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Using the Lehmann-Symanzik-Zimmermann bound for the vertex function, we obtain an average upper bound
for the ratio of hadron to muon production in e*e™ collisions. Bounds for the hadronic contribution to the
(8, — 2) factor and the photon propagation function are also given.

Recent experiments at MIT and SLAC! indicate
that the ratioR(s) = 0(e*e™ —hadrons)/o(e*e™ = u* u")
increases with energy up to the highest available
energy Vs ~5 GeV. Within the framework of cur-
rent thinking, this result is surprising and has led
to many speculations on its origin.? But is it real-
ly surprising? It is not so much if we realize that
for the first time we are presented with an oppor-
tunity to study the decay rate of a particle as a
function of its mass Vs. As s increases, because
there are more channels opened up due to the grow-
ing available phase space, it should not be surpris-
ing to see that many-body channels become impor-
tant which give rise to a growing value of R(s).
This is particularly true if the effective couplings
involved are pointlike and are of comparable
strengths. It is then quite conceivable that the ra-
tio R(s) keeps on rising with s until this behavior
is forbidden by positivity and analyticity as dis-
cussed below.

The purpose of this note is to point out that the
bound due to Lehmann, Symanzik, and Zimmer -
mann (LSZ)? (which is a condition for the absence
of ghosts) is relevant to the behavior of R(s) at
large s and can be used to establish upper bounds
of the hadronic contribution to the photon propaga-
tor and the anomalous magnetic moment of the
muon.

Let us write the renormalized photon propagator
as

kub
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where A(s) (k% =s) is assumed to obey the Killén-
Lehmann representation
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with o(s’) =0.

From analyticity and positivity, it is easy to es-
tablish the lower bound for A(s). We first notice
that SA(s) cannot tend to zero as s -+, This is
so because in this case the Phragmeén-Lindelsf
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theorem [we assume that in the complex direction
SA(s) grows less than exp(V]s])] would allow us to
write an unsubtracted dispersion relation for
SA(s) which gives lim,_,SA(s)<0, in contradiction
with the condition lim,_.,SA(s)=1.

Let us now define the renormalized self-energy
operator 7(s) by

1
A(s)= s[1 +m(s)] , (3)

with 7(0)=0. Since SA(S) cannot tend to zero as
s—o, |r(s)| is bounded. Hence we can write a
dispersion relation for 7(s) with at most one sub-
traction (we have assumed that between 0 and
4m,? there is no zero owing to the smallness of
the fine-structure constant; in fact, the existence
of such a zero would conflict with the experimental
value of the Lamb shift),
c0 ’
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where CDD poles are Castillejo-Dalitz-Dyson
poles and it is assumed that the zeros of the pro-
pagator are isolated points. We shall not need to
use this assumption later.

By making use of the property of the Herglotz
function® or by analyzing Eq. (4) directly together
with the constraint given by Eq. (2) for negative
value of s, we arrive at the inequality

© ’
lf Imn,(s ) ds’ <1, (5)
TJ s
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which is the LSZ theorem?® for the vertex function.

Under the assumptions that single-photon ex-
change dominates the cross sections for the e*e”
annihilations into leptons and hadrons, and that
the yup (or ¥ ee) vertex has pointlike behavior up
to a very large energy s =N and some qualifica-
tions to be discussed below, we have®'®

Imn(s) = %[R(s) +2 (s>>4m,?). (6)

Hence the following bound is obtained:
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This inequality gives a bound on R(S) which is of
comparable usefulness to that given by Cabibbo,
Karl, and Wolfenstein.” For example, if R(S) in-
creases linearly with S, inequality (7) is saturated
for N=5000 GeV?, Previous phenomenological
analyses®® do not take into account inequality (5),
which we shall use in the following.

We would like now to bound the hadronic contri-
bution to QED quantities such as the anomalous
magnetic moment of the muon and the photon prop-
agator. As long as we can make the approximation
[1+m(s)[2=21, there is no problem, but this approx-
imation is no longer good if the bound (5) is satu-
rated. It is clear that no useful bound can be ob-
tained from Eq. (2). Equation (4), which can be
used to get the LSZ bound (5), can effectively be
used, provided that there is no CDD pole? and
|1+7(s)|? is nearly equal to unity in the low-energy
region.

We now want to argue that such CDD poles are
irrelevant if the right physical question is asked.®

As with many other quantities used in dispersion
theory the functions A(s), o(s), and consequently
7(s) do not describe physical quantities until some
average procedure has been achieved to take into
account the finite resolution of the measurement
apparatus.

For this purpose, let us define

G(s)= l@f "etsas’

as the average of G(s)=SA(S) over an energy in-
terval (s, s+0). The function G(s) is also analytic
in the cut s plane with a cut from s - 6 to ©. For

b sufficiently small, we also have G(0)=1 since
G(s) is a slowly varying function for s~ 0. Be-
cause the absorptive part of G(s) is always nega-
tive and can have at most isolated zeros on the cut,
ImG(s) has no zero on the cut, hence G(s) has no
zero anywhere. That the zeros of G(s), if they
exist, are isolated points can be easily proved.
This is due to the fact that o(s)> 0,(s), where the
subscript 2 refers to a two-particle intermediate
state contribution; since 0,(s) = p,(s)|F(s)|?, where
p,(8) is the two-body phase space and F(s) is an
analytic function in the cut s plane, the zeros of
0,(s), which are those of K, (s), must be isolated.
One can therefore ignore the CDD poles in Eq. (4)
bearing in mind that the function 1 +%(s) is now de-
‘fined as the inverse of G(s) which from now on

for simplicity will be denoted by 1 +7(s) and G(s),
respectively.
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Having avoided CDD poles, we now make use of
inequality (5) to obtain bounds on 7(s) for s space-
like or timelike in the range of a few GeV®. Separ-
ating the low- and high-energy contribution to
7(s), we write

_s (M Imn(s) _f"" Imn(s’) ,
7'(s)—11[80s’(s’—s--ie)ds 1) s (s —s—ie) ™

for s <A. The first integral can be calculated
using experimental data on the ratio R(s) up to
an energy A, and the second term gives a contri-
bution which can be bounded by using (5):

s (M Imm(s’) s
s ' , 8
W(S)>‘IT_LOS'(S'—S) ds 1T s<0 (8a)

ds’ +

ﬂ(s)<; 0s’(s’-s-z‘e) A-s

,. 0<s<A.

sz Im7(s’)

(8p)

It should be stressed that the above bounds for
7(s) are not strict and can be improved. This is
due to the fact that A in Eq. (8) should be replaced
by some mean value & which for a rising R(s) lies
far above A.

The hadronic contribution to the anomalous mag-
netic moment of the muon is given by

A L) ’
ana =2 ds’ 0, (sK(s")+ Zf LACON
1 P h( H{( ) 3ﬂ7ﬂu A S’ ds

)
4m, 2
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where K(s’) is a well-known function which is
approximately equal to 4m,%/s’ for s’ 2A >m,2,
and G,(s’) is the hadronic contribution to the spec-
tral function o(s’).

The first integral in Eq. (9) can be evaluated
from experimental data on o(e*e~ —hadrons up to
the highest available energy A. To get an upper
bound for the second term let us consider the
function 1 +7(s) for s sufficiently large compared
to the electron mass to minimize the electron-
positron pair contribution to 7(s) (it turns out that
for s >4m,*, s~1 GeV?, the electron-positron
pair contribution is negligible),

A ’ © ’ ’
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Since

[ofs)ds,2 A o(s’)ds,
JpS'+s A+s J, s ,

and 0,(s’) <o(s’), we arrive at

f”g,,(_s’)ds,sf“g(i’)_ds,SA+s (10)
A S A S A2

after making use of the fact that the difference

fAdS'U(S') _ (tas'tmn(s")
s

0s'+s o S'(s’+s)

is of the order O(o?) and hence can be neglected
as compared with the right-hand side of (10).

Equation (10) now can be used to bound the high-
energy contribution to the muon anomalous mag-
netic moment:

A 2
had S-—q ’ ’ ’ a my
@y <3, a8 KEaE + L (11)

Recent experimental evaluation'! of the first term
gives (6.8 £+0.5)x107® while for A sufficiently large,
for example A =25 GeV?, the second term amounts
to 3.0X107". As already stressed, this bound can
be improved much more since for a rising R(s), A
in (11) could be replaced by a much higher value
which is the mean value of s in the interval (A, ).
The bound (11) does not depend upon experimental
data on 0o(s) beyond A, nor on any experimental
value of the hadronic correction to the photon pro-
pagator at spacelike transfer.

We note that once this hadronic correction [i.e.,
the function G(s)| is known experimentally at suf-
ficiently large spacelike transfer, the bound on a”,?d
can be improved as has been pointed out by Bell

and de Rafael.!?
Similarly an improved bound for the propagator

in the low-energy region can be obtained straight-
forwardly from its measurement at high energy.(“”)

Note added. After completion of this work, a
similar consideration was given by J. Bjorken and
B. Ioffe, SLAC report (unpublished).

One of us (T. N. T.) would like to thank G. Karl
for a useful correspondence.
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