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Electromagnetic mass differences from an effective Lagrangian*
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An effective-Lagrangian model that gave finite lowest-order dynamical electromagnetic corrections to the
masses of vector mesons is generalized to a chiral O(4) model, which includes A, mesons and pions. Aside
from a PCAC {partial-conservation-of-axial-vector-current) "tadpole" term the Lagrangian is chiral-O(4)-
symmetric, but a term responsible for supplying a part of the A, mass is not gauge-symmetric. Both pion and
A, mass differences contain logarithmically divergent terms, as in chiral current-algebra calculations. The soft-
pion part of the pion mass difference is, however, 3.2 MeV, instead of 5.0 MeV as given by current-algebra
and other effective-Lagrangian calculations.

I. INTRODUCTION

In a recent article' the vector meson was de-
scribed by a Yang-Mills field which acquired mass
by the Higgs-Kibble mechanism. ' When the elec-
tromagnetic (em) interaction was introduced by
the method of Kroll, Lee, and Zumino' the em
mass difference of the charged and neutral p
meson was found to be finite and consistent with
experiment. It is interesting to ask if this proce-
dure can be extended by embedding the vector-
meson Lagrangian in a chiral Lagrangian which
includes axial-vector mesons and pions. Such a
model, presented here, contains two chiral four-
vector fields of opposite parity. One of these acts
as a Higgs field to generate the mass of the vector
meson; tbe other also resembles a Higgs field in

supplying a part of the axial meson mass but, be-
cause of the presence of a chiral-symmetric (but
not gauge-symmetric) axial-vector mass term,
it survives as the physical pion. Our model thus
provides a link between the chiral 0 model and a
pure chiral gauge model.

Unlike the gauge model, 4 where extra scalar
masses provide a natural cutoff, the present mod-
el does not cure the divergence difficulty of the
chiral 0 model, and both pion and axial meson
have logarithmically divergent em mass differ-
ences. In the case of the pion, this divergence is
a "hard-pion" correction, proportional to the
square of the ratio of pion to vector meson mass.
For the vector meson, as in I, the mass differ-
ence remains finite, owing to its "soft" propaga-
tor.

The effective Lagrangian is written in a chiral
O(4) formalism, making use of the isomorphism
of the groups O(4) and SU(2)x SU(2), as discussed
elsewhere. ' Indices a, b, c, . . . will be used as
superscripts to denote the internal symmetry,
with a = 1.. .4, etc. , while Greek subscripts are
used as Lorentz indices. The internal index 4

will always be understood to carry with it the
opposite parity, as compared with indices 1, 2,
and 3. This characterizes the group as chill
O(4). In particular, we introduce the scalar O(4)
vector P' and the pseudoscalar O(4) vector m',

which transform under parity as

tt'(x, t) - (-1)'"y'(-x, t),
n'(x, t)--(-1) "m'(-x, t).

Analogously, the antisymmetric spin-one tensor
V& has components which are vector and axial-
vector fields (t,j, k are restricted to the values
1, 2, 3}:

V cj —
~ jjk Vk V&4

p I P p p s (2)

V"„being a polar vector and Ak its axial-vector
chiral partner. We shall also use the dual tensor

Va~ i ~a~~V~
p . 2 p

whose components are

V'~= ~"'A' Vk4 =V"
P~ P P (4)

Consider now ti;e chiral O(4) gauge-symmetric
Lagrangian

&.= --.'I"„'.I"„'.+-'&„4'&„P+-.'&„e~„H+U(y, s),
(5)

with

ya S ya &+yabyb L+ grab&b

& v'=s m'--'gV"s'--gV" ttt'
V ]I 2

(6a)

(6b)

(6c)

Here, -U(g, x) is a chiral O(4) gauge-symmetric
quartic "potential, " depending only on g' and s'.
We note that if X„, m, and $4 are set equal to zero
in Eq. (5), then we recover the symmetric
Lagrangian [Eq. (1)]of I. Under infinitesimal
local chiral O(4} transformations, with rotation
parameters 8'~=-8~', we have

3778



ELECTROMAGNETIC MASS DIF FE RENCE S FROM AN. . . 3779

and

gbvab g[ e V ]ah+ 8 ebb (7a) w =a+2m/g. Eliminating "tadpoles" requires
that y =m/g and we obtain for the quadratic part
of the Lagrangian 8, (2, =& —Z;„, )

gbv'„'=g[e, v„)"+B„e",
where

g ab & ~abed gag
2

(7b)
Zb =—~(a~vs —B„vp) + 2(8~$ —mvp)

,'(B—„A„—8 „X„)'+-,'(a„n m—X„)'
+-'m'A '+-'(8 o)'--'m 'a'

From Eq. (7a) it follows that

&vpp ——[e, v~„]'

~, is invariant under the local transformations
(7) and

8pa L (eabyb e obnb )

&e =-,'(e"n'+ e"q'),
(Qa)

(9b)

U(g, w) = a($4$'+ w'n') + b (g'g'+ n'n')'+ c(g'n')'.

(10)

Besides the local chiral 0(4} symmetry defined
by Eqs. (7) and (9), 2, possesses an additional
global chiral 0(4) symmetry which we will call
the ordinary chiral group. We designate it as
0'(4), with rotation parameters y' . The corre
sponding local transformations are

since these lead to analogous transformations for
$„(' and S„n' and g'g'+n'n' is an invariant. In-
deed, the only other basic invariant under (9) is
the pseudoscalar P'w', so that U(g, n) in g, has
the form

n=a 2 n',
1

mAu =A'„+~2 B„n'.

(15a)

(15b)

We shall regard w' and X& as the physical pion
and A, meson fields. Dropping v and q we have,
effectively,

Z, = --,'(B„V„-8 „V„)'+-,'(B,y - mV„)'

——,'(B„A'„—8&'„)'+m'X" +-'(8 w'}'

& ~2)2 ~2$ l2 (16)

(14)

In this semirealistic model, the o and q fields
will play no significant role, and we can assume
that the magnitudes of mo' and mz', governed by
the parameters b and c, are large enough that o

and g may be neglected in the dynamics of the
pion, the p, and theA, meson.

The mixing of X„and n is eliminated by a redef-
inition of the axial-vector field, accompanied by
a renormalization of the pion field:

g V'~ =g[g, V~] + 8~(

banya
+abyb

+ahab

(11a)

(11b)
We identify p.

' as being 2m, ' and note that the
axial-vector current divergence is ym„'m

=gym, 'w'. Thus, the pion decay constant f, is
given by

Although p, is only globally invariant under 0'(4),
we will use (11) in order to find the local currents,
using the Gell-Mann-Levy definition

J'„b = 8(&'z)/—8(a„y""),
where [ab] indicates antisymmetrization.

We complete the Lagrangian of strong interac-
tions by adding an 0'(4)-symmetric (but not gauge-
symmetric) term which will contribute one-half
of the chiral vector mass, and a PCAC tadpole
term which breaks the chiral symmetry. Thus our
effective Lagrangian will be 2 =Z, +2', with

f, = v"2m/g. (17)

This is actually the well-known KSFR relation, as
the pion decay interaction (given below} shows that

g =2g
porn ~

From Eq. (16) it is clear that the physical field
A. '„and tt' have their usual bare propagators, but
that the part of Zb describing V„and $ is singular
and agrees with the analogous 8, in I, except for
the it mass term. The same procedure as in I can
be followed for fixing the gauge, in spite of the g
mass term, and we shall use the particular gauge
in which we have

II. PHYSICAL FIELDS

. g„„-k„k„/k'
V„p opag to: (17'}

In the manner by now familiar, we minimize the
"potential energy" terms in 2, with the spin-one
fields neglected; namely, we minimize U(f,n)-'
-ym, 'w', assuming the coefficient b in Eq. (10) to
be negative, and setting (f'}b=0 and (n4)b =2m/g,

g propagator: i(k' —p,') '.
At this stage, any other gauge choice is equally
possible, but when we introduce the em field it
will break down the symmetry to that of an Abelian
gauge by mixing with the neutral component of the
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vector field. We will, therefore, do all our cal-
culations with this gauge.

In our view $ plays the role of a regularizing
field for V„and has no other dynamical signifi-
cance. It can be shown (see I) that a redefinition
of g and V„ is possible such that the redefined
scalar field $' is infinitely massive, and so is not
dynamically effective. The redefined vector field
is then Q„=V„—m 'B„g. with

= —-'(B~Cp —B~Q) +eJ~ 8„, (18)

B„g does not couple to a transverse photon. In
the present model, the result for the mass differ-
ence of the vector mesons is identical to that of I,
and we will discuss it no further.

Thus, to introduce g„we add to the Lagrangian
of strong interactions the term

III. ELECTROMAGNETIC INTERACTION
J'„=(m'/g)u„'+ (em'/2g') 8„. (19)

In our previous work (I}a point was made of
coupling the electromagnetic field 8„ to V„'. The
mass shift of the neutral vector meson was ob-
tained by diagonalization of the Lagrangian, and
the dynamical mass shift of the charged meson
was calculated. Actually, in a transverse photon
gauge, like the Landau gauge used, it does not
matter whether the coupling is to V„or Q„, since

As often discussed, the apparent photon mass
term in (18) actually compensates an imaginary
mass pole induced in the photon propagator by the

p -y mixing, and it is automatically eliminated by
diagonalizing away this mixing.

Introducing the physical pion 7' and A., meson
A'„ through the substitutions given in Eqs. (15), we
obtain the following three-particle vertices (with

P =1/E2m) from 2, +g', Eqs. (5}and (13}:

Vv'w' vertex: —gV„B„m'x%'+ p'gB „V„B„v'xB,w',

Vv'A' vertex: pgB„V„(A„'xB„w'+B&m'xA'„) —pm'gA& V„xw'+ pgB„A'„~ (V„xB„"+B„p'xV„),
VA'A' vertex: gB„V„A"'„xA',+gB„A'„~ (V„xX'„+g'„xV, ).

(20)

(21)

(22)

The two relevant four-particle interactions which enter the vector dominance calculation of pion and A.,
meson mass differences are

A'A'VV: —2g'[2(Vq ' Aq)' —(Vq 'A'„)(V p' Aq+V„'A'„) —(Vq V„)(Aq A'p)+V„'A'„'],

"s'vv: ,'g2[(v„—&w')'+-.'(v„w')']
——,'g'p'[2(V„B„s')'- (V„B„")(V„B„%'+V„B„")(V„V„)(-B„."B„P)+V„'(B„FB„w')].

(24)

The em mass shifts of the pion and the A, meson
are calculated in lowest order using loop diagrams
constructed from the three-particle vertices, Eqs.
(20)-(22), the propagators, and the em interac-
tion, Eqs. (18) and (19). There are also loop dia-
grams arising from the four-particle, or seagull,
vertices in Eqs. (23) and (24). As is usual in vec-
tor dominance theories, the latter diagrams are
convergent in the photon Landau gauge, since they
involve integration only over the effective photon
propagator'

G88 (f') =~~'(gas -P8PQ IP'}[P'(f"-~')'1 '
~

(25)

In our model soft-pion contributions to the pion

em mass difference come only from the term
—',g'[(V„xw')'+-,'(V~ ~ n')'] in Eq. (24) and the term

pm'gA'„~ V„xm' in Eq. (21). The former gives a
contribution 3am'/4n' to 5.'=m„, '-m ', via a
seagull loop, and the second gives (3am'/8n')
x( 1+ln2), via a loop diagram with A, intermedi-
ate state. The net result is (3am'/8m)(1+ln2),
which gives a mass difference of about 3.2 MeV
compared to the usual result' (from a gauge-
invariant Lagrangian) of about 5.0 MeV.

Hard-pion corrections, apart from the logarith-
mically divergent term are estimated to be about
1.0 MeV, so our result is within about 10% of the
experimental value of 4.6 Mev, if we ignore the
logarithmic divergence.
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