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The scattering of neutrinos on polarized nucleons, viewed as forward virtual WN scattering, is discussed in a
model-independent way based upon the use of a double spectral representation for the invariant amplitudes. In
this framework, many of the scaling results of deep-inelastic v N scattering emerge naturally: for example, the
linear neutrino-energy dependence of the double differential cross section, and for unpolarized, average
nucleon targets, its y dependence; the scaling behavior of the various structure functions; and the vanishing of
the longitudinal cross section in the scaling limit. This approach is seen to be useful in organizing disparate
data from the different scattering regimes. Of particular interest is the derivation of new sum rules for the

scaling functions and for various WN total cross sections.

I. INTRODUCTION

There are now a number of experimental mea-
surements of the inclusive scattering of high-en-
ergy neutrinos on nucleonic targets for large mo-
mentum transfer, the so-called deep-inelastic
regime.’™ These experiments provide informa-
tion about the structure of the nucleon that is
complementary to the data obtained by using elec-
trons (or muons) as probes.*'®> Hence it appears
to be an opportune time to ask whether the salient
features of these results, such as scaling, can be
understood from a rather general point of view as
opposed to the more speculative microscopic
approaches embodied, for example, in the parton
models, °° or the light-cone algebra.®:!°

For eN scattering, viewed as virtual Compton
scattering, Schwinger!!'!* has proposed such a
framework in which many of the observed features
appear in a natural way. The important dynamical
assumption is that the forward Compton amplitude
be represented as a double spectral form.'® The
approach is phenomenological in that no particular
inner structure is assumed, and that deep-inelastic
scattering is correlated with elastic scattering
and photoproduction. Our aim here is to extend
these ideas to study VN scattering, now viewed as
virtual-W-nucleon scattering (where the inter-
mediate vector boson Wmay be fictitious). We
list the following as examples of results that
emerge in this scheme: the scaling behavior of
various form factors, which in turn implies the
linear dependence of the double differential cross
section on the energy of the neutrino, sum rules
for the structure functions, and various relations
among the scaling functions. All the experimental
data available’™ are for targets of about equal num-
bers of protons and neutrons, so whenever we
discuss or use the data we will assume an average
nucleon target.

12

We begin our discussion of WN forward scatter-
ing by first considering the unpolarized target
case (Sec. II). Here, by a suitable choice of basis
tensors, we calculate the WN total cross sections
for various Wpolarizations, and the double differ-
ential cross section for VN scattering; then we
introduce the double spectral representation for
the WN forward scattering invariant amplitudes,
and obtain the scaling limits of the various struc-
ture functions and cross sections. A parallel dev-
elopment for the polarized target case follows
(Sec. III). Quasielastic scatteringis thendiscussed,
together with its implications in the deep-inelastic
region (Sec. IV). Sum rules, which follow from the
spectral representation, from crossing symmetry,
and from low-energy theorems, are then derived
(Sec. V). Finally, we present a summary and
some general remarks concerning this model-in-
dependent approach to the neutrino-scattering ex-
periments (Sec. VI). The Appendix contains a
real-field description of the scattering amplitude
and the consequences of alternative choices for
the basis tensors.

II. SCATTERING OF NEUTRINOS ON UNPOLARIZED
NUCLEON TARGETS

A. Virtual forward WN scattering

The incoming neutrino serves (hypothetically) to
produce a virtual W boson that, ﬁpon colliding with
the nucleon, produces some hadronic state. The
inclusive scattering process may, by the optical
theorem, be conveniently discussed in terms of
the WN forward scattering amplitude, which we
may express as * (62=23/2mW2G)

1 +4ie2depW*" (—q)W"(q)i:(T«)uu Hy, 2.1
i=1
where the first term refers to the situation of
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noninteraction, V is the interaction volume, p is
the nucleon momentum, and ¢ is the momentum of
the incoming W. Here we consider a definite tar-
get nucleon (proton or neutron) and a definite
charge for the W (W' or W~); therefore, the H; has
implicit reference to these quantum numbers.
There is a wide variety of basis tensors T’;"' that
can be used to describe this process; a particular
set of these tensors, which is a generalization of
Schwinger’s choice!! for Compton scattering, is
(where m is the nucleon mass)

T =m*(q"q" - &™), 2.2)

Ty ="y’ - (ap) (0% " +p"4") + (gp)g"" - T,
(2.3)

T —q2i€“yM4xPc’ (2.4)

where we have neglected terms that do not contri-
bute to VN scattering when the lepton masses are
neglected (such neglect also suggests the choice of
a gauge-invariant basis), and have assumed the
absence of second-class currents.”"!®* As we will
see, the presence of the ¢ factor in T, is sugges-
ted by the experimental indication that, in the
deep-inelastic region, 0”#0”, Implicitly, in Eq.
(2.1), the invariant amplitude H; represents one
of the four possible WN scattering processes.
However, charge symmetry implies the identity
of the amplitudes for W*p and W™z (designated
H{"), and for W™p and W*n (designated H{™).
These two independent amplitudes, H(‘*) , are
characterized by the product of the sign of the W
charge ¢’ and the eigenvalue of the third compon-
ent of isospin 7; of the nucleon such that ¢'7]=x1.
Since the amplitudes H{*’T}{” are invariant under
the crossing operations ¢ —~-¢q, p-v, and the in-
terchange of the Wcharge, and since the T; are
symmetric, we deduce that

H{Y(q?, - qp)=HP P, ap), 2.5)

These amplitudes are related to the isoscalar (S)
and isovector (V) combinations by

HE =35+ H), (2.6)

which are symmetric for S, and antisymmetric
for V, under crossing. An alternative approach
to WN forward scattering, which builds in charge
symmetry and CP invariance by using real-field
representations for the Wand nucleon, can be

Zeszw, (VL(R) )* 7/07” (1 ;Z‘ 75)’-1-“*707”(1 F 1 75)VL(R)

we obtain immediately, in the lab frame

(q? +my

found in the Appendix.

We will now proceed to calculate the total cross
sections for WN scattering for particular but un-
specified choices of ¢° and 7; and for various
choices of Wpolarizations. Longitudinal (S) polar-
ization of the Wis characterized by the field

ws=1{q2[m?q® + a2l ?[q%p" - (gp)¢" W (q),
2.7

which then implies that the corresponding total
cross section is

Ta
O'S= 8
mv

qz -1/2
<1+;}—2—> m?q®ImH, , (2.8)

where H, is either H(*) or H{~), depending on the
eigenvalue of §7,, and we have used the flux defi-
nition

F = dw,W(-q)Wg)4m(q® +v?)"/? (2.9)
and the definition
gp= —mv. (2.10)

For transverse polarizations of the W, with right-
and left-handed circularly polarized states corres-
ponding to helicity +1, we find

8ra q?

-1/2
Or(z) = 0" <1 +;z—> mz[—qumHﬁ(qzwz) ImH,

£ L (g7 porpe ImH]
m 8"

(2.11)

B. Differential cross sections for »N scattering

Since the neutrino-lepton- Wvertex is presum-
ably understood, all the physical interest lies in
the W-hadron interaction, which for inclusive re-
actions on,unpolarized nucleons is fully described
by the cross sections presented in the preceding
subsection. However, because of the paucity of
information on neutrino interactions, this unfold-
ing process will not be completed for some time,
particularly with regard to the dependence on the
spin of the nucleon (see Sec. IM); therefore, it is
worthwhile to present explicit expressions for the
VN differential cross section.

Starting from the probability of nonforward vN
scattering,

1

3
2, (T wimH, (2.12)
i=1

[¢%=2EE’' (1 - cosb)],
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q2 +mwz

where E is the energy of the incoming neutrino,
E' is that of the outgoing muon, 6 is the angle
that the muon makes with the incoming neutrino
direction; and the lepton mass has been neglected.
It is to be noted that the + sign corresponds to the
sign of the charge of the exchanged W and that the
H; is H{") for vp and 7n, and H{™) for vn and vp.
The usual local weak interaction is obtained in the
limit ¢®< m,?. Since only this situation is probed
in present experiments, we will neglect the factor
[my?/(q? +my®PF in the following discussions.

C. Deep-inelastic vN scattering and scaling

To this point our discussion has been mainly
kinematic (although, as we shall see, there is
some dynamical content in our choice of basis).

We now introduce the central dynamical hypothesis,
that the invariant amplitudes H; [with () super-
script suppressed] may be represented as unsub-
tracted double spectral forms!™!3:

dM 2dM2 2h; (M 2, M _?)
M2 M2(p+9?+M . 2)(p-q)?+M 2]

H;(q% qp)=

(2.14)

The imaginary part corresponding to an incoming
W and nucleon is then

1 ImH, = aMm,? dM_2? 6(q? - 2mv —m?® +M,?)
T mi; = f M2 M2 q2+%(M+2+M_2)—m2
x (M2, M2) (2.15)
or, letting

m? dM_?
hi <€! W) =m M,_Z hiW+2) M-z)

 ox ( M+2+M-2—2m2§>
P ——ZM;—Z_" )
(2.16)
we obtain
1 © (o2 2 m2
tmit, = gz [ ke (5 ).
(2.17)
where now
M,2=m?+2mv - q°. (2.18)

All of this is just as in the Compton scattering
case.!!

This representation is specifically adapted to
the discussion of deep-inelastic scattering, where

2 2
> q° [—qZImH1+ <E2+E'2+%q2>ImH2;%(E+E')ImH3],
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(2.13)
r
2mv and ¢? are both large, but their ratio
w= 2 (2.19)
q
is finite,
1 Sw<owo, (2.20)

(This is the so-called Bjorken limit.) In this case
M2eqg%(w-1). (2.21)

Since this last quantity is large compared to the
nucleon mass, it is not unreasonable to make the

hypothesis!®
ME2>»m? by (E,m?/M2) =Ty (8). (2.22)

If we now define structure functions in the
Bjorken limit as

fi@)= (_w‘-fﬁf dg e ~H“-VF (8), (2.23)
0
and define
x=1/w, y=v/E, (2.24)

we can write the double differential cross sections
[Eq. (2.13)] in the limit v, g% -« as

v, v 2
Z;‘c - zniz E[(2 - 29 +9*)f(x) #2x (2 — p)f(x)].

(2.25)

Thus, in our framework, the observed linear E
dependence of the double differential cross sec-
tions and the scaling behavior of the structure
functions emerge naturally.

It is also interesting to obtain the scaling limits
of the total WN cross sections given in Sec. ITA.
We find, from Eq. (2.8), that

05 =0, (2.26)

which conforms with the approximate vanishing of
og relative to o, (defined below) without invoking the
“Callan-Gross relation for spin-3 constituents.”'
In the same limit, the transverse cross sections

[Eq. (2.11)] become
2ma 1

Oz) =0 LW 2xf{x)] >0, (2.27)
and the integrated version of Eq. (2.25) is
5_ 8G? !
o= 377 mEj axlf(x) s xf,(x). (2.28)
o
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’
Recall that for the scattering of ¥ on p () the rele-
vant structure function is f(i“)v(fg')), while for 7 it
is fﬁ-') (fﬁ”). Therefore, if we consider an aver-

age nucleon target, the structure function for
either v or 7 becomes the same

FE=2(F 41,
and the corresponding total cross section will be

denoted by 3”7, The approximate experimental
result!'?

(2.29)

Y5V~ 1 (2.30)

implies, from the positivity requirement [Eq.
.27,

= -2xf (), (2.31)
or equivalently [from Eq. (2.27)],
0. (2.32)

One can reverse this argument to deduce Eq. (2.30)
from Eq. (2.32). (Similar arguments are presented
in Refs. 8 and 9.) Because there is now only one
independent structure function, one infers the fol-
lowing definite y dependence of the double differ-
ential cross section for a spin-averaged, isoscalar
target

=V 4 2
o~ mE(L= (), (2.33)
dao? 4G?
i mEf{S)(x), (2.34)

which also appear to be valid experimentally!
(although the ¥ cross section seems? tobe more near-
ly constant in ¥ at high energies, E =30 GeV).

III. SCATTERING OF NEUTRINOS ON POLARIZED
NUCLEON TARGETS

The preceding section has dealt with neutrino
scattering on unpolarized targets. We will now
extend this analysis to incorporate the effects of
target polarization.

A. Virtual forward WN scattering

The WN forward scattering amplitude is still
of the form of Eq. (2.1) but with the sum on i
running from 1 to 8, since there are five additional
basis tensors referring explicitly to the target
polarization; that may be described by the pseudo-

81

q2 -1/2 2 2\1/2
ey = ema® (g +v?)?ImH, .

14

(1+

For transverse polarizations of the W [cf. Eq. (2.11)], w

305 ¢~ 05 ,¢) =
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vector s obeying
p¥s, =0. (3.1)

As in Sec. ITA, there is a wide variety of basis
tensors 7Y for i=4-8 that can be used to describe
this process, some of which will be discussed in
the Appendix. A convenient set of these is'®

TY = -2m3ie* %, s, (3.2)
T‘sw :m(qs)iepumqupo, (33)
1
TEY = 1—%—(qs)T§“’, (3.4)
v_ 1 (19) uw
T4 = S qITs - Py, (3.5)
T =mg?(p!'s”+p"s") —m(gs)(p"q” + p"g")
- m(gp)(g*s”+q"s") +2m(gs)(gp)g"? .
(3.6)

Again, we have neglected terms that do not con-
tribute to vN scattering when the lepton masses
are negligible; we have used a gauge-invariant
set of tensors and have assumed the absence of
second-class currents.” !® This basis is similar
to, but distinet from, that of Dicus.!® Apart from
various factors'® of ¢, the chief differences are
the presence of T and T, in T,, and a less singular
choice of T,. Since the T{”for i=1,2,3,4,8 are
symmetric, and for i=5,6,7 are antisymmetric,
we deduce the following behavior under crossing
[ct. Eq. (2.5)]:

H* (@, -qp)=€;H T (¢%, qp) (3.7)
where
1 ;=1-4
eﬁ{ TS, (3.8)
-1 1=5=17,

’

The fsoscalar and isovector combinations [Eq.
(2.6)] have definite symmetry under crossing as
dictated by Eq. (3.7).

For the study of polarized WN total cross sec-
tions (with definite ¢’ and 7}), we define ¢ as the
projection of s along the direction of g:

c=(g*+v?)™72(gs). (3.9)
The spin dependence of the total cross section for
longitudinal (S) polarization of the W [Eq. (2.7)]
is given by

(3.10)

e find
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1 81 q2 -z 2 2
z(oR(L)_g—oR(L),_gh—mv 1+7 gm[;ZmuImHﬁ(q +v?)ImH,
- ;-’-;-(qz + V32 (ImH, - ImH,) - 2v(g® + v?)17? ImHB] . (3.11)

From Egs. (3.10) and (3.11), we only have three independent cross sections. To obtain the two additional
ones we must consider cross sections corresponding to mixtures of longitudinal and transverse W-boson

polarizations. One possibility is to let

Wi =mg? +v?) T alg®) (g ~ (ap)g* 1+ ibe"** g pgs, W (q), (3.12)

where the transverse polarization is orthogonal to
s. If, further, £=0, we find

g 12
30, -0, )=— (1 + V—2-> 2ab(q?)**2m®*ImH, .

(3.13)

A second choice for the transverse polarization
vector € satisfies

ep=€q=0, es=1, (3.14)
so that with
W‘ﬁ_i=m"(q2+uz)'”z

x{a(g®)™*[g*p" - (ap)q" |+ m*be* } W (q) (3.15)

J

2G* E’

r

we have "
8T £\ 12
30y, -0y,)== m(l‘* F) 2ab(q")
v
><m3<ImH9 + %ImH7> . (316)

B. Differential cross-sections for vV scattering

We will here present an explicit expression for
the vN differential cross section in the particular
case § ||k (k is the neutrino momentum), since the
other possibility, $ Lk, gives a contribution that
is one power of E smaller. Then, from Eq. (2.12),
we obtain [cf. Eq. (2.13)], in terms of £=3- k/|K|
=1,

2
=t—m—q* [x 2m(E +E’cos6)ImH,+ (E+E')(E —E’ cos6) ImH, - %(E - E’cos6)ImH,

T E

2
+ gﬁ(?‘E +E’ —E’cosé)ImH, ~ 2(E® +E " cose)ImHs} . 3.17)

This double differential cross section coincides
with that of Dicus™ when corresponding changes
in the basis are made.

C. Deep-inelastic vN scattering and scaling

By using the representations Eqs. (2.14)-(2.18),
we now proceed to investigate the polarization
effects in the deep-inelastic region. In terms of
the structure functions f;(w) defined in Eq. (2.23),
the spin-dependent double differential cross sec-
tion of Eq. (3.17) in the Bjorken limit has the
following scaling form, with the characteristic
linear E dependence:

dxddy _;_(ng.ﬁ —-ov?)=¢ 2?Gz-mE [+ ¥(2 = y)f5(x)
= 2xy%fo (%) + 229 (x)
-2(2 - 2y +17)fy(%)].
(3.18)

r

It'is also interesting to obtain the scaling limits
of the total WN cross sections. We find from Eq.
(3.10) that

3(0s ¢ =05 )= %%Ue(x) . (3.19)

If we suppose, as suggested by Eq. (2.26), that the
longitudinal cross section vanishes for all ¢ in
the scaling region, we obtain

fo(x) =0, (3.20)

which is equivalent to a relation derived by Dicus'®
on the basis of light-cone algebra. In the same
limit, the transverse cross section [Eq. (3.11)]
has the following spin dependence:

1
2Or) ¢ = Or(1),-¢)

21 1

= g — _{:Ffs(x) - 2x[fe(x) —f7(x)] - Zfs(x)} .

my x

(3.21)
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IV. SINGLE NUCLEON EXCHANGE

The quasielastic scattering situation, where the
final hadronic state is a single nucleon, besides
being interesting in its own right, can provide
information about the scaling region. Again we
view this process in terms of forward WN scat-

tering, this time with a single particle exchanged.

The scattering amplitude is in the form of Eq.
(A1) with

Z HSS 'V)Tkw
i

= smu*y® [t It (-q) ’(q)

1
m +y(p+q)
ng ("Q)jlu )

(4.1)

+T"(q) v |

where
1 . .
I'*(q)=y"F(¢®) - T i0"%q, Fy(q%) = iysy* G4 (&),

(4.2)

neglecting second-class currents’*!® and terms
which for vN scattering vanish with the lepton
mass. The results of an elementary calculation
are

(s.m_8 1 1 > (s.,v)
Hi Z(i q2—2mu+€' q2+2mv +Cz >

q
(4.3)
where ¢; is given by Eq. (3.8),
c{$)=0 fori=2,3,5,6,7,8, (4.4)
F,)?
C{S)=- (B—mZT 4.5)
F,F. G2
= ot * Tpiit (4.6)
c{"=0 fori=2,3,7,8, (4.7)
" = m—’;;(F12+GA2), (4.8)
C{" = 4= F,F (4.9)
4 4m3q2 1+ 2> 3
v) . _ _F\F,
C5 gnqug, (410)
n__ 2
Ce" =~ ZFiGa @.11)

and

$,=G;?, (4.12)

G+ (@ /Am )G

5,- SLHE/MIL 6, (4.13)
6,=G,Cy, (4.14)
a:%—zcEG,,, (4.15)
95=4—q;72-c“1”,%ﬁ+cf’ (4.16)
6,0, 4.17)
97=GI_A+(_G(?§7:J_2M) , (4.18)
s, ey gamic) 419

with
GE=F1—4"27F2, (4.20)
G,=F,+F, (4.21)

The relation of these form factors to the electro-
magnetic ones is provided by the conserved vector
current hypothesis” °

(electromagnetic)

GE,M=(GEP,M"'G[?,M) (4.22)
which, at ¢?=0, implies
GE(0)=1: (423)

BE1+u, =G,(0)=4.7;
also, the axial-vector coupling constant is
84=G,(0)=-1.2, (4.24)

We will assume that Gz, G,, and G, are approxi-
mately described by the same dipole fit.?'2°

The quasielastic total WN cross sections can be
obtained from the imaginary parts of the H;:

1 - M2
mzqz—EImH‘,- )=25(m+z "1>9i: (4'25)

ImH'" =0. (4.26)

Obviously, whenever quasielastic cross sections
are mentioned, it is to be understood that they
refer to either W™p or W*n scattering. For the
longitudinal polarization, we obtain [from Egs.
(2.8) and (3.10)]

1672 b -1/2 g% -2mvy
OS.§=7;—<1 +—V§> (4] 7>GE2’

(4.27)

which has no spin dependence, while for the trans-
verse polarization we have [from Eqgs. (2.11) and
(3.11)]
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1612 P -1/2 q° - 2my q? Vd 1 I 1/2
mmne =Tyt (L) 8 (T ) @ o) s (1 g G [ (L gr) | G “.28)

which shows a simple correlation between the W
helicity and nucleon spin. If we define o, as the
cross sections when the spins are parallel and
antiparallel, then in the quasielastic situation

0,¢=0. (4.29)

[Note that this means in the analogous YN scatter- .
ing case, where G, is zero (so there is no residual
¢ dependence), that the polarization asymmetry
defined there!? by

_ 0, =-0_

s (4.30)

in the quasielastic limit tends to —1; since this
limit corresponds to the scaling variable w=1, this
is some evidence in favor of a conjecture raised by
Schwinger. %]

In this W situation we could define, for example,
another asymmetry using the notation introduced
immediately above:

o__=0_,

A=?————+-E-. (4.31)

The quasielastic limit of this, for large ¢?, is

2G,G,

AT

(4.32)
Then, assuming a common dipole form for each
of the asymptotic form factors appearing here,
we have

28,4 1
A——W——z. (4.33)
We conjecture then that in the scaling region, as
w~-1, A should tend to this value, which supplies
a weak constraint on the structure functions.
Returning now to the representation (2.17) for
the ImH,; specialized to the quasielastic case

m2 M 2
h; (é, W) =2"5( = -1>hi(§), (4.34)
we can present Eq. (4.25) in the form

tI2 b —@2/n2y-ty, -
gi=mj; dge (q/rn)chi(g)

- fmdge“"zf’"z’ %hi(e). (4.35)
0

Here we have used the fact that
hi(£=0)=0, (4.36)

due to the behavior of the §; for large ¢* (assuming

dipole behavior):

1)\
G~ 9;(7) , 1%#4,6,17,
8,~(1/4, (4.37)
8, ~(1/¢".
In fact, this asymptotic behavior implies that
£-0: RO~ i#4,6,7,
hy(o)~ &8, (4.38)
ho(8)~ g
Equations (4.36) and (4.38) may also be expressed
as superconvergence relations.!' If we assume

that this same behavior holds for the %(¢), we
expect [from Eq. (2.23)]

w=1: fi(w)~(w_l)37 i¢4;6771

faw)~ (w=1)2 (4.39)

frw)~ (w=-1)%

On the basis of Eq. (4.26), we might expect the
f¢" to go to zero (as w—1) faster than /¢ [Eq.
(4.39)].

The corresponding extrapolation between the
elastic and deep-inelastic regions for electron
scattering is in reasonable accord with experi-
ment.! We would therefore expect this extrapola-
tion to be valid here, but as yet there is no ex-
perimental confirmation.

V. SUM RULES

In our framework, where the invariant ampli-
tudes are assumed to have double spectral repre-
sentations, it is very natural to derive sum rules
for various WN total cross sections. Since cross-
ing symmetry will play an important role here,
we find it is more convenient to use isoscalar and
isovector amplitudes [Eq. (2.6)] which have definite
behavior under crossing. Since T.” is symmetric
fori=1,2,3,4,8, and is antisymmetric for (=5, 6,
7, we deduce immediately from the spectral rep-
resentation [Eq. (2.14)] that both {9, i=5,6,7, and
Ry, i=1,2,3,4,8, are antisymmetric under the
interchange of their arguments M, 2« M_?; this anti-
symmetry then implies the sum rules [see also
Eq. (2.15)]

fde%ImH‘f’ =0, i=5,6,1, (.1)
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fde -}T-ImH,SV’=O, i=1,2,3,4,8, (5.2)

where M ? is defined by Eq. (2.18). If we explicitly
display the quasielastic contributions, these be-
come

f 2de'—i—ImH,-“’=—(—j;9,, i=5,6,7,  (5.3)
>m
1 1
AM 2 —mmHY) = =8, i=1,2,3,4,8, (5.4)
)mz + T 1 q2 13 ’ b

where §; are given by Eqgs. (4.12)-(4.19). Because
of the asymptotic behavior given in Eq. (4.37), we
obtain the scaling version of the sum rules®

nod )
[ Zrew=o, i=5,8,7, (5.5)
1

“d
J —(;uif(i")(w)‘_‘oy i=1’273,478' (56)
1

The i =5 case of Eq. (5.3) and (5.5) is a generali-
zation of a sum rule seen before in the photon sit-
uation.'?-22:28 In general, we may express ImH, in
terms of various WN total cross sections [Egs.
(2.8), (2.11), (3.10), (3.11), (3.13), and (3.16)].
Particularly interesting are the ¢=1 and 3 cases
of Eq. (5.4): in the limit g2~ 0, we obtain [see Egs.
(2.8) and (2.11)]

f av' v'e{ ) (v') =4m2q, (65.7a)
>0

© 8m2q
f Av'og(v') - o, ()] =22 % 4. (5.7b)
>0 m

Additional sum rules may be inferred from low-
energy theorems. We assume, in analogy to the
low-energy theorem in Compton scattering,’?:2*
that when ¢%, mv < m?, the invariant amplitudes
are dominated by the single nucleon exchange con-
tribution. When this assumption is combined with
the double spectral representation [Eq. (2.14)]
expressed in the form

H (g2, -mv)

1 1 \1 ,
- Jav (rees m)#m"‘f”“‘f’ =mv),
(5.8)

with €; defined in Eq. (3.8), several sum rules may
be obtained. In particular, Egs. (5.8) and (5.1) im-
ply

v
) HS
H” + 2mH P

1 1 \1 v
= ’ Pl ) L 2 (S
fdv <u'-u+u’+u>7r1m<H4 +2mH5 >

(5.9)

The quasielastic contribution to the imaginary
parts, Eqs. (4.25) and (4.26), just reproduce the
denominator structure of Eq. (4.3). However,
there is an additional constant which, by the “low-
energy theorem, ” must be reproduced by larger
values of v’. In terms of cross sections [from Eq.
(3.11), as ¢~ 0 with £=+1]

14
S)_ S S
(0p+ +0g- = 0y — Og,)P=64Tam*Im (Hg Vg >) ,

(5.10)
we obtain
“dy’ 4m3q
J; —V_'-(UL+ +0g- =0p- = OE+)(S)(q2=O) = me “‘azy
(5.11)

which is an analog of the Drell-Hearn sum rule,*

VI. SUMMARY AND DISCUSSION

We have examined the general features of polar-
ized vN scattering, in a model-independent way,
by conjecturing a double spectral representation
for the WN invariant amplitudes, corresponding to
an appropriate choice of tensor basis. From this
general framework, the following results emerge
naturally (in general, an average nucleon target
is assumed):

(i) the linear dependence of the double differen-
tial cross section on the neutrino energy [Egs.
(2.25) and (3.18)];

(ii) the scaling behavior of the various structure
functions [Eq. (2.23)];

(iii) the vanishing of the longitudinal cross sec-
tion in the scaling limit [Eq. (2.26)], which in turn
suggests the vanishing of the scaling function f(x)
[Eq. (3.20)]; _

(iv) the relation between G, =~0 and "/¢"~ 3
[Egs. (2.30)-(2.32)] and the y dependence of the
double differential cross section in the scaling
region [Egs. (2.33)~(2.34)] for unpolarized targets;

(v) the behavior of the scaling functions near
w=1 as inferred from quasielastic scattering [Eq.
(4.39)];

(vi) sum rules for the scaling functions [Eqgs.
(5.5)—(5.6)] and for various WN total cross sec-
tions [Egs. (5.7) and (5.11)].

In obtaining the above results we have been gui-
ded by the experimental situation, which is still
in an early stage. Data are available only on the
three spin-independent structure functions, and
then only for nucleon targets composed of approxi-
mately equal numbers of protons and neutrons.

In the analysis of this data, we have chosen a basis
suggested by simplicity, gauge invariance, and the
conformity to experiment. In particular, the fact
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that "#0"” in the deep-inelastic region requires
the presence of ¢% in T, [see Eq. (2.4)]. Then from
our framework we obtain the results (i) through
(iv) listed above.

Once we try to extend our analysis to situations
not yet accessible to experiment, such as those
employing polarized targets, our predictions be-
come speculative. But, faute de mieux, we have
continued to exploit consequences of simplicity
and physical continuity (that certain features found
in one domain persist in another) which, for exam-
ple, lead to results (iii) and (v) above. It should
be borne in mind, however, that even if these as-
sumptions fail, the general framework provides a
formalism for incorporating and correlating new
experimental data as they become available.

There is only one central dynamical assumption,
the particular form of the double spectral repre-
sentation, Eq. (2.14). The applicability of this as-
sumption is an experimental question, one that
will not be answered in the near future. However,
for now, it is extremely useful for characterizing
and organizing the features of the phenomena. Of
course, one of the central theoretical issues is to
further investigate this double spectral form and
try to determine what conditions are required for
its validity.® In this way, we could hope to learn
something of the hadronic interactions that the
deep-inelastic experiments are probing.
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APPENDIX

A. Real field description of the scattering amplitude

In the text we have used the complex-field rep-
resentation to describe the scattering amplitude
[Eq. (2.1)]. Here we will present an alternative
description using real fields, which builds in
charge symmetry and CP invariance explicitly.
In this representation, the scattering amplitude
for WN forward scattering becomes

2.8 .
1+4ieVdw, 3 2 Wh=g)(T)u, HipWh(a),

a,b=1 i=1
(A1)
where W, , is related to W* by
W= \[1—2_—(1171 FiW,). (A2)

The invariant amplitude has the general form
Hiab= GabH§S)+aab(VTs)’H§'V)’ (A3)

in which 75(v’) is the eigenvalue of the third com-
ponent of isospin (nucleonic charge), and g, is the
charge matrix for the W boson. The basis tensors
f‘i are

T,=T, fori=1,2,4,5
and (A4)
T,=v'T; for i=3,6,17,8,

where the T; are given by Egs. (2.2)-(2.4) and
(3.2)-(3.6). It can now be easily seen that
(T;)u,H;yp is invariant under a<b, 7] —~-7]
(charge symmetry) and g+, V' —-v', §—--q,
q,p—~—-q,—p (effectively CP invariance). Crossing
symmetry (@b, U=V, g——¢q) implies the rela-
tion

H{SV(q*, pq) = £€; H{ " (q?, =pq)- (45)

For W and W™n scattering (¥ =+ 1), Eq. (A3)
becomes

H§+) =H$S)+H£.V), (A6)
while for W*x and W~p we have

Hg-)=HgS)—H§-V). (A7)

B. Basis tensors

As mentioned in the text, a wide variety of basis
tensors can be used. The choice made there is a
natural extension of the electron situation.'!s!?
Since the lepton current is approximately con-
served (because the lepton mass can be neglected
at high energy), we have used a gauge-invariant
set of tensors. For the WN interaction, there is
no strong compelling reason for such a choice.

So one possible alternate is to abandon the gauge-
invariance requirement. Likewise, the set in the
text yields a cross section that grows linearly with
the neutrino energy E, but this linear growth could
be obtained in other ways, such as modifying the
hypothesis of Eq. (2.22). So the basis in the text
is hardly unique, but it does have many attractive
features. Experimental data will be very helpful
in choosing the basis tensors that most readily
accommodate the data. Lacking such guidance,

we will here mention a few further possible
choices and some of the resulting consequences:

(1) Ti=T7,,
1oz, 20 1 a0

5 Zmz 4°

The important changes are
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in (3.11): Fg®+ 1) ImH, - F¢*ImH,,

in (3.13): ImH, -ImH, - (v/2m)ImH,,

in (3.17): (E+E’)(E - E’ cosf) Im H, - ¢ ImH,,
in (3.18): (2 - y)f,(x)—~0,

(A9)
in (3.21): Ff,(x) -0,
in (4.6): C{S'—-F2/8m?*,
in (4.9): C{"’-0,
. .o o4 GylGr+(g*/4m*)G,] 42
in (4.15): §, o 15 4% A A G3.

Of these, the most striking changes are in Egs.
(3.18) and (3.21); neither H, nor H, contribute in
the deep-inelastic region. In particular, for iso-
scalar targets, the effect of nucleon polarization
is the same for v and V. Also, the sum rule Eq.
(5.11) would now be a direct result of the low-en-
ergy theorem for H{S,

©0q) . (A10)

(2) T7=T,+ 9

For this case, we will simply comment on one
consequence. If we were to use the hypothesis Eq.
(2.22) for the deep-inelastic region, the contri-
bution of Im H, would grow quadratically with the
energy E. To retain the linear behavior, we would
have to alter Eq. (2.22):

(8, /M) = 2L (8). (A11)

Certainly this is possible but it does seem to be
somewhat artificial. A test of this basis is the

implied simple y dependence [assuming Eq. (3.20)]
for an isoscalar target:

do®  do” 2
dx dy +dxdy x2 -2y +y2, (A12)
(3) T4=m>(gs)g",
T;=mlgs)p"p”, (A13)

Ti=m3(s"p” + s"p*).

This choice simply abandons gauge invariance for
the last three tensors. Two of the consequences
of this choice are:

(i) The only contribution in the deep-inelastic
region comes from Im H,; the change in Eq. (3.18)
is indicated by

1-
—2xyf o+ 229, - 202 - 29+ 9o =2 7 (A1)

which, in turn, predicts a definite y behavior for
the spin-dependent part of the average of the v and
¥ cross sections. However, the 1/x factor might
be a source of concern.

(ii) The single-nucleon exchange results are

(A15)

FyF,

C’{8:7) =0 except for C’{S)= Py
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