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Exact solution of the Lifshitz equations governing the growth of fluctuations in cosmology
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We present the exact solution of the Lifshitz equations governing the cosmological evolution of an initial

fluctuation. Lifshitz results valid for c, = 0 and c, = 1/3 are extended in closed form to any equation of
state of the form p = c,'a. The solutions embody all the results found previously for special cases of c,'. It is
found that the growth of any initial fluctuation is only like t" with n & 4/3 and hence insuAicient to produce
galaxies unless the initial fluctuation is very large. A possible way to produce very large initial fluctuations by

modifying the equation of state by including gravitational interactions, as originally suggested by Sakharov, is

also examined. It is found that a phase transition can occur at baryonic density of 1 nucleon per cubic Planck

length, or equivalently at a time t —10 ' sec. At those early times the masses allowed by causality

requirements are, however, too small to be of interest in galaxy formation.

I. INTRODUCTION

The origin of galaxies is among the most funda-
mental cosmological problems that are still lacking
a satisfactory solution. The original suggestion by
Jeans' that an initial random density fluctuation
could grow fast enough (exponentially) in time to
become a galaxy within the known age of the uni-
verse endured until 1946. Then Lifshitz' showed
that, once the expansion of the universe was prop-
erly incorporated by using general relativity, for
at least two special types of equations of state p
=c,'&, with the speed of sound c,' =0 and c,' = —,',
the exponential growth of an initial fluctuation was
degraded to a power law with an exponent of the
order of unity. Since 1946 Lifshitz's results have
been quoted' as a proof of the inability of any
thermal density fluctuation to grow to galactic
size.

However, a different equation of state (different
c, ) in the ultrahigh-density regime at the begin-
ning of the cosmic expansion might modify Lif-.

shitz's results to the extent that galaxy formation
may be possible. This suggestion gains added
strength from recent studies4 of the behavior of
matter above nuclear densities which indicate that

c,' is probably unity in the ultrahigh-density re-
gime.

Further, it is possible that the initial density
fluctuation may be much larger than the expected
value owing to random thermal fluctuations. This
could occur, for example, if the ultrahigh-density
"cosmic soup" passed through a critical point dur-
ing the course of the cosmic expansion. If 5 is a
measure of the relative density change in a region
(5- &p/p) then 5-N '~' for an average thermal
fluctuation in an ideal gas (N is the number of par-
ticles contained in the fluctuation) while 5-N ' '
at a critical point. ' Consequently, for a galaxy-
sized fluctuation (N-10" baryons) 5 could be en-

P=c, &, (1.2)

where p is the pressure, & is the total energy den-
sity, and c, is the (constant) sound velocity divided

by c. Equation (1.2) is an excellent approximation
to the high-density equation of state since in gen-
eral the speed of sound is a very insensitive func-
tion of & at high density. After obtaining the con-
dition for growth of the initial density perturbation
in a form similar to the Jeans criterion, we de-
termine the dependence of the exponent n of (1.1)
on c,' and show that n ~-', for all possible c,'. The
condition for growth of any small density perturba-
tion by self-gravitation is impossible until after
decoupling. Consequently, the maximum possible
enhancement of the initial small density perturba-
tion is by a factor «10'.

Since relatively large initial density perturba-
tions are required for galaxy formation, possible
methods of obtaining such large perturbations are
examined. An example given by Terletsky' is
discussed and it is noted that, since the uni-
verse is evolving, one must take into account the
minimum formation time of any initial perturba-
tion. We find that the universe must be of order
10 sec old before density perturbations of order
ne/E -1 have time to form by any means whatso-
ever. This is used to eliminate passage of the

hanced by a factor of N ' '/N ' '-10" if the cos-
mic soup were to pass through a critical point.
Since initially

c(f)- v,f"

this enhancement in 5, could make a major differ-
ence in the possibility of galaxy formation even if
the exponent n were to stay of order unity.

The outline of this paper is as follows. We first
present in closed form the exact solution of the
cosmological equa, tions of Lifshitz for any equation
of state of the general form
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very early universe through a critical point as a
means for enhancing initial density fluctuations.

Having clarified the two remaining doubts con-
cerning Lifshitz's treatment, we conclude that the
growth of density fluctuations generated by random
processes near the origin of time cannot be con-
sidered a viable mechanism for galaxy formation.

II. EQUATIONS GOVERNING THE GROWTH OF SMALL

INITIAL DENSITY PERTURBATION S

The first analysis of the growth in time due to
gravitation of small density perturbations was per-
formed by Jeans. ' With Newtonian gravitation in
a static universe he used the Navier-Stokes and
continuity equations

equation

~ BpGPR2+ g=
3 (2.3b)

(g is the curvature parameter), Bonnor showed
that 5(t) satisfies

~ 2R' U, Q
2 2

O+ —O+ ' -4mGp v=0 O~e"«
R R

(2.9)

The presence of 6, due entirely to the cosmic ex-
pansion, changes the exponential growth of 5 in the
static universe into a power-law growth in the ex-
panding universe. The growing solution of (2.9) in
flat spacetime (v= 0) is well known to behave like

ev ~ ~ ~ ].—+ (v V)v = — Vp + y
p

tot

v y=-4mGp„t,
(2.1a)

(2.10)

for an equation of state pcc p', y&-', . The condition
for growth is that the wave number q satisfy

s&~at + V' (p v} = 0
Bt tot (2.1b} 6~GP '-~'

R S
(2.11)

and showed that small mass density perturbations
of the form

Ptot = P+ Pj. ~ Pz P

satisfy

(2.2)

(2.4)

Equation (2.3) has solutions like

g(f ) cr e l ( k r cu t)- (2 5)

(
92—2-g, V 5t =4wGP5t, 5t =pit p 2.3

where p is the average density, p„, is the total
density, and p, is the sound velocity

which is similar to the Jeans criterion (2.7} if k
—= q/R is identified as the physical wave number.

Even though the Newtonian analysis in an ex-
panding universe gives the main result (2.10) of a
polynomial increase in time of 5, it is still not
sufficiently general to be applied to the case when
matter is very dense, p- pc', near the origin of
the universe. In th&s high-density regime one must
include the perturbations of spacetime in the anal-
ysis as well as the matter perturbations. Lif-
shitz" originated this perturbational technique
and obtained approximate solutions for the cases
z,' = 0 and p,' = —,'c'. For simplicity we adopt the
equivalent set of equations given by Weinberg. '

Define the perturbations h,„, U,", p„and E, by

with ~ and k related by

(d2-k~V 2
47TGP

Hence for any wave number k satisfying

(2.6)

g"'=g +A „, U", =U +U,",

Ptot ~ Pl & tot

(2.12)

4mGP '"
(2.7)

Ro ' ~ R(t) ~ BR
P'.R(f) ' CR(t) ' af (2.8a)

where R(t) is a scale factor satisfying the Einstein

the solution (2.5} for 5(f) will grow exponentially in
time (the Jeans criterion).

Since the universe is actually not static but is
expanding with a rate R/R the above analysis is
not applicable. The best known analysis using
Newtonian gravitation in an expanding universe is
that by Bonner. ' By considering that

~
2 SING&, ~ 1 8R

3c c

eR'+3(&+P)R'R = 0.

(2.13b)

(2.13c)

An appropriate choice of gauge (coordinate condi-
tion) and the normalization of the four-vel, ocity
give the conditions

where g,„, U", p, and & are, respectively, the
metric tensor, four-velocity, pressure, and total
energy density for the Robertson-Walker metric
(v=0)

erg =0 Z&; =R'(t)&); ~

(2.13a)
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I „=I„=U,'=0.
The equations

(2.14) (3.2a,)

g&o& -
(Z &o& +to( 7 &o(3) Z oc p (2 15)

8gG sec )
BwG& )'

'
t~ +Cs 3 4 (3.2b)

when linearized in the perturbations, give the
three pertinent equations as

~ o

2R ' R R 87tGI)-—5+2 —,——I3=-, R2(&, +3p,),

(2.16a)

1 E»

Q+P 1+c (3.3a)

where &~ and R~ are integration constants. Note
that & ~ 7. ' regardless of the value of c,'.

Define new dimensionless variables by

3R 1 8i + —(e +p-) = —(e+p}—— +iq UR» C et 2R2

—.—bq UP'(~+p)1=v'&'p, ,

(2.16b)

(2.16c)

R0'—= iq'U»
g t~C

X=-R'(,) =R'—(,),
and use the equation of state

(3.3b)

(3.3c)

~t
where h, yp E» p p» U» e""have been assumed. VsP=C E, P» Cs 6» Cs (3.4)

III. THE SOLUTION in Eqs. (2.1b) to get

The time dependences of R and e are determined
by (2.13b) and (2.13c). Equation (2.13c) gives

Cs (3.5a)

—8+3(1+c )c=pd& 2

dR

(»+c )

R*

(3.1a)

(3.1b)

R 5'= —q C t~o-X,

O' =3C,' —O+C, 5.

(3.5b)

(3.5c)

which in conjunction with (2.13b) gives Elimination of )(' and v' and use of (3.2) gives

g2~2(»~cs )/(3+Bcs ) 7(scs )/(3+3cs )O= p (3 6a)3 1+c, 3+3c,2 1+3C, ]+C 2 3+3C '

and (3.5c} can be written as

( 2cs /()+cs ))I c 23. -2css/()+cs )6s

qt+v, 3+3c,'
R 1+3c,

Wi:th the coordinate transformation

g —$7.(»+3cs )/(3+3cs )

Eqs. (3.6) become

2,d5 s g+ y (3~cs (»+3cs g (3cs (»+3 s 0'= 0
1+3C 2 d~ 1+3C 2 1+C

3+3 2
(b(3+3cs ) / ()+3cs )& - 6cs / O. +ses2)&) —

C
2 3 &(2-6cs )/()+3cs2)6

(3.6b)

(3.6c)

(3.7)

(3.8a)

(3.8b)

Equations (3.8) are solved as follows: Multiply
(3.8a) by z" 's ' ' '"s ', differentiate, and use
(3.8b) to eliminate o. In the resulting third-order
differential equation make the substitution

-2/(1+3e 2) (&(3+scs2)/(1+scs2)5)' dz'

which yields finally

(3 ..9)
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,d X 12c,' dX, 18C, —2
2 ', z + z'+ ', X=O.z' j.+ 3c,' dz 3c,'+ j

(3.10)

where J„is the Bessel function of order p, N„ is
the Neumann function of order p, and A and B are
integration constants. The final result for 5(z) is

This has the general solution

~(Z) —Z0+&6cc2&/(2+ 6cc )[AJ' (Z) +BJ' (Z)]

p 0 integer

X(z) =z"'"' '/""'3 '[AJ„(z)+BN „(z)],

(3.11a)

(3.11b) g7-( +3cs ) /'(3+3cs

(3.12a)

(3.12b)

s""""'""""S(s)s( J s'"Z (s)ds
V

+B z'~'Z „~dz+C,

3 1 —c,'
2 1+3c,' '

p = integer

(3.11c)
where J,(t) is replaced by N„(z) for c,' = —' and

c,'=1, and from (3.8b)

6 2-6c 2/((+3cc )C(Z) 2 3 b-(3+3c 2)/(I+3c32) (2-6c )/((s3cc )5/Z)dZ y O

s
(3.12c)

(&6 is determined by substitution of Eqs. (3.12)
back into (3.8a) while C is determined to make 5
regular at the origin if necessary. Knowing 5 and
(&, )( is determined from (3.5b). Hence, Eqs.
(2.16) are completely solved in general for all
values of c,'.

IV. CONDITIONS FOR GROWTH (JEANS CRITERION)

The general solution for 5(z), Eq. (3.12a), re-
lates be/c to time. In order for the initial density
perturbation to form a galaxy, be/e must grow in
time. However, J„(z) and N„(z) have the property
that they oscillate for z»1 (sound waves) so no
growth is possible in this regime. Consequently
5(z) can grow appreciably only for z &1.

The condition for growth, z &1, can be translated
into a criterion analogous to the Jeans criterion by
use of Eqs. (3.7), (3.6b), and (3.2) and one finds

J,(z)-1, N, (z) -lnz —n, n=ln2 —E (4.2b)

where E is Euler's constant. From (3.12a) and
(3.7) one finds

5(t}-5,t", (4.4a)

5(t) 5 A t (2 s 6cc2 & / (3+3 c32 ) + 5 Bt (3cc2- 3 ) / ( 3cc2+ 3 )

(4.3a)
+1

5(t) - 5,(At' '+Bt' '[-', ln(t/t„)+ &b —(c(+-', )]),
(4.3b)

c =1s
where the A and B serve only to identify the origin
in Eq. (3.12b) of each of the terms in (4.3). Since
the A and B label independent modes of time de-
pendence in the general equation for 5, they do
the same in (4.3). In order to evolve 5(t) as rapid-
ly as possible one chooses that mode which gives
the most rapid growth. Consequently one finds

q 2(1+3c,2}2 )TG&
&k~—

R 3 v, c (4.1) 2+ 6C

3+ 3C
(4.4b)

as the condition for growth of the density pertur-
bation in time. Note tha, t c,' —= 0 in (4.1) does not
agree with (2.11) because the equation of state
p c~- & is not of the form p = c,'&; p CC &" is valid at
low densities but not at high densities, whereas
p = c,'& is valid at high densities but not at low den-
sities.

To find the time dependence of the initial growth
of a density perturbation at very early times, one
must first require the condition for growth (z &1)
and then use this condition to simplify the general
solution (3.12a). If v)(0 the Bessel functions for
small z take the form

as the most rapid possible mode of growth for the
density ratio 5(t), which requires that )2 ~-' for any

2 3
Cs ~

For the special cases c,' =0 and c,' = —,', Eqs.
(4.3) give

5(t)-5,(At'/'+Bt '/')
s c '=0

5(t}-5()(At+ Bt / ) ) c

(4.5a)

(4.5b)

which agree with Lifshitz's results. The case c,'
= —,

' can be solved exactly for arbitrary z to give

il, &,(s)= A 2 +2, —sass)
sing cosz —1

J,(z)-z", N„(z)-z ", v&0

while for p=0

(4.2a)

+B 2 —2, +sins 50, 4.6a
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g, &,(z) = »—,[A(2 —z sinz —2cosz)3Rg
g /3 2 2t 2C2

+B(2 sinz —z cosz)]6, , (4.6b)

2Q't gc (4.6c)

A growth law of the form (4.4a) with n ~ -' and
50-N-1/2 is insufficient to lead to the formation
of galaxies. The reason is simple. Consider the
ratio of the gravitational energy of a sphere of
radius k ' to its thermal energy

G(~c 'k ')'/k ' Ge 1 kz '
EC 2V 2k 3

V 2C2 k2 (4.V)

Consequently, the criterion (4.1) for growth of a
density perturbation asserts that the gravitational
energy of the perturbation should be greater than
its thermal energy. But this is valid only if the
perturbation is causal, i.e. , the time required for
light (or gravitational effects) to travel across the
perturbation must be larger than the time during
which the perturbation existed. The maximum
time a perturbation can exist is t, the age of the
universe. Hence

~kmax ct ~ (4.8)

3 2 2 2
7T vs c

2(1+3c,')' AGE

Using (3.2) to eliminate z and t, (4.9) becomes

(4.9)

1+ 2cs 2& 1
3mc 1, 1, c+ (4.10)

which is a subsidiary condition on the equation of
state in order that a density perturbation be able
to grow under its own gravitational influence.

Prior to decoupling of matter from radiation
c,'&10 ', while after decoupling c,'&10 '. Con-
sequently any small initial density perturbation 50

is unable to grow under its own gravitational at-
traction until after decoupling. Since decoupling
occurs after t-10' years, the maximum possible
enhancement of 50 is

and since (4.1) is the criterion for growth the den-
sity perturbation cannot grow until k &k~ or g2 N" 1 (5.2)

which is the standard N ' ' law for thermal fluc-
tuations. Following Terletsky, if one includes
gravitational forces between the ideal gas parti-
cles, the ideal gas law is modified and the new
equation of state is

PV=NkT —V
BU (5.3)

where U is the gravitation interaction potential.
Taking

GMU'= —n (5.4)

where M is the total mass of the system and n is
a constant depending on the shape of V, the new
equation of state (5.3) becomes

tion (2.la) accelerate the growth rate enormouslyJ.
Thermal fluctuations which give 60-N '/'-10 "
for a galaxy seem to be hopeless. Even if the cos-
mic soup were to evolve through a critical point
where i&0-N ' '-10 "the situation would still be
hopeless. Some phenomenon must be found which
can yield a 50 of order 10 ' or greater in a rela-
tively short time period (-10' years).

One technique for enhancing fluctuations in a
statistical system is to include a strong interparti-
cle attraction in the interparticle force law. This
attractive force appears as a negative pressure.
When the statistical system is in a state such that
this attractive force dominates, a condensation in-
stability sets in which is similar to either a criti-
cal-point phenomenon or a phase transition. The
application of this technique to galaxy formation
using gravitation as the attractive force has been
given in a rarely quoted paper by Terletsky. '

From a general theorem of statistical physics
the mean square deviation of an arbitrary general-
ized coordinate is given by

Bg
((q —q)') = —kT (5.1)

&a '

where a is the generalized external force acting
on q. Setting q = V and a =p and using the ideal gas
law V =NkT/p one finds

5 - 6 (10' /10')' i' - 10'5

from (4.4) or (2.10).

(4.11) pV=NkT —3OGM V

From (5.1) we obtain

(5.5)

V. THE INITIAL DENSITY PERTURBATION -X/2 @ 2/3

Equations (4.10) and (4.11) place severe restric-
tions on 5„ the initial density perturbation. 5
=10' 50 requires 50 to be of order 10 ' to 10
[6„„-10',but one assumes that once 5(t) grows
to -1 nonlinear effects in the Navier-Stokes equa-

& /2[1 (N/N )2 Is] & I2

(5.6a)

(5.6b)

where I =M/N is the average —mass per particle
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and n =N—/V is the average number density of par-
ticles. Hence, from (5.6b) it appears as though

5, can be made arbitrarily large by taking N-N .
However, this appearance is deceptive. Lost in

the statistical analysis is all information concern-
ing the time required for 5, to form. The case
above is particularly instructive because it is pre-
cisely the situation which Jeans analysis (Sec. II)
was designed to handle. In particular it is easy to
show that the condition N-N~ for condensation of
galaxies given by (5.6b) is equivalent to the Jeans
criterion (2.7) for exponential growth. Conse-
quently, the 6, given by (5.6) is not the same 6,
as the initial density perturbation occurring in the
Jeans analysis, the Bonnor analysis, or Eq. (4.4a).
Instead, the 6, of (5.6) corresponds to the maxi
mum 6(t) of the analyses of Sec. II, which was
shown to evolve exponentially in time in a static
universe and as t" (n ~ ~) in an expanding universe.

3
Thus even if one postulates the existence of very
large density perturbations (6o ~ 1) one must allow
time for them. to form. The alternative is to pos-
tulate the existence of large primeval density per-
turbations (dating from the cosmic singularity),
but recent work' "'"has shown that such pertur-
bations are probably damped very rapidly in the
very early universe (t&1 sec).

It is useful to estimate the absolute minimum
time required for any galaxy-sized density per-
turbation to build up to 5 0 from an initial 50
=0 state. This is independent of any particular
growth mechanism (self-gravitation, thermal fluc-
tuation, etc. ).

At any particular instant of cosmic time t con-
sider a sphere of radius F containing Mc' energy
with the ambient energy density e given by (3.2).
Let the matter inside y rush inwards at the speed
of light to a new spherical configuration of radius
r and energy density e. Since e - e(F/r)' and
6- 6e/e- (e/e) —1 one finds

&X—=F- X& 375, 5~1

and defining At „=Lr/c one finds

3
g' ~' g' Mc'"-"-27—. 36. —. .

(5.7)

(5.6)

The ambient energy density E is proportional to t '
from (3.2), and one finds finally

( )3 ~ ~GMp
c (5.9)

where M is in gra, ms and t is in seconds. This is
an underestimate since the expansion of the uni-
verse during 4t will slow down the growth rate of
5.

By requiring At, „&t one finds the following re-
lation between the size of the density perturbation

6 and the cosmic time t at which 6 can exist (if 6
starts from the 6=0 state}:

tp 1 g3 (5.10)

For a galactic mass M-1044 g

t~3 0&10'5 sec, (5.11)

so for 5-1, t „-10'sec, which is the radiation
era.

Condition (5.10) serves to eliminate the possibil-
ity of using the passage of the very early universe
through a critical point to generate very large ini-
tial density perturbations. Sakharov" has suggest-
ed that gravitation will alter the p =p(e) relation
at sufficiently early cosmological times. As dis-
cussed by Novikov and Zel'dovich' the Sakharov
equation of state can be written as

E = EN -Ahclp'n' —BSclp n (5.12a)

p=n —q=p 2Agcl n -Bgcl n ~

dn

(5.12b)

@c '"
lp 3 =1 61 &&10 "cm,

c (5.12c)

where A and B are numerical constants of order
unity, n is the baryon number density, and lp is
the Planck length. By EN we mean the best nuclear
equation of state we can produce. The equation of
state (5.12) has a critical point where dp/dn = 0 at
which point the thermal fluctuations are greatly
enhanced similar to (5.6). The critical density n+
at which dp/dn „„=0 is easily found to be

n~-l~ '-10" cm ' if e„-@en'~' (n-~),
(5.13a)

where m is the mass of the particle involved in
vector-meson exchange. The first case corre-
sponds to 1 baryon per Planck volume, which is
bearable, but the second case corresponds to 10"
particles per Planck volume, which has more of
a mystic than an objective flavor.

Condition (5.11) shows that at the time t-10 4'

sec at which the condition (5.13a) occurs there is
only time to form density fluctuations of order
5,„-10", even though naive critical-point theory
(6 NO't')' leads one to expect 6, -10 ". Condi-
tion (4.10}then forbids the growth of such a small
density perturbation until after decoupling.

I/me '
h 2

n -10 cm if q @c n
P

N mc

(5.13b)
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VI. SYNOPSIS

The general solution of Lifshitz equations gov-
erning the growth of small density perturbations
in cosmology has been derived and presented in
Eqs. (3.12). Examination of these solutions shows
that growth of small density perturbations by self-
gravitation is possible only if the sound velocity
c,' ~ —' [see Eq. (4.10)], which only occurs after
decoupling. Consequently, from (4.11) a maximum
enhancement of -10' of the original density pertur-

bation is possible, which in turn implies that 5p

~ 10 ' at decoupling. Hence, relatively large ini-
tial density perturbations are necessary for galaxy
formation. Growth by self- gravitation of small
density perturbations is not possible prior to de-
coupling, and no known phenomenon can produce
5p ~ 10 ' at decoupling for a galaxy-sized system.
Hence, we conclude that the growth of small den-
sity perturbations (5o & 1) cannot be considered a
viable mechanism for galaxy formation.
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