "(8/By") and taken outside the
integral, which then reduces to the corresponding
integral in the earlier treatment of the spin-zero
case. Unfortunately, (3.9) diverges for all eases
of interest, but this difficulty may be circum-
vented by analytic continuation in E,. The result,
which may be verified a Posteriori (this is es-
sential to obtain the correct normalization) is

I ~ I t 1 p1/2(3/2-&p)
V'mg V' l —2P

(& -2)!
2)!

xy s y o(y —zy, )' ' S~„(y},E, ( K-K —L ——,
' E-—1.1-B'/y2) (3.10)

where y and y are the direction and magnitude of

y It —
(y

2 ~y 2)l/2

C'„„=[(Z,J )'(Z+Z+Z, —1)j ',

C@gzz = [(Ev bI ) (K+E() 1 )]

and I.=J ——.', J'+ —,
' for (I)+, g, respectively. To

guarantee (3.7), (3.8) no substitution based on the
constraint (3.1) should be effected. The normali-
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zation is such that, for E, 1

~l I X Po I' 3

(dy}—= 2p ' 'd'St)(X X„p-') .

(3.11)

(3.12)

gator function

(x [x'),/. -=g 6b )A(y"')*y.

for which we find the expression

(3.13)

The geometry of the space-time manifold was
already discussed in detail. Notation:x will denote
a point in the manifold, whatever coordinates
(e.g. , y „)are used; the invariant distance z is de-
fined by z = py y' . We need to know the propa-

(x [x'), /, = — —(x [x')„
0

(3.14)

where E= —E, ——,', z is the operator defined in Eq.
(3.5), and (x [x'), is the propagator function for the
spin-zero case, ' with E, replaced by E, +2. Thus,

(x(x'), &,
= —,—,

,

' —', (Xtx&xx)lxx (x' —()''J ',+, 2, -„-,,n„, , g, )

2

(~+3+»)(Z2 1)-)/2ql ( )Ze2i(n(( z+01/ )2
(2w)' &0-3!a (3.15)

where n is the relative leaf number. The analytic
structure of this function is the same as that of
(x [x'),.

In the zero-curvature limit, p-0, F.,-~,
m =)/p E, fixed, Eq. (3.14) reduces to

all other anticommutators being zero. The free
quantized Dirac field is defined by

C,X(x) =$(xX),(x) xb, y;(x)].

The anticommutator is
(x[x'),/,

=—
2

~(x[x')0 . (3.16)
(4', /, (x), 4,/, (x')}=Q [ gl (x)gl (x ') + g~ (x)q~ (x')1

IV. FREE QUANTIZED FIELDS

PI (x) =iy, 4*, (x), (4.1)

and let [I') be the associated basis. We note that
tg (x) satisfies the wave equation (3.8):

(» +E() + 2 }pl (x) = (» +E, + 2 )$j (x) = o (4.2)

and that g (x) is orthogonal to g, (x) in the inner
product defined by (3.11). The states [f') have
negative energy before quantization.

Now let [Q) denote the vacuum state and define
creation and destruction operators by

Fock space may be constructed over the dis-
crete set of one-particle normalized basis states.
Let [EJM), or more simply [I), denote the basis
states associated with the wave functions gz (x).
Define the charge-conjugate wave functions

The first term is given by (3.14) and we have

(C, /2(x), 4,/2(x') ) = (x [x'),/, + (i y, )(x [x') ~n/2(- i y, )

=(x[x'),/, —(x' [x),/,

((x[x'), -(x'[x), )
0

X+3+x
disc (x [x )0)

0

since (x[x'), is a real analytic function. The
causal structure is thus the same as for spin zero;
this case was discussed in detail in Ref. 2. In
the flat-space limit disc (x[x'), reduces to the usual
scalar invariant function b.„(x-x'), while the
factor —(i)/+3+»)/2(E; 1) goes to (m —iy" 6„)/2m
as we already pointed out.
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