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Gauge Selds arising from spacetime symmetries and gravitational theories. II
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The consequences of covariance of the matter Lagrangian under gauge transformations of the second kind of the 15-

parameter conformal group are investigated. In order to accomplish this, 44 fields (16 vierbein fields h„, 24
rotational gauge fields A" „, and 4 scale gauge fields $„) are introduced. Furthermore, a Brans-Dicke-type
scalar field is used to construct a simple "vacuum" Lagrangian, which is easily reducible to the Einstein

Lagrangian; the derived dynamical theory is investigated in the most general case and in various particular
cases. Connections are established to many works on this subject. Finally a link is established between the
mass of the scalar field and the cosmological constant of Einstein s theory. A possible value is calculated.

I. INTRODUCTION II. INVARIANCE UNDER 15-PARAMETER
CONFORMAL GROUP Co

From the epoch of Einstein up to our days many
gravitational theories have been proposed that are
more or less deep modifications of general rela-
tivity. Theoretical and even philosophical consid-
erations have played a very important role in their
history since experiments are never extremely
accurate and can rarely say a decisive word.

So in a field where physicists are compelled to
use axiomatics, we find it very interesting to in-
vestigate the consequences of some symmetries of
spacetime from the gauge field point of view. A

very attractive feature of this theoretical method
is the fact that general relativity can be obtained
as a gauge field theory from translational invari-
ance' (spacetime homogeneity), but its most fas-
cinating characteristic is that we can go further
considering larger spacetime symmetries, as
was already remarked in the preceding paper I.
There, we developed a mathematical formalism
which applies to any Lie group representing some
symmetry of spacetime; in this paper we consider
the 15-parameter Lie group of conformal trans-
formations of coordinates and derive a gravitation-
al theory which reflects this larger symmetry.
Following the prescription of constructing a theory
easily reducible to Einstein's theory we introduce,
in addition to 44 gauge fields (16 translational
gauge fields h. &", 24 rotational gauge fields A"&,
4 dilatation gauge fields iI) „), a scalar field o play-
ing nearly the same role of the scalar field of
Brans-Dicke cosmologies. "Next, we consider
some limiting cases and show to what works of
literature we are led by certain restrictions on
spacetime symmetries. Finally, a link is estab-
lished between the cosmological constant of the
universe and the mass of the scalar 0.

The 15-parameter Lie group of conformal co-
ordinate transformations has aroused much inter-
est in physicists for it is the most general group
under which electrodynamics is covariant. 4 The
infinitesimal expressions of these transformations
can be written as

6x' = u' (4 parameters —translations),

5x' = ~',.x'

,'e "S~&;&—),x' (6 parameters rotat—ions),

6x = px (1 parameter —dilatations),

6d = (p'x,. —p,.2)x~ —p~x,. x"

(2)

(3)

(4 parameters trans—formations
of acceleration), (4)

where relations (4) can be regarded as point-de-
pendent rotations and dilatations. In effect, we
can also write them as

6x —s(p x —p'x )S~;,. )i x + (—p'x, .)x

+, (p x —pox )Sr(t)), x —p~x x (6)

so that the role of the parameters c"= —~" and p
of (2) and (3) is played by the terms P'x' —P'x' and
—p'x, , respectively. Transformations (3) are in-
terpreted as a change in units (c =5= 1) so that all
physical quantities are to transform according to
their dimensional number (see Hefs. 3, 5-6). With
the choice of conformal group, transformations
(2) and (3) of paper I become
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5X = &e 'M&;,.) y„+pdx

+-,[2(P'x' —P'x')]Mi(;,.g+ (-2P'x, )dX,

where d is the dimensional number of the matter
field under consideration. The requirement of in-
variance under the first 11 parameters gives the
conservation laws [see (8') and (9') of paper I]

The translational gauge fields hk" are referred to
in the literature as vierbein fields (see Refs. 1,
6, and 7), the rotational gauge fields A'~„are gen-
eralizations of Ricci coefficients (Refs. 6 and 7),
and lastly the 4 P& functions are the dilatation
gauge fields. ' All these fields are coupled mini-
mally with matter, following the usual procedures
outlined in Refs. 1, 6, 7 and 9 (see also Sec. I
of paper I).

So we have introduced 44 gauge fields to pre-
serve invariance of action under gauge transfor-
mations of the second kind of the conformal group.
In the next section we shall investigate the derived
geometr y.

III. SPACETIME GEOMETRY

—dy+T, X —= D k =0,
X,k, k

D" =D(0)k+D(')k D(')k = ———d

(10)

The aim of this section is to show what the for-
mulas of See. IV of paper I become if we specify
the Lie generators; for instance, the four-dimen-
sional representations are to be set as follows:

k k k kA =1, . . . , 6: S(A)( IS. (()|=i5ii 1, , —6)7lk, , (15)

which express conservation laws of momentum,
angular momentum plus spin, and dilatation cur-
rent. Invariance under the remaining 4 parame-
ters of acceleration is granted if the matter La-
grangian satisfies the following relations:

(~L(ik'i }ik d)x

Xk @k X ~ p

=~k "(X,(+ aA"(ML«, )X+0(dX}. (14)

Following the procedure outlined in paper I (Sec.
III), we introduce gauge transformations of the
second kind derived from (6) and (7): If the 15
constant infinitesimal parameters are made point-
dependent, only 11 infinitesimal functions are
needed because acceleration gauge transformations
of the first kind are already spacetime-dependent
rotations and dilatations. In other words, the
term p(x) —P'(x)x~ is equivalent to p'(x) if p(x),
P~(x), and p'(x) are arbitrary functions; the same
can be said for rotations. Then gauge transforma-
tions of the second kind derived from (6) and (7)
can be written as

5x~= ~~(„&,

6X = -',c"(x)Mi(;,. )X+p(x)dx .

Then only 11&&4 gauge fields are needed, interact-
ing with matter through eovariant derivatives of
the form

A=V: S(7)l-5l ~

Then the metric tensor g"v transforms as [cf. (19)
of paper I]

6g""= h",.a""+&',.g ""-2pg "'

This is a Weyl transformation (see Refs. 4-6, and
10-12). So the element of length ds' has dimen-
sion 2, v'-g has dimension 4 as follows from (20)
of paper I, and the Lagrangian density must
have dimension —4 in order to give dimensionless
action (generalized coordinates are dimensionless
too).

Following relations (22) of paper I, covariant
derivatives of eovariant quantities with dimension-
al number d must be written as

H. k =hk "(H „+2A" „M~;,)H+ Qq dH+I'qqZk~H) .

(18)

Formulas that give us expressions of spacetime
connections as functions of gauge fields are de-
rived from (24) of paper I as

1I Bv= 4v ~8+ 2A vSgj') 8+h 8 vent

We can see that the connections depend upon all
the gauge fields previously introduced and upon
the derivatives of the metric gauge fields (vier-
bein fields). Then the connections can be written'
as the sum of three terms, one taking account
only of the metric field (Christoffel symbols},
another containing the scale gauge fields, and a
third term containing torsion. This sum is
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I'sy ='I'ay+ (~s 0'y+ 6y 0 s -gsy4")

+,[C sy+g" (gas C'y p+g, y
C s p)] ~ (20)

= y„„-y, „(forA = 7). (22)

Then the Riemann tensor is no longer skewsymme-
tric with respect to the first two indexes, as we
have from (28) of paper I:

R abpv Fabpv +y)aha pv ' (23)

The matter equation of motion in the case of inter-
action is (29) of paper I. The generalized conser-
vation laws derived from (31) and (32) of paper I
are

1C, q q+C qs'E ~ —2R q„S(( )+Pq„S

where 'I
~8& are the usual Christoffel symbols.

So we are in a Weyl space with torsion (unsym-
metrical connections). The gauge field strengths
of relations (26) of paper I are [let A (ij)= -(ji)]

I'"„,=A"„„-A",„-A'„„A"',+A'~„A J~

= —F"&„(forA. running from 1 to 6), (21)

and

eses it gives back the usual metric theory.
So we introduce a new scalar massive field a

(with d = -1) interacting with the gauge fields pre-
viously introduced and with all massive matter
fields. An interaction is proposed of the type m- po so that in the matter Lagrangian wherever
mass terms appear we must replace masses rn&

by p,;v (p,, are dimensionless constants). So mass-
es are to transform in the following way under the
action of (12) and (13):

5m=5(pv) = p, 5o =-pp, v =-pm,

and this is consistent with conditions c =8= 1
(masses are to transform as inverse lengths).

Then instead of Weyl's Lagrangian, we prefer
to use a Lagrangian density of the type proposed
by Brans and Dicke" "where the field a plays
the role of the scalar field. The form proposed
for the Lagrangian is

2=v' g(v'-R +a/„, PI"+bv'+cv'"o +I~) (28)

(a, b, c are arbitrary parameters)

where

(29)

and

(&/)E E (&~) i » i &

~(&)E C g(&)E-qE
E

(24)

(»)

(26)

8 g R EPP

=-A ~A I' ~
1 j PIj

(30)

where T'
& and S(' ~ are the obvious generaliza-

tions of the quantities T'& and D&'~' [see (33) and

(34) of paper '; (8), (9), and (10) of this paper].
So we have specified the spacetime geometry

induced by the requirement of invariance under
gauge transformations of the second kind of the

group C,.

IV. ACTION FOR THE GAUGE FIELDS AND EQUATIONS
OF MOTION

We now introduce a Lagrangian density function
for the gauge fields; it must be invariant under
transformations (12) and (13) for the action is a
scalar with dimensional number d =0." So we
have to construct with gauge field strengths E"„,
and Q„„scalar quantities with d = —4 and then
multiply them by v'-g which has 4 as dimensional
number.

Weyl, " in order to satisfy all these require-
ments, chose a Lagrangian of the type A'; equa-
tions of motion were obtained rather with difficulty
and were not at all similar to Einstein's. Our pur-
pose being to generalize general relativity, we

prefer to construct a Lagrangian rather similar
to that of Einstein and such that with a few hypoth-

In (28) the term I,„represents the matter l,a-
grangian: in it we have substituted ordinary de-
rivatives of matter fields with "covariant" ones
as usual and, moreover, masses nz; with p;o
terms.

Then, if we apply the usual variational princi-
ples, we obtain the following equations for the
gauge fields h„~,A" „,P„and for the scalar field
v [equations of interacting matter are (29) of
paper I]:

v(R+2bv')- (v'-gv'"). +cC„v'"=—&-g:" " 2v'-g 6v '

(»)

—co'"v —2a (v'-g p"")., —C, p&' —2 gpss"s

(32)

V-g

6@~--~-g 6A'~ ~

P
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c'(&pv —2g pvR) ducible to gravitational theories well known in the
literature.

where

Bg~ =h;"k~'-h]"h;",

Pnv++ P vn

2

(85)

+1Vv++2 gv

2

and &(@ and & are the canonical energy-mo-
mentum tensor densities for the fields Q„and o,
respectively. They have the form

and

&'p. '=~ g(«-PI 4 . gp. -4 a4'"') (87)

g( ) g g 2g g g o'4 +, o 0' 38c

So right-hand side terms in (31), (32), (33), and
(34) can be considered as "sources" for the gauge
fields and for o, but, as is shown by (34), Q„and
o fields also occur in determining the spacetime
metric structure through their canonical momen-
ta. The above-mentioned sources obey certain
identities deriving from second-kind gauge covari-
ance of the matter Lagrangian density. In effect,
we have the relations

V, GRAVITATIONAL THEORIES DERIVED
FROM BRANS-DICKE-TYPE LAGRANGIAN

g=4-g(v'R b+o+ oco u+I (43)

The derived gravitational equations are obtained
by putting a =0 in Eqs. (31), (32), (33), and (34),
ignoring P„ terms in covariant derivatives, and
eliminating the scalar o from the matter Lagran-
gian (as scale invariance is no longer required in
this case); furthermore, we have E„,=R,„,=R,„„
which we call R „„[seerelations (23)]. Then the
equations of motion (31), (32), (33), and (34) be-
come

In this section we shall illustrate in detail what
has already been noted in Sec. jV: the Lagrangian
density (28) can be considered a common general-
ization of different Lagrangian functions, each
one corresponding to a particular gravitational
theory with fixed covariance properties. Now we
want to show what restrictions are needed and
consequently what gravitational theories are ob-
tained.

(a) We put scale gauge fields $„=0, thereby
destroying second-kind gauge covariance of the
theory with respect to transformations (3). Then
the Lagrangian density (28) must be written as

' em]'

~&u
dX

~x;p

(39) v(R + 2bv')— c (v'-go''"). +co''"C =0,p

V-g

(44)

—~(&)v

~~M ~Sf ~

(40) N (45)v'-g 5A"„'

(41)

az„
y ph&v ~, X;p Spv N

"A. v

q.(kf )
pv

So the identities that are obeyed by the sources
are the conservation laws (24), (25), and (26) of
Sec. III.

Formulas (31), (82), (33), and (34) represent
the equations of gravitation in the framework of a
very general dynamical theory which is covariant
under gauge transformations of the second kind of
the conformal group. Furthermore, it has the
advantage, with respect to any other one derived
from a different Lagrangian, of being easily re-

This gravitational theory is more general than
that of Brans and Dicke" for it takes account of
rotational degrees of freedom (spin gauge fields
are independent variables) and admits a massive
scalar field. As an important particular case we

may put b =0 in the Lagrangian density (43) and
give up the rotational degrees of freedom; then
(43) becomes

2=v'-g (o'R'+co „o ~+L„), (47)

where R is the Riemannian curvature in a torsion-
less spacetime. In fact if we lose the rotational
degrees of freedom, we must replace the gauge
fields A'~

&
with Ricci rotational coefficients A."~&,

which can be expressed in terms of the metric
fields and their derivatives. So, only the scalar
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field o and the vierbein field h, " survive as inde-
pendent variables.

Finally, if we put o' = P, the Lagrangian (47) be-
comes just that of Brans and Dicke, i.e.,

2 = v'-g Pft —(u ' +I„, (o = ——. (48)0
N

For the equations of motion see Refs. 2 and 3.
(b) Another restriction on the Lagrangian den-

sity (28) may be that the scalar field is constant
(v =1): so covariance only with respect to the
Poincare group is preserved. Qwing to the fact
that we give up dilatation covariance, Q„ fields
are also no longer useful and the Lagrangian (28)
can be written as

(r(R+b) =- 5Zg
2v'-g 5o

(58)

o'[Z„„-—.'g„„(fl + b)]= —2~— (59)

V-g 9-g 5A

where the matter Lagrangian J~ depends on the
scalar c through both the substitution (56) and the
interaction with mass terms. Form now on we ex-
clude this last form of interaction, thus admitting
the possibility of the existence of scale-breaking
mass terms. In this line of thought the term bo4

in (57) may be changed into bo'. The gravitational
equations derived from Lagrangian (57) are

2=v'-g (R+b+I,„).
The derived equations of motion are

1
Z» ——,g„„(ft+b) = —~ V'„"v&,

Q-g (b~ "C"))-b, "C;+h;"C;)= 8(";;),
which are exactly those of Refs. 7(b) and 15.
Again, if we give up the rotational degrees of
freedom, we are led to Einstein's Lagrangian

(49)

(50)

(51)

(60)

From Lagrangian (57) in the limit of o =1 we get
again the results of case b: Kibble's gravitational
theory' and Einstein's can be straightforwardly
obtained and again the arbitrary parameter b is
identified with the cosmological constant A.

VI. A COSMOLOGICAL IMPLICATION

Z=v'-g (Z'+A)+4-g L„ (52)

where A =b is the cosmological constant.
(c) When deriving equations of motion (31), (32),

(33), and (34), we considered all field variables
as independent ones. In order to decrease the
number of degrees of freedom and gain in simplic-
ity of the geometrical context, we look for a rela-
tion between scale gauge fields and the scalar o.
As p„and o must obey the transformation rules

(53)

$0 = —Pv~ (54)
we immediately see that a relation of the form

In this section we want to show that a link can
be established between the cosmological constant
of the Einstein Lagrangian (52) and the mass of
the scalar field 0. We start by writing the Brans-
Dicke Lagrangian (48) expressed in terms of the
scalar o instead of the field P of Refs. 2-3,

2=v'-g[o'A' —8+(—2o „o ~)+L„); (61)

next we impose that the scalar is massive; then
(61) becomes

2 = v'-g [o'R' —8(u(-,' o "a „——,
'

p, ,'o') + L„],
(62)

P„=P„(o;o„)
can have a single solution, viz. ,

"=(lno) „,
The imposing of this restraint implies

(55)

(56)

where the presence of the mass m, = p, ,o generates
the term 4&m, 'o' which is to be identified with
bo' of Lagrangian (28). So we have for the mass
mo the following expression

(63)

Then our old Lagrangian (28) becomes

@=4—g(o'ff +bo4+I,„) (57)

(1) the vanishing of o.„=o „—o „(v/o),
(2) the vanishing of the gauge field strengths P»

= 4'p, v 4u, p&

(3) the transition from a Weyl spacetime with

torsion to an ordinary Riemann-Cartan spacetime
(still with torsion, but simpler). This is an im-
mediate consequence of the integrability condi-
tions expressed by (2). (See Refs. 6—17.)

In formula (52) we have identified the arbitrary
parameter b to be numerically equal to the cosmo-
logical constant when o. is unity. Then we can sub-
stitute the term bo' in (63) with A. A value of A

in agreement with the age of the universe and with
Hubble's constant is about 10 "sec ' for a model
of a universe which is isotropic, homogeneous,
and closed. " So, if we suppose that the dimen-
sionless parameter ~ of Refs. 2-3 is positive and
of the order of magnitude of unity, we get for rn,
the value
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m -=10-» sec-j

i.e., in ordinary units (we had put c =A=1)

m, = 10-"kg -=10~'~„

where + is the proton mass.

(64)

(65)

VII. DISCUSSION

After this survey of gravitational theories, we

point out the usefulness of the gauge field method.
With such a theoretical tool we have collected a
number of theories as originated from a single
principle.

Bregman in Ref. 6 obtained the case c of this
work. Omote in Ref. 12 analyzed the scale gauge
fields Q„and the scalar without including the ro-
tational gauge fields. So our equations (31)-(34)

are more general. In special restrictive gauges
these equations give the results of the above-men-
tioned authors.

We also call attention to the interesting payer
by Dirac." Essentially our mass term b4 in La-
grangian (28) corresponds to the term c' in his
action density [Eq. (5.3)]. Dirac states that this
term is connected with cosmology and does not
carry the analysis further. The discussion of
this term in our work leads to the connection be-
tween the scalar massive field and the cosmologi-
cal constant (Sec. VI).
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