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Nonleptonic weak decay and the Melosh transformation*

M. Machacek~ and Y. Tomozawa
Randall Laboratory of Physics, University of Michigan, Ann Arbor, Michigan 48104

(Received 28 April 1975)

The PCAC (partially conserved axial-vector current) hypothesis and the Melosh transformation are used with
the soft-pion and infinite-momentum techniques to obtain expressions for the nonleptonic weak decay of
amplitudes of the SU(6)& 56, L = 0 baryons. The following results are obtained: (1) Modified Lee-Sugawara
relations are exact for both the parity-violating and parity-conserving amplitudes. (2) Two additional sum
rules involving A decay amplitudes are derived. (3) If the parity-violating part of the weak decay
Hamiltonian transforms only as an SU(6)~ 35, then A(X++) = 0 automatically. (4) Terms arising from the
Melosh transformation are necessary to bring the decay width for 0 ~=-m into agreement with experiment.

(5) All known amplitudes are fitted to within 10%.

I. INTRODUCTION

SU(6) symmetry first gained importance in par-
ticle physics in the 1960's as a classification
scheme for hadrons' in which the SU(3) quarks q
and antiquarks q carry spin —,

' and thus form the 6
and 6 representations of SU(6). The mesons are
considered to be qq pairs and the baryons qqq
states, which can be classified by the correspond-
ing product representations of SU(6) and the rela-
tive orbital angular momentum L of the quark sys-
tem. The possible SU(6) representations for the
mesons and baryons are

6x6=1+35

and

W„=-,Po„,
W„=—,Pcr, ,

The W-spin generators are invariant under boosts
in the z direction and the 5 -spin charges have
finite matrix elements among states in the limit
p, -~ . An SU(6)~ algebra of currents is then con-
structed to apply to current-induced transitions
among the hadrons. If the hadrons belong to sim-
ple representations of this SU(6)~ algebra of cur-
rents, however, the theoretical predictions are in
violent disagreement with the data. The axial-
vector coupling constant g„defined by the matrix
element

6x 6x 6 =20+56+ 70+ 70',
respectively. It is found that the known mesons
and baryons and their resonances do obey this
scheme. The mesons fall into the 1 and 35 SU(6)
multiplets with orbital angular momenta J =0, 1,
2, and possibly 3. The known baryons and baryon
resonances fall into 56, L=even and 70, L =odd
multiplets. The totally antisymmetric 20 repre-
sentation is not seen.

ln order to make SU(6) relativistically invariant
along a single direction and thus suitable for the
discussion of collinear decay amplitudes, ordinary
spin was replaced by a relativistic generalization
of spin, W spin. 2 W spin is defined by the gener-
ators

lV~ =Pmt S„,
W, =P. ,S, ,

Wg =Sg,

where S is the ordinary spin and P,.„t is the intrinsic
parity of the system. For a single quark these
can be written in terms of Dirac matrices as

was predicted to be ~~ by this SU(6)~ argument
rather than the known experimental value 1.25.
Although SU(6)~ did strikingly predict that the ratio
of magnetic moments of the proton and the neutron
was

pr(proton) -3
p, r(neutron) 2

the theory also predicted that the anomalous mag-
netic moment of each individual nucleon must be
zero. It also forbade an electromagnetic transi-
tion from the nucleon to the 3-3 resonance and
decays such as ~-ym. From these failures it was
concluded that the hadron states could not be sim-
ple representations of the SU(6)~ of currents, and
elaborate, essentially ad Woe mixing schemes
arose in an attempt to resolve these difficulties.

Recently, the representation structure of the
hadron states has been clarified by Melosh. ' Fol-
lowing the ideas of Gell-Mann, the currents are
postulated to belong to irreducible representations

3711



3712 M. MACHACE K AND Y. TOMOZAWA 12

of an SU(6)~ of currents, while the particle states
are classified by a different, constituent SU(6)~.
These two different SU(6)~ symmetries are related
by a unitary transformation, the Melosh transfor-
mation. Melosh explicitly constructed this trans-
formation for the free quark model. The alge-
braic properties of currents transformed by the
Melosh transformation have been extracted from
this model and applied to physically relevant ma-
trix elements through the use of the Wigner-
E ckart theorem. The matrix element of an opera-
tor between two hadron states is the product of ap-
propriate SU(6)~ and angular momentum Clebsch-
Gordan coefficients times a reduced matrix ele-
ment. This reduced matrix element is left as a
free parameter in the present applications but
would, in principle, be determined from the true
dynamical theory. This method removed the incon-
sistencies which had appeared in the old SU(6)~
calculations. The axial-vector coupling constant
g~ now has the form g~ =, q, where q is the value
of an undetermined reduced matrix element. Thus
g~ is no longer in contradiction with experiment.
The famous ratio of magnetic moments of the nu-
cleons remains unchanged, but the anomalous
magnetic moment of each nucleon is again propor-
tional to a reduced matrix element and thus need
not be zero. Gilman, Kugler, Meshkov, and others
used partially conserved axial-vector current

(PCAC) in addition to the algebraic properties of
the Melosh- transformed axial-vector current to
satisfactorily predict pionic emission amplitudes
for the decays of mesons and baryons. ' Gilman,
Karliner, and others also found that the applica-
tion of the Melosh-transformation technique to real
photon emissions from baryons and mesons is con-
sistent with experiment. '

In the present paper the Melosh-transformation
technique and PCAC are used to calculate the par-
ity-violating (pv) and parity-conserving (pc) non-
leptonic weak decay amplitudes. In Sec. II the gen-
eral method of calculating nonleptonic weak decay
amplitudes is discussed. The results for these
amplitudes, two new sum rules, and predictions
for the processes 0 -= +n' and Q -=* +m' are
derived in Sec. III. In the conclusion the basic as-
sumptions and results of this work are again sum-
marized.

II. GENERAL CONSIDERATIONS

Consider the nonleptonic weak decay

8+x'

of a baryon F to a baryon B and a pion. The stan-
dard Lehmann-Symanzik-Zimmermann (LSZ) re
duction and application of PCAC' to this problem
gives the following expression:

&2q, &B(p), ~o(0) ia.p"«p&'
i y(p) &

&& qo I (Bi[q3 Bpv(po)]
i y)

&olx'&o&l &«I &'IHv& &o&H "'l&&«lx„'"'.&o&lr&

I
Y5

q, +p, p, +f6 q, +p, P, sE-

for the decay matrix elements in the pion rest
frame, with p the baryon momentum, q the pion
momentum, m, the pion mass, f, the n ijv deca-y
constant, Q', the isospin third component of the
axial charge, A~ the corresponding zeroth compo-
nent of the axial-vector current, H"" ~'& the parity-
violating and parity-conserving hadronic parts, re-
spectively, of the weak Hamiltonian, and Q, a sum
over all possible intermediate states. The left-
hand side of E&l. (2.1) is expressed in terms of
Lorentz-invariant amplitudes for each process.
For the baryons belonging to the spin- —,

' SU(3)
octet part of the 56, L =0 SU(6)~ representation,
i.e., Ã, Z, A =, the parity-violating s-wave ampli-
tude A and parity-conserving p-wave amplitude B
are defined by

mm' '"
»'2qo &BwolH

I F) i,=— u(P')(A By+,)u(P),
0 0

(2.2a)

where u(p) and u(p') are plane-wave solutions of
the Dirac equation for the initial and final baryon
states, respectively. For the process Q —- +g
the parity-violating d-wave amplitude D and parity-
conserving p-wave amplitude B are defined by

i &/2 ~

v'2q &= w iII in
Pp P kg

x u (p')(B+ D y, )u~(P),

(2.2b)
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x (A+By,}6,„

where Q' is the generator of the third component
of isospin. This allows the first term on the right-
hand side of E(l. (2.1) to be simplified to

&B I [0.',~""']
I Y) =&B l[@',B""")]

I Y)

[q 3 Bv& (pg)] [q 3 ~c (pv)] (2.3)

+ '
", (D+&r.) u. (p)

(2.2c)

defines the parity-violating s- and d-wave ampli-
tudes A and D, and the parity-conserving p- and

f-wave amplitudes B and E for the process
0 - - * +m . The wave functions u& and u„ in
E(ls. (2.2b) and (2.2c) are plane-wave solutions of
the Rarita-Schwinger equation' with 9„—=u&ty4 for
X = 1,2, 3 and u4 =-u4 y4 to ensure Lorentz invari-
ance. For a current-current interaction the com-
mutators of the weak Hamiltonian satisfy the rela-
tion

llm Poqp = 2(mr —ma ) .
:&0

(2 5)

Using E(l. (2.4) and taking the above limit, E(l.
(2.1) becomes'

with I„and If the eigenvalues of Q' for the baryon
states B and Y, respectively. In order to simplify
the momentum dependence of expression (2.1) the
invariant amplitudes defined in Eqs. (2.2a)-(2.2c)
are evaluated in the infinite-momentum limit for
the baryons. This limit is taken simultaneously
with the soft-pion limit required by PCAC. Thus
E(l. (2.1) is evaluated in the limit p-~; q, -0 such
that

umdmq, (8 (p), w'(0) (B'„-'-(0)
( r (p) ) = —

I
(I, —I)(B)B;'',""'( 1')

a . &B l~o I »& I le.',""'I»
Y B '- P)=P

(2.6)

where all matrix elements on the right-hand side
are assumed to be evaluated in the limit (2.5). The
details of this limiting procedure are discussed at
the end of this section. We furthermore assume
that the sum over all intermediate states in Eq.
(2.6) may be replaced by a sum over all physical
baryon resonances. The matrix elements on the .

right-hand side of Eq. (2.6) are related by SU( 6)~
and Melosh-transformation considerations.

A. Algebraic properties

The contents of any irreducible representation R
of SU(6}~ can be expressed in terms of the sub-
group classifications (A, o} of SU(3) xSU(2), where
A. is the SU(3) representation label and o =2W+ I
is the W-spin multiplicity. The Melosh transfor-
mation commutes with the component J, of the
total angular momentum J but not with J itself so
that the algebraic properties of a Melosh-trans-
formed operator are specified by the notation

(Q, ~}, , f,,}„
with 8 the SU(6)~ representation classification and
S', and I., the z components of g spin and orbital

g 8-cfr Jr~pc (pv)~sr Jy

= a Hp'p"' (2.8)

so that the parity-conserving part of the weak de-
cay Hamiltonian is (R parity even and the parity-
violating part is g parity odd.

Since the component A~ of the axial-vector cur-
rent is bilinear in quark fields, it belongs to the
35 representation of SU(6)v. Aos transforms like
a m and thus has the subgroup classification

angular momentum, respectively. Since the
Melosh transformation V is defined in terms of
light-cone variables which do not carry definite
parity, all operators will be classified according
to a generalization of parity, 8 parity, where2'

g e-fm'J' P

with J, the y component of angular momentum and

P the ordinary parity operator. The Melosh trans-
formation V itself is (A. parity even. Before the
Melosh transformation is applied, the weak decay
Hamiltonian has J=0. Thus,

I~Pc (Pv) g -& 3 ff &p pJIpc (pv])g & g& & &y
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Ao-{(8,3)o 0}o'
The corresponding Melosh- transformed operator
VA. O V ' has L, =+1 as well as L, =0 parts. Using
the fact that

does not contain 20, and thus 20 cannot couple to
56 through Ao. Thus the only representations in
(2.12) for the weak interaction Hamiltonian which
can contribute are those which are also contained
in the products

56 x 56 =1+35+ 405+ 2695 (2.13)
the dl-parity property of any SU(3) xSU(2) xO(2)
subgroup element is given by

(8{(A, 2W+ I),L,j (R '

=(-1) 'v" .{(A 2W+I) Z'

Thus the L, =+1 parts of VA,'V ' transform under
(A as

(2.9)

N{(8,3)„—1}„(R' =-{(8,3) „1}„.
Since VA.,' V ' must be (R parity odd, the appropri-
ate algebraic combinations are

VA0 V ' -{(8,3)0, 0} (2.10a)

{(8,3)„-1}„+{(8,3) „1}„. (2.10b)

We assume that the AI = —,
' rule is rigorous for the

the hadronic part of the weak decay Hamiltonian.
This implies that the Hamiltonian transforms like
an SU(3) octet. The SU(3) xSU(2) contents of the
35 representation of SU(6)~ are

35 = (8, 3), (8, 1), (1,3), (2.11)

so that the simplest assumption which incorporates
the AI = —,

' ~ule is that the Hamiltonian transforms
under SU(6)~ like a 35. A simple model for which
this is true, the quark-density model, is discussed
in Appendix A. The quark-density model adequate-
ly describes the parity-violating decay amplitudes,
but is inconsistent with the data for the parity-con-
serving amplitudes. A more realistic approach,
dictated by the recent work on gauge theories, is
that the Hamiltonian has a current-current form.
Each current belongs to an SU(6)~ 35 representa-
tion. Thus, higher representations corresponding
to the product

35x 35 = 1+35+ 35'+ 189+280+ 280 +405

(2.12)

need to be considered. " Since we assume that the
sum over all intermediate states can be replaced
by a sum over physical baryon resonances, this
requires a sum over all SU(6)~ 56 and 70 repre-
sentations for arbitrary orbital angular momentum.
Besides the fact that no baryon resonances are
found to belong to the SU(6)~ 20 representation,
the 20 representation cannot contribute to the sum
of intermediate states in Eq. (2.6) because

35 x 56 = 56+ 70+ 700+ 1134

70 x 56 = 35+ 280+ 405+ 3200. (2.14)

&".'-{(8,1)0, 0}so {(8 5)0 0}405 {(8 1)0 0}406

(2.16b)

can contribute. After the Melosh transformation
is applied, the transformation properties of
VA,' V ' given in Eqs. (2.10a) and (2.10b) again re-
strict the intermediate states to L, =0, +1 values.
Thus the Melosh-transformed weak Hamiltonian
may have in addition to (2.15a) and (2.15b) only
terms transforming like

a&„" -{(8,3)„-1}„+{(S,3) „1}„,
{(8„,3)„-l}„,+{(8,3) „1}„„
{(8,3)„-1}„+{(8,3) „1}
{(8 5)i 1}400 {(8 5) i 1}400 (2 17a)

a" -{(8,3)„-1}„—{(8,3) „1}„,
{(8&,3)ii 1}4oo {(8&,3) „1}400,

{(8,3)„-1},—{(8,3) „1}„,,

{(8,5)„-1}„,+{(8,5) „1}„,. (2.17b)

The (R-parity properties of expressions (2.17a) and
(2.17b) may be verified using Eq. (2.9).

Furthermore, the antisymmetric 280 representa-
tion is eliminated since the current-current form
implies a symmetric Hamiltonian. Thus, the weak
decay Hamiltonian can only belong to the SU(6)~
35 and 405 representations. The SU(3) xSU(2) con-
tent of the 405 representation is

405 = (27, 5), (27, 3), (27, 1), (10, 3), (10, 3), (8, 5),

(8„,3), (8~, 3), (8, 1), (1, 5), (1, 1), (2.15)

where A and B label two different (8, 3) multiplets
defined in Ref. 11. The M = —,

' rule implies that
only the (8, 3) and (8, 1) contribute from the 35
representation and the (8, 5), (8„,3), (ss, 3), and

(8, 1) contribute from the 405. Before the Melosh
transformation is applied the transformation prop-
erties of A,' restrict the intermediate states in Eqo
(2.6) to L, =O states. In this case only W, =O,

L, =0 parts of the Hamiltonian given by

H~' -{(8,3),0}„,{(8„,3), 0} „{(8,3),0}
(2.16a)
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The Wigner-Eckart theorem and the algebraic
properties of the operators A'„HP", and IIP' are
used to calculate the matrix elements on the right-
hand side of Eq. (2.6) in terms of the appropriate

SU(6)~ and angular momentum Clebsch-Gordan co-
efficients times undetermined reduced matrix ele-
ments. Thus, . the matrix element of any irreduci-
ble tensor operator 6,

(RAYII, LSJ'J,
~
6(R "A"Y"I"I,"W"W,")~R 'A' Y'I 'I,'L' S'J'J,')

g Pt B'
(L'L,'S'S,', Z'S,')(LL, SS, , SZ, )(( „„)(L, , ) (S ))

SU(6) isoscalar factor
(Refs. 11 and 12)

quark angular momentum
coupling

A. " A'
&& „„„.. . (W"W."W'W,', WW, ) &RLL.()(e ((((R'L'L,'),

SU(3) Clebsch-Gordan W—spin Clebsch- reduced matrix
coefficient (Ref. 13) Gordan element

coefficients
(Ref. 14) (2.is)

where L, L, , S,S„and J,J, are the respective orbital angular momentum, spin, and total angular momen-
tum labels for the initial and final states, and R, A, and W, W, , and o=2W+1 are the respective SU(6)~,
SU(3), and W-spin multiplet labels. Consider the products of matrix elements which occur in Eq. (2.6).
In the SU(6)~ symmetry limit the masses of states within a given representation R are degenerate. Thus,

&a~A',
~
f)&i)Hg(&') Y&

2 2
mg st~ICE

Introducing the notation

(2.19)

B

-A L J A 7 I Ig

-56 0 J' A' F' I' I,'

-56 0 J A y I I,

8'g v

W' S", o'

+pv (pc) ~ oi

8 0 1 0 1 W," 3

~m ~Ilr III

the individual matrix elements in Eq. (2.19) can be written

&&IAol ~}=(&f IAol »)*

A'
= g «L.ww. , ~~)(00w w;, z ~)(iw. w w. , ww. )

~

( 8, 3 A', o' A, o) I), 010 Y'I'I,', YII, $

(2.20a)

and

g Ill

( l )
H'"("'[ Y) = Q (LL,WW„Z&)(00WW„J )(W'"W,"'WW„WW, )

~

Lg ( 8,o"' A, 6 A, (r $ ( Y"'I"'I,"' YII„YIIs)
(2.20b.)

with Q and S the respective reduced matrix elements.
Using the orthogonality condition

g (LL,WW„Z~)(LL,WW. , Z~) = 6,,;,6;,

for SU(2) C]ebsch-Gordan coefficients, the product of equations (2.20a) and (2.20b) becomes
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p &RlA30l l&«la.""
l Y& = g (lwgw'w, ', ww, )(w"'w,"ww„ww, )

LCR A/W

( 35 56 R ) ( R'" 56 R t ( 8 A' Ax
(8, 3A'(r'A, a') (8,o"'A, o A, o) (010 Y'I'I,', YII, )

„( 8
xl QS

Y"I"'I'," YII YII f
(2.21)

The only dependence on the orbital angular mo-
mentum L in expression (2.21) lies in the reduced
matrix elements QS. It is thus possible to sum
over all possible orbital angular momentum L
for a given SU(6)' representation by simply re-
placing QS by the sum Q'Qz, S' of reduced matrix
elements for each L. This sum again acts as a
single undetermined parameter in this approach
so that the form of (2.21) remains unchanged.
Thus the sum over all physical baryon resonances
reduces to a sum over the SU(6)~ representations
56 and 70 for each set of algebraic transformation
properties of the operators Ao and H"" ~' given in

Eqs. (2.10a) and (2.10b), (2.16a) and (2.16b), and

(2.17a) and (2.17b). The second product of matrix
elements in Eq. (2.6) is treated analogously to
Eq. (2.19).

B, Infinite-momentum limit

mm(u'I!~lO)-(, Wu'h. r.~(O~,
OPO

(2.22a)

mm ' '/'
&P'IR'"IP& p, (Po Po@(P-')W'r, "(P),

PO 0

(2.22b)

Using Table I, which lists the infinite-momentum
limit of appropriate Dirac and Rarita-Schwinger
bilinear forms, Eq. ,(2.6) can be evaluated in the
limit (2.5). The appropriate bilinear forms for the
left-hand side of Eq. (2.6) are given in expressions
(2.2a)-(2.2c). The right-hand side is evaluated
using the bilinear forms

TABLE I. Infinite-momentum limit of Dirac and Rarita-Schwinger bilinear forms.
k =p, -p, ; (—= Pauli spinor; p is a unit vector in the direction of momentum.

Bilinear form S =+-32

2(mfm2) u2u f

2(mfm2) up 4u f

2(mfm2) up 5u f

2(mfm2) u g g ~u f

2(mfm2) k gu 2u fg

2(mim2) k &u2y5u f~

2(mfm2) u 2gu f),

2(mfm2) u 2gy5u f),

2(mfm2) k ~k „u 2~u ) v

2(mfm2) k)„k „u2O'5u f p

(m, ™,) ~2'gf

(mg mp)(q(r pgg-

(m f ™2)&2 &f

2IP I g f,
(mf ™2)(20~ P (f
-2lulg~ Ps,

(mf +m2)
(2) f/2 (mg —m2) $2o'

2mf

2 f/2 ™f™2)2

(3) 2 (mi ™2)(2(f2mi

1 mf2+m22+mim2
(m, ™,) (2'(f

mfm2

] mf ™2™fm2
3 mfm2

(mf -m2) $2+0 P (f

y(m —m )
(mf +m2) $ 2 $f2m fm2

(mf2 m22)2
(mf -m2) $20 ~ Pgf2m fm2
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mm r 1/
(rr'Irr" It& (t t, (t.-tl)n(rt')r. rr(t).

(2.22c)

The effective bilinear forms (2.22b} and (2.22c}
for the current-current Hamiltonian are derived

in Appendix B. Since the reduced matrix element
is the same throughout a given SU(6} representa-
tion, it is necessary to treat only the Dirac spinor
case to extract the explicit mass dependence of
these matrix elements in the infinite-momentum
limit. The final expressions for the Lorentz-
invariant amplitudes of the helicity J,= 2 state of
the decaying baryon are

r((r-rrrr')=(m~-mr) (r„' —t', )(&trit&„"I)'&).„+ g (&rrIA', lr&&(IH'"I Y)) r (2.23a)

rr&)'-tran')=(m~+m )I(rr' r,')(&-rrlrt'"Ir&&. „+ g &(rrlr(', lt)&r)H"Ir)).« (2.23b)

for Z, A, and = decays and

n(n -:- r') = ' I(r', -r', ) (&=--lrrr'ln&). „p(&=--lx',
I
t&&rl:",n».„ (2.23c)

B(Q - m') = " ~(1'„-I',-) ((=-
~

„'"~0 ))„,+ g ((=- ~~l f&« I ."'
~ )).„ (2.23d}

(mn +m3, *'+m„m3,*)&+ ~ „(m„-m3,*}(m„+m3,*}'&,&Q "* m)+ 2m „m3,*(m „—m-*) 2m g Sl 3',+

=r (r'„r'; )(&=- Irr-In&-).„+ g ((=- lr(', lr&(( it&:"in-&)„, I, (r.ra~)

(m„'+m3, *'-m„m3, *)
(

~, (m„—m3, *)'(m„+m~*)
E(Q -"*7T)

m „m3,~(me+ m3, *} 2m g Sl 3',4

=3 Iz-I~*- "* B„""Q eff + ~* '
E l H ' Q eff 2.23f

l

for Q decays. Expressions for the helicity state J, = —,
' of the Q —™~~m'decay are

t

&(n -=" w')=(m~ )Im(r'„r' )(&""-IH'„'In &)„—, + p-((""14lr&(r it&'"In )).„
2

and

(2.23g)

B(fl -'-+ «') =(m„+m~*-)~(I'„-I'-*-)((:"* ~en"(O )),«+ g ((=* I&',
~
l)(l~Bg'Ifl )),«

l

(2.23h}

The notation ((a~8~ »),«represents the product of appropriate Clebsch-Gordon coefficients times the

undetermined reduced matrix element after the mass dependence dictated by the infinite-momentum limit
has been removed and

7I
y
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III. RESULTS

Equations (2.23a)-(2.23h) are used to calculate
Lorentz-invariant amplitudes for the decays

Z,'= (V2 Zp —Zp),

Z = —()("2 Z, +Z,'), (3.3)

A '
ps

Qp:

z'-p+op,
Zp -n+ WP,

A 0-n+m',

='-A+ mp,

Q -= +mp,

(3.1)

Q~g Q~ ~g~ +gp

Z+, : Z'-n+ m+,

Z: Z n+m,

A': Ap-p+m,

-A+@ .

(3.2)

The amplitudes in (3.2) are related to those in
(3.1) by the nI = rule. Our present phase con-
vention is chosen such that

The more easily observed decays involving charged
pions are

The decay 0 -AK is also discussed at the end of
this section. Let the notation a&"„~ and X+„' g&

denote the reduced matrix element arising from
the equal time commutation term and the product
term +„)).((B jABQ j l)(l )H~'t Y)),«j, respectively,
in Eqs. (2.23a), (2.23c), (2.23e), and (2.23g) where
R' is the SU(6)~ representation of the intermediate
states and R, A, (7, and L, specify the SU(6)„,
SU(3), g)'-spin, and orbital angular momentum of
the parity-violating part of the weak decaya' I,Hamiltonian II~'. Let b~"„,,~

and Y„" ~„,~ be the
corresponding notations for the reduced matrix
elements appearing in equations (2.23b), (2.23d),
(2.23f), and (2.23h) for the parity-conserving am-
plitudes.

A. Parity-violating amplitudes

The parity-violating amplitudes for nonleptonic
weak decay can be expressed in a simple form by
def ining new variables

6~5 (8 1) 45~2 ( '35 (8,3) 35 (8,3) 247( 2 35«(8,3) 35 ~(8«3) 0i

90~15 (3, 1) (45)2~6 & 405«(BQ«3) 405 ~ (83«3)1 646y lp & 405«(BQ«3) 405«(83 3})1

XB~ 5 ~7 +405 +
3~42 X55,4 1 + X70,% I

45~5 (s.s) +(45)2 40s.(s.s) +
3@yp 4os, (s, s)

Then the parity-violating amplitudes are

A ( 0) ( ) )«) +
4()5~15 ( 4QB (8«4 3) 4Q5 (8~,3) 162 ( 4Q5 (8 3) + 405 ~ (8~,3)) (3.4a)

)( 2 A(ZQ)=(mr -m„) X '+11X "-4p ~ ( 4Q5 (Bz 3) 4QB (8 3)) ]62 (~4Q5 (B~ 3) 4Q5 (s~ 3))

(3.4b)

+ 1 12& 7 ss.o 56,&1 70 0 70 ~ +1A(Z+) ~2 ( ): JV) 405~15 ( 406,(8,3) +2X405
~(8 ~ 3) ) 27 ( 406, (8~ 3) 405 ~ (8~,3) ) (3.4c)

1 354p520M756, 0 56, &1 70 0 70.& 1A(Z ) =~2 (m ™) 2X +22X —
405~15 (X, ' (, )+2X „' (,„))+61(X '

(,„)+2X '
~(, ,))

(3.4d)

A(A') =W3(m)1 ™„)X"+3X'"+405g15 (X405'«„3) +2X406 (,'" 3)) 81 X '('&.» +2X '(
(3.4e)
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(3.4f)

Since each column, apart from the mass factor, satisfies the Lee-Sugawara relation"

v 3 A(Z')+A(A') =2A(= ),
the modif ied Lee-Sugawara relation

W3A(Z,') A(a') 2A(=--)

mz —m~ mA —m„m3, —mA

(3.5)

(3 6)

is satisfied exactly. This modified form of the Lee-Sugawara relation for parity-violating amplitudes is
satisfied experimentally to 10%%up. By use of the Gell-Mann-Okubo mass formula, however, the contribution
of X" itself satisfies the original form (3.5) of the Lee-Sugawara relation exactly.

Expressions for the parity-violating Q decay amplitudes are found using (2.23c}, (2.23e), and (2.23g)
to be

(mo —m )D(Q0) =&6m()' X"
+405~10 (X405'(643) —X p5(8„3) ) +1 ~ (X405(8&3) — 405(8g3))

(45)3 & 405, (88,3) 405, (88,3)I
54g 15

1 405,(8g},3) 405, (88,3))

(m„3+m-.*3+m„m~*)
( „} (mo-m-. 6)(m„+m-. *)'

m„m75*(m „—m556) 0 2m()3m *'

I 8,5 l 35 405 560 700 70, %1
~(8,1) ~ (2 405, (8~,3) 405, (8g,3)) ~ ( 405, (64,3) + 405,(8gp)}

+ 3~ (7X405(8s 3) 10X405 (8s 3)) +
~

(7X40L5 (80 3) 10X4p5 (8 3)) (3.7b)

and

90 5 ' 135'' 5

1 70 3W7 56~%1 1 7pp 70, %1

36' 3 ' " (45)3v 2 ' 8' ' 8' 72m'30~ X4p, (8„„)+ ~ (-3X4pj;(683)+2X4p5(883))+ I ( 3X4p5 (88 3)+2X405 (8s 3))

(3.7c)

Combining expressions (3.7) with (3.4), it is easy to derive the exact sum rule:

(m „—m-. )D(Q, ) (m „'+m 35*'+m „m356)
A( „} (m „—m356)(m „+m15*)'

D(
7(sm „' +

3m„m 4(m() —m„4) 0 + 2 2 06m' m-. *

6 6 "A(Z ) —3A(Z', ) 3A(A')
4 m~-m„2(m1(-m„) '

We assume that the amplitudes are well behaved, i.e., do not become infinite, in the SU(6)~ symme-
try limit. This demands for consistency that the right-hand side of Eq. (3.7a) be zero Similar. ly,
combining Eqs. (3.7b) and (3.7c), one finds the relation

( )
A(Q, *) (m „+m-.*}'

( 4)
m „m 3;* 2m „'m -.*'

I 85 ~ 560 56 ~1 700=3 -27 2X ' — ~ (X405(8~3) X405(6~+)) ~ (X405(8~3) X405(8„3))405&'5 ' ' ' " 54''3

16'7, 560 56, %1 2, 7p, p 70. ~L

(45)3~2 405, (80,3) 405, (8s,3) 27~30 405, (88,3) 405, (88,3) (3.9)

which must by the same argument vanish. Equations (3.7a) and (3.9) give the same constraint on the re-
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duced matrix elements which is

8,5 ~~ 58 0 1 7p p 703%1
2X + (X405 {8A 3) — 405 {8A 3)) + ~ ( 405 {8A 3) — 405 {8A 3))

4054 5
' ' ' ' 108&' 3

8~& 550 56 41 1 7pp 70 41
405.(8e,3) 405,{8&,3)) (X405,{86.3) X405,(803)) 0 (3 10)

45 3V 2
' e' ' ' 277'30

A sufficient, but not necessary, condition for E{I. (3.10} to be satisfied is that the parity-violating part
of the weak decay Hamiltonian transforms only like a SU(6)~ 35 representation. Under this simple assump-
tion, one automatically obtains

A(Q, *) &6A(Z ) 3A(A')
(m„—m 4) 4(m~ —m„) 2(mA —m„)

' (3.12)

The parity-violating amplitudes are all expressed
in terms of a single parameter X" in the follow-
ing way:

A(Z:) =—(m ~-m„)2X35,

A(Z,') = (m, —m, )X35,

A(A') =v 3(mA-m„)X",

A(:- ) =&3(m= —mA)X35,

A(Q, *)= -v 3 (m „-m *)X".

(3.13a)

(3.13b)

(3.13c)

(3.13d)

(3.13e)

The results of a l{3 fit to the amplitudes (3.13a)-
(3.13d} expressed in units of Gp, ,3, where G=10 '
m~

' and p., is the mass of the charged pion, " is
given in Table II and determines the parameter
X35 to be

(3.11)

as well as the Lee-Sugawara relation (3.5}. The
sum rule given in E{I. (3.8}reduces to the simple
form

X35=5.281 GeV '.
The fit is good to 10%. This again indicates that
405 contributions, if any, must be small. Using
the above value of X35 gives the prediction

A(Q, *)=-1.253. (3.14)

and

D(Q;) =0 (3.15a)

(3.15b)

Since there is, however, no a Priori reason why
first-order corrections may not occur, Eqs.
(3.15a) and (3.15b) need not be true.

We notice that the results (3.11) and (3.13a)-(3.13d}
are of the same form as those from a current al-
gebra calculation, except for the appearance of
mass factors which significantly improve the
agreement with experiment. The same mass fac-
tors also occur in the K* dominance calculation. '
If corrections to expressions (3.7a) and (3.9) are
of at least second order in the mass differences,
one may also conclude that

B. Parity-conserving amplitudes

The parity-conserving amplitudes for nonleptonic weak decay can be simplified by defining new variables

35 ~7 405 560 700 @56,0
1 18~5 {8,3) 907{15 {8+,3) 1357{2 35.(8,1) 72~2 35.(8,1) (45}37{6 405,{8,1)

+ +
1 2 5Bp 1 7l 14,B„2 70%1

72~10 """"45&2 """ (45}3~3 "'"'" 81&10
Y ' +

-2&7 4p5 6' 56 p 1 56, l 1 1 7p p I 70, 41F~= 5{ )+ (Y' ' {,)+ 3Y' {,))+ (F '
{ )+ 3 F {, ))45v15 e (45)'&3 ' ' ' 10845

+ Y ' +
12~7 55.0 1 7pp 2&7 55 4] 1 7041

(45)8~6 405 (8,1) 54~10 M5, {8,1)
1 35~15 405, {8A,3) 108 405, (8A,3) 'Y

55p 7 56 41
~3 (~405,(8,5) 7 405 (8,5) ) ~ (~405,(8,5) y405 {8,5)) 8 ~ y405, {8,1)(45)3q3 ' ' ' ' 3247' 5 ' ' ' ' (45)'v 6

] A
70 0 4 5B &1 Y35 (83) 2" 7 587& 1 4058(8~33)

819 10 ' ' 135&2 " 36~2 4057{15 "' '"' 324

6~14 70, %1

(45)'7 3
' ' 36~10

Y ' + Y

(3.16a)

(3.16b)

(3.16c)
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Y y405 2
Y

56, 4 1 1 Y70 %1 2 Y56, %1

46&e """ 46&~ "'"' 24~~ """136~a

1 70, ~1 M14 58, ~1 6 7o, k 1

106 405( g, ) 136~3 405(, 216~10 ~
(3.16d)

Notice that the variable Y„defined in Eq. (3.16d)
depends solely on terms which appear only as the
result of the Melosh transformation. Expressed
in terms of the above parameters (3.16a)-(3.16d)
the parity-conserving amplitudes have the forms:

v2 B(Z'„)= (mr+m„)(6Y;),

&2B(& ) = (mz+m~)(-2Y, +2Y, +4Y,),
B(&o)= (mr+m~)( —Y;+ Y, —Y,),
B(A ) = v 3 (m~+ m„}(3Y,—Y2+ Y3},

B(:- }=&3 (m3, +m~)(I;}.

(3.17a)

(3.17b)

(3.17c)

(3.17d)

(3.17e)

Apart from the mass factors, it is easy to see that
I

each contribution to (3.17c)—(3.17e) satisfies the
Lee-Sugawara relation for B amplitudes"

v3 B(Z,')+B(wo) =2B(=-).

Thus a modified Lee-Sugawara relation

vS B(Z.') B(A') 2B(=--)
(mz+m~) (mA+m„) m-. o+mA

(s.16)

(3.19)

is an exact relation for B amplitudes. This modi-
fied Lee-Sugawara relation is experimentally good
to 7%.

Expressions for the parity-conserving 0 decay
amplitudes are

B(Qo ) =, ",(-2Y, + Y, —2 Y, + Y„),~mz+m-. )

B(n; *)= 3&3(m „+m, *)(-Y, —Y,),

~m -m *&'~m

Q 0

(3.20a)

(s.2ob)

(3.2Oc)

Comparing Eqs. (3.20b) with (3.17a) and (3.17e)
one obtains the additional exact sum rule

B(fl;*), B(=-:), B(~;)
3(m„+m3, *) m3, +m~ &6(mr+m„)

This equation vanishes identically for Q0* ampli-
tudes.

Table III shows the results of a y" fit to the
amplitudes given in Eqs. (3.17b}-(3.17e}. The fit
is good to 10/p with the parameters

(3.21)

By combining Eqs. (3.20b) and (3.20c) one obtains
a possible constraint equation analogous to Eq.
(3.9) which has the form

Y, =-1.536 Gev-',

Y, = -5.549 GeV ',
Y, =1.899 GeV '.

(3.23a)

(S.23b)

(3.23c)

B(fl.-*}
(m„—mm*)'

m „m-.*(m „+m-. *}
Deviations from the experimental values reflect
the experimental deviations from the 4I =—,

' rule
and the modified Lee-Sugawara relation given in

Eq. (3.19). The fit is consistent with the vanishing

Amplitude Theory
Experiment

(Ref. 14)
Deviation

(%)

x(zo+)

A(z )

A (Ao)

A(:)

1.33

1.87

1.61

1.87

1.48 + 0.05

1.93+ 0.01

1.48 ~ 0.01

2.04 + 0.02

10

TABLE II. Parity-violating amplitudes with II~& in
SU(6)~ 35.

Amplitude

s (z,')
& (~:)

Theory

17.18

-0.65

-12.58

10.11

-6.46

Exper iment
(Ref. 14)

19.05+0.16

-0.65 ~ 0.08

—12.04 + 0.59

10.17+ 0.24

-6.73 + 0.41

Deviation
(%)

10

TABLE III. Parity-conserving nonleptonic weak de-
cay amplitudes.
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of B(Z ), but the present approach does not pre-
dict this automatically. Some higher symmetry or
other dynamical constraint on the reduced matrix
elements is still needed to prove that result.
Using the parameters given in Eqs. (3.23a)-(3.23c},
the prediction for the B(Q, *) amplitude, in units
of |"p.,2 is

C. Partial decay width foi Q

&.« = G~.'0~(B+».)4 Bl Q

where the dimensionless constant

(3.27a)

The effective Lagrangian for 0 -= n' decay is

B(QO *)= —6.049. (3.24)

2)2(G~ ' =1 9488xlo-"
8m'

F(Q2*) = ",B(QD*)=3.019.
(m „+m-. *)' (3.25)

The B(Q, ) amplitude given in Eq. (3.20a) provides
an interesting test of the importance of the Melosh
transformation in nonleptonic weak decay. If the
Melosh transformation is not present, the term
Y„will not appear in Eq. (3.20a}. Thus without the
Melosh transformation, one obtains the prediction

B(Q;)= —19.21. (3.26)

lf corrections to Eq. (3.21) begin in third or higher
order in the mass difference, one may also con-
clude that

is used to conform with the conventions in the
April 1974 Review of Particle Properties, and

g~, g, and qr are Rarita-Schwinger, Dirac, and
pion fields, respectively. B and D are the p- and
d-wave Lorentz-invariant amplitudes for this de-
cay. The corresponding effective Lagrangian for
0 - "*n' decay is

~.« = 2&~.' 7~(4+Br, )g&y

—4&(D+Fr,)0.
0

(3.27b)

where A, B, D, and F are the s-, P-, d-, and f
wave amplitudes, respectively. Using the projec-
tion operators

Significant deviations from this value would indi-
cate that terms arising from the Melosh trans-
formation must be present.

Q u(k)u(k) =
spin

-iy ~ k+m
2m

for Dirac spinors and

(3.28a)

4

spin I

(3.28b)

for Rarita-Schwinger spinors with the above effective Lagrangians, decay widths for these processes can
be derived. They are

G 2 2 2

, ( ~B~'[(m„+m-}' —p, ']+~D~'[(m„—m-) —p, ']} (3.29a)

for 0 -= m and

(Gg )' q 1 (m '+m-* —p, ')'1'= ', —5+ ", , " (iA~'[(m„+m2, *)'—p, ']+[B~'[(m„—m-*)' —p']+ ~ ~ ~ ) (3.29b)

g =0.0229 GeV/c, (3.3Ob)

which is small. Since the d- and f wave ampli--
tudes always appear with higher powers of q, their
contribution to Eq. (3.29b) has been neglected.
Similarly the q value for 0 -= n is

q =0.290 GeV/c. (3.30c)

for 0 -=*a, where g is the mass of the pion and

{[{m,+ m, )' —p, 2][(m, —m, )' —p2]) '~

2m $

is the center-of-mass momentum of the decay
products. For 0 -=* m' the center-of-mass
momentum available to the decay products is

F„,.„=(7.7 ~ 1.8) x 10' s '. (3.32)

Thus, Eq. (3.31) is in clear disagreement with
experiment. This indicates that the term Y„aris-

Since for consistency (m„—m2, )D =0 in the sym-
metry limit, the D amplitude can be neglected in

Eq. (3.29a}. The partial decay width for Q -= 2'
is calculated to be

1"(Qo)=6.681xlo "GeV =10.15xlo' sec '

(3.31)

when the Nelosh term F~ is neglected. The total
mean life for 0 is, however, 1.3x10 ' s which
implies a total decay width of only"
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ing from the Melosh transformation is essential in

a consistent treatment of nonleptonic weak decay.
Since the principal decay modes of 0 are =n and
KA and since the q value for these decays are
nearly equal, it is reasonable to guess" that the
branching ratio of each should be about 50%. The
4I = —, rule indicates that the contribution of =Op

to the decay width is twice that of:" 7t' so that the
decay width to all =w modes should be

r„=sr(n;). (3.33)

Using Eqs. (3.33) and (3.32), a 50%%u() branching
ratio into - m would require

a(n;) —-6.6s

which indicates a value

Y„-2.21 GeV '. (3.34)

The estimate of Y„ in E(l. (3.34) is of the same
order of magnitude as the other parameters in this
approach, and therefore is not unreasonable.

The partial decay width r(np *) for the process
0 —=*

m is predicted to be

r(n *)=2.57x10 ' Gey=0. 391x10 s '
(s.s5)

which gives a 5%%u() branching ratio of n - .* »'.
The hI =2 rule again indicates that the branching
ratio to all -*n modes is then

r,*, sr(n.—*)
= &57O.I total I lo/a]

(s.36}

D. Q ~K A decay

Using the method described in Sec. II with kaon
rather than pion PCAC, it is yossibfe to calculate
explicit expressions for the Lorentz-invariant
amplitudes of 0 -K A decay. Since, however, the
kaon mass is no longer small, these expressions
can be expected to give at best an order-of-magni-
tude estimate for the amplitudes. Following the
notation of Sec. II, the appr opr iate matr ix element
in the infinite-momentum limit (2.5} is

In the present treatment -* is treated as though
it is a stable particle. In fact, it has a width of
10 MeV. Since the =*a system is close in mass
to the 0, only roughly half of the resonance is
allowed kinematically to participate in the decay.
Clearly E(l. (3.36) can only be considered an upper
bound on the branching ratio of 0 -=*a. If one
naively assumed that the actual width is propor-
tional to the kinematically allowed area of the
resonance, a branching ratio of 7-8% might be
expected for these decay modes. The experimental
situation itself is unclear concerning =*a decay
modes. A more detailed theoretical treatment
which fully takes into account the resonant nature
of =* is necessary before any definite conclusion
can be reached concerning 0 - ™*mdecays.

iim&2q, &A(p), z-(0)la:" "In-(p)&= - &A I [(-.')"q", ",ap"' '] In-&
K

«l(2)'"&"*'If &&i IIf'""'In
&+(m ' —m ')

0 l

«III'" "'ll &&1 l(l)'~&""I»
2 2mf mA P =P

l

(3.37)

[(( )(/2Q4+(5 HPv (Pc)] [(()1/2Q4+(5 If Pc (Pv)] (s.ss)

« I
[(-')"O'"' IfP" "')ln &

=
& A

I [(l}'"Q"",ff"""']ln,'

=-.'&3&=-- IIIp'(P") ln&

~3&A IIfpc(Pv)l 40&

(3.39)

This term vanishes identically for each algebraic
classification of the Hamiltonian given in (2.16a)
and (2.16b). The infinite momentum limit of E(l.
(3.37) is then taken analogously to that for n

The equal-time-commutator term can be simplified
for a current-current interaction by using the fact
that

m' decays, yielding the expressions

Gm '
D(n- -z-A) =

(m„—mA) f»

x Q («I (2)'/i". "I1&« IIf."ln &).„
(3.40a)

and

W6m„'f.
B(n -K A)=

( )f

x Q («I(2)~'&o'*'If&&1 IIf.".In&).„
r

(3.40b}

for the parity-violating d-wave and parity-con-
serving P-wave amplitudes. The reduced matrix
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elements associated with

Q ((AI (2)"A"*'I&&(& Iff„'""'IQ&) {{
l

are the same as those for decays involving pions and f» is the K-) v decay constant. The explicit forms
of the amplitudes are

2 fs 8~21 ss,a 55 ~ 41 70 0(mo - m»)D(Q -K A) =&6 mn ~
—

{46)2 ( 405I (82 3) 405 ~ (8,3))+ 2~~6 ( 4Q5 ~ (s~ 3) 4Q5 ~ {ss 3)Jz
(s.41)

and

v6mn f 4 58,0 1 70.0 1 2 1 58.0( )
( )f 46 35, (8,1) ] 2 35, (8,1) (46)2 405 I(8,1) 12~6 405 s(8&1)

2V14 ass ~ 51 6~42 iy ss.o +.Is y ss. 51
46~]6 4P5(8, 3) (46)2 ( 405(85) " 405(85)}

16~21 58 51 2 7p

(46)2 405, (80,3) 27~6 405, (82g13) (3.41b)

The combination of reduced matrix elements on the
right-hand side of Eq. (3.41b) is linearly indepen-
dent of Y„Y„Y„andY„. Thus no numerical pre-
diction can be made for the amplitude B(Q -K A)
without further information. As in Eq. (3.7a) for
0 —" m decay consistency demands that in the
symmetry limit

(m„- m, }D(Q- -K-A)- O.

Y(10,4)-B(8,2}v,

such as

Y*' -pm' or S' - ~'m0,

and

(3.43a)

(

leptonic weak decays of bar yons in the 56, L = 0
decuplet (10,4). Decays of the form

Thus the right-hand side of Eq. (3.41a) must vanish
giving the constraint equation

F(10,4)-B(8,2)K,

such as

(s.4sb)

4~21 { 58 o K55, 51
(46)2 1 4051{80I3) 4051(82I3)}

1
27~6 ( 405, (80 3) 4~05, (80,3))

This equation is linearly independent of Eq. (3.10)
and is again consistent with the assumption that
the 405 representation does not contribute to ma-
trix elements of the parity-violating part of the
weak decay Hamiltonian.

E. Additional consistency constraints

Equations (3.10}for the process Q - - n, Eqs.
(3.10) and (3.22) for the process Q - "* m, and
Eq. (3.42) for the process Q -K A are examples
of constraint equations which occur because the
L ore ntz - invar iant nonleptonic weak decay ampli-
tudes are required to remain finite in the SU(6)s
symmetric limit. Additional cons istency con
straints of this type must also exist for the other
unobser vable, but theoretically possible, non-

-K n or 40-K p

provide 28 processes which must satisfy the con-
straint condition

(B(8,2) ){ or KIIfa
I &(10,4)& =o((m„™8)')

(3.44)

For the 9 -spin 1 part of H ", the product of W-
spin Clebsch-Gordan coefficients C(L, =0) in Eq.
(2.21) for the I,=0 contribution to the matrix ele-
ments is just

c(I., =o) = -c(L, = +1),

where C(L, = +1) is the corresponding W-spin fac-
tor for the L, = +I contr ibut ions, so that the L, = 0
and L, = +1 terms will always appear in the com-
b in at ion

R «(8 23) R 2(8 ~ 3) R 2 (8 «3)

Thus the contraint Eqs. (3.44) have the general
form

405 56 70 56 70 56 70
8 25 2 35, (8 3) 3 35 ~ (8 33) 4 405 2 (8 «3) 5 405 «(8 «3) 6 405 3(8 23) 7 405 ~ (8 «3)

+ s 4os. (s.s) + 8K4as. (s,s) =
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For all of the decays (3.43a) and (3.43b), the 35 contribution to the constraint (3.45) vanishes identically,
i.e., c, =c, =0. The nine decays of the forms

Y(10,4)-B(10,4))(,

such as

(3.46a)

and

Y(10,4) —B(10,4)K,

such as

n- —Y*'Z-,

must satisfy the condition

(B(10,4) (( or K~H'"~ Y(10, 4)J, = 3) —(B(10,4) &( or K~H'"~ Y(10,4)J, =3}=O((m„—ms)3).

(3.46b)

(3.47)

All of the decays (3.46a) give the same constraint equation (3.10). The decays (3.46b) involving kaons give
a single additional constraint of the form (3.45) which is

135~2 35&(8(3) 16~2 35((8I3) 405~5 4O5, (8&I3& +
54~3 4O5, (8~e3&

4~14 58 7
(45)3 4055 (885 3) 54~3P 405 I (8)& ~ 3)

Thus the unobservable nonleptonic weak decays provide rather weak theoretical constraints on the reduced
matrix elements of H ". The constraints are consistent with the assumption that the parity-violating part
of the weak decay Hamiltonian transforms only as an SU(6)~ 35, but are not alone sufficient to prove this
assumption. The decays of the forms (3.46a) and (3.46b) also must satisfy the constraint condition

(B(10,4) s or K~H~'( Y(10, 4)J,=3) —3(B(10,4) I or K~H~'&Y'(10, 4) J', = —,'}=0((m„—m8)') (3.49)

for the parity-conserving part of the weak decay Hamiltonian. All of the decays (3.46a) satisfy Eq. (3.49)
identically. The decays (3.46b) involving kaons give one additional constraint which is

Y58,0 2 8, 4( 1 70 0 2 Y70. 4&

(45&' "'"" W3 """" 108W5 "'t'" W3
' '"")

Again this is a very weak constraint which has no effect on the present results.

(3.50)

IV. CONCLUSION

In this paper the standard LSZ reduction tech-
nique and PCAC are used to obtain expressions
for the nonleptonic weak decay amplitudes for
baryons belonging to the SU(6)~ 56, I. =0 repre-
sentation. These expressions are simplified by
determining the Lorentz-invariant amplitudes in
the infinite-momentum limit P -~ for the baryons.
This infinite-momentum limit and the soft-pion
limit q, -0 required by PCAC are taken simul-
taneously such that

llm p0 (f0 = 3 (mr —
m&& )

P ~~)00~0

where F and B are the initial and final baryons,
respectively. We make the following general
assumptions:

(a) The sum over all intermediate states in the
expressions for the amplitudes may be replaced
by a sum over the physical baryon resonances.
Algebraically, this requires a sum over all
SU(6)~ 56 and 70 representations with arbitrary
orbital angular momentum I..

(b) The hadronic weak decay interaction Hamil-
tonian is of the current-current type consistent
with recent gauge models. This implies that the
interaction Hamiltonian for these processes trans-
forms like the SU(6)~ 35 and 405 representations.

(c) The EI = —,
' rule is rigorous for this Hamil-

tonian. Thus, the Hamiltonian must transform as
an SU(3) octet.

(d) The Melosh transformation is applicable to
the axial-vector current and Hamiltonian operators
appearing in these expressions. The general al-
gebraic properties expected for such Melosh-
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transformed operators are used with the Wigner-
Eckart theorem to express the decay amplitudes
in terms of Clebsch-Gordan coefficients times
undetermined reduced matrix elements.

For the parity-violating decay amplitudes, we
obtain a Lee-Sugawara —type relation which is
satisfied experimentally to 10% and an additional
sum rule involving the parity-violating 0 decay
amplitudes. If we further assume that

(e) the parity-violating part of the Hamiltonian
K~" transforms only as an SU(6}~ 35, we obtain

(1) A(Z,') =0.
(2) The Lee-Sugawara relation is exact in its

original form

ness of B(Z }and the apparent 35 dominance of
II~", but it cannot predict them automatically.
Some higher symmetry or dynamical mechanism
which is outside of the scope of the present work
is needed to completely explain these two points.

APPENDIX A: QUARK-DENSITY MODEL

(A1a)

A simple model from which the AI = —,
' rule fol-

lows automatically is the quark-density model.
In the quark-density model the Hamiltonian is bi-
linear in the quark fields and thus belongs only
to the SU(6)~ 35 representation with

HP" yy y6q

WSA(Z,')+A(Ao) —2A(=-) =O.

(3) The sum rule for Q amplitudes reduces to H~'-i(A'g. . (Ajb)

A(Q, *) v6 A(Z ) 3A(A')
(m„—m *} 4(mr —m~} 2(mA —m„)

'

(4) A single-parameter fit to the parity-violating
amplitudes A(Z,'), A. (A'), A(Z ), and A(:" ) is
good to 10%.

(5) Constraint conditions on the reduced matrix
elements which arise from the requirement that
the amplitudes remain finite in the SU(6)~ sym-
metry limit are consistent with, but not sufficient
to prove assumption (e).

The 405 contribution to the parity-conserving
Hamiltonian is important. Thus under assumptions
(a,)—(d) we obtain the following results:

(1) A modified Lee-Sugawara relation

WSB(Z,') B(A') 2B(= )
mr+m~ (mA+m„) m=+m~

The matrices X6 and X' are 3X 3 matrix represen-
tations of the sixth and seventh SU(3) generators.
The algebraic classification of the Melosh-trans-
formed Hamiltonian is then

H„'"- f(8, 3)o, 0)„,((8, 3}„-j}35+((8, 3) „j)„
(A2a)

and

H: -((8,1)„o)„,((8, 3)„-j)„-((8, s) „j)„.
(A2b)

Using (A2a) and (A2b) to evaluate Clebsch-Gordan
coefficients and the forms (Ala) and (Alb) to eval-
uate the infinite-momentum limit in Eq. (2.6),
expressions are obtained for the Lorentz-invariant
weak decay amplitudes. The parity-violating am-
plitudes can be written

is exact. This is experimentally good to 7%.
(2) An exact sum rule involving Q decay

B(Q;*), B(=-:), B(Z', )
3(m„+m-. *) m-. +m~ v6 (mr+m~)

A (Z,') = ~ a,",+ (mr+ —m~)X',

V2 A (Zoo) = a,",+ (mro —m„)X',1

(A3a)

(Asb)

is obtained.
(3) A three-parameter fit to the known octet

amplitudes is good to 10%.
(4} Terms arising from the Melosh transforma-

tion are necessary to bring the decay width for
0 - =n into agreement with experiment. This
indicates that the Melosh transformation is im-
portant in nonleptonic weak decay.

(5) An upper limit on the branching ratio of the
decay mode Q —:-*vis 15%. The treatment of
this decay mode is somewhat ambiguous due to the
width of -* and the closeness in mass of the ™*n
system to the 0 . An estimate of this effect re-
duces the branching ratio by about half. The pres-
ent work provides a consistent algebraic treatment
of nonleptonic weak decay. It allows for the small-

A(Ao) =&3 ~ a,",+(m, -m„)X', (A3c)

A(= ) =v3 ~ a,",+(mm, —mA)X'

with

(Asd)

A(z;) =o (A4)

automatically. Similarly, using the Gell-Mann-
Okubo mass formula, one can see that the Lee-
Sugawar a relation

~SA(Z;)+A(AO) —2B(=-)=O (A5)

m56 ~0 9M56 ~ &1 ~70 &0 ~70, 4 1
35 ~ (S ~ 3) 35 (S ~ 3) 35 ~ (S 3) 35 (& 3)

45~ 45v2 24&2 12@2

Using the phase conventions (3.3), it is clear that
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is satisfied exactly. In this model, the parity-conserving amplitudes are

A2 ~ —mph
(A6a.)

WaB(Z')= ~"'"' 5 " " " ' -6 " " -10(,+ „)1,
30&5 (m ~ —m„) (mr —m~) (mA —m„)

(A6b)

~2B(g)
-", , g ."., 5( + ) ( + ) 6( + ) 2(, )y
9@5 30' 5 (m z —m„) (m z —m~) (mA —m„)

(A6c)

30 5 mA —m„mr —m„
(A6d)

3o m= —mr mg —mA
(A6e)

where g„=1.25 is the axial-vector coupling con-
stant. The reduced matrix elements for L &0
intermediate states are combined into the param-
eters Y and Y', where

2Y ss. (8.I)
13592

Y.0,0
8s.(8.1)

and

Y56y0 Y70 y0 g ~56, %1 ~ 70, 41
YI 8sa(8 II) 85 ~ (8 sI) 8s ~ (8 a8) Ss a (8 ~ 8)

135@2 36' 2 135~2 36&2

TABLE IV. Quark-density model fit to A and B am-
plitudes.

The vanishing of B(Z ) is not explicit in the form
(A6c), a Lee-Sugawara-type relation for the B
amplitudes does not follow automatically, and a
combined fit shown in Table IV to minimize the
percentage error in the A and B amplitudes using
this parametrization is good to only 40%. Thus,
although the model works very well for the parity-
violating amplitudes, the addition of the Melosh
transformation is not sufficient to bring the B
amplitudes into agreement with experiment.

APPENDIX B: EFFECTIVE BILINEAR FORM FOR

CURRENT-CURRENT HAMILTONIAN

If, as indicated by recent work on gauge theo-
ries, the weak interaction is mediated by heavy
vector bosons, the nonleptonic weak decay of a
baryon is a second-order process in the weak in-
teraction for which the S matrix is given by

S~2&=
l

d'xd'y T(H(x)H(y)),
(- ~)'

where H(x) is the interaction Hamiltonian in gauge
field models. Pictorially, the matrix element of
the S matrix between two quarks q and q' is given
in Fig. 1 where the shaded area represents a con-
traction over the vector boson and all strong in-
teraction corrections. More explicitly,

2

Sf('t) =
2

d'xd'y x y p 1+y5

r, )4(y)

where g is the quark field and G»(x, y) is a general
function representing the contractions and strong
interaction corrections indicated schematically in

Fig. 1. The SU(3) indices have been suppressed
for simplicity. Defining new variables

Amplitude

A(Z )

~(=-:)

x(a')
& (~+)

a(z )

a(:)
a(A')

Theory

1.75

1.70

1.87

14.61

0.54

-5.11

13.98

Experiment
(Ref. 14)

1.93 ~ 0.01

2.04 + 0.02

1.48 + 0.01

19.05 ~ 0.16

-0.65+ 0.08

—6.73 + 0.41

10.17+0.24

Deviation
(%)

12

18

22

X=—,
' (x+y)

and

Eq. (B2) is rewritten as

r rrr r

X

FIG. 1. The diagram for the second-order S-matrix
element of the weak interaction between two quarks.
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2
dcrd4X((X+ ', r-)y„(1+y,)G„„(X,r)y„(1+y,) $(x 2-r)

=--g df Heff &

which defines an effective interaction Hamiltonian density. H,ff(0) then has the form

ff0«(0) =— d X(i)(X)y (1 + y~)G„,(X, 0)y„(1 + ys) g(X).
$g

In terms of Lorentz invariants, G„,(X, 0) has the general form

P P

where terms which are not linear in y matrices are dropped since they vanish in the expression

y„(1+ y, )c„.(x, o)y. (1+ y, ).

Using Eq. (Bs) one obtains

y„(1+ys)G„„(X,0)y„(l+ ys) =2y„G„„(X0)y„(1+y~)

=4yq [ —G, (X')+2G, (X')+2G,(X')](1+y,)
P

so that H,«(0) becomes

' (B4)

(B5)

(B6)

Bff(0)=2(B jd Bp(B)y„((+y,)2(B) [ —G, (B')+2G, (B )+2G, (Ã')].

Assuming that the quark field operators act on quarks within the baryons, the weak decay matrix element
of interest between baryon states F and J3 becomes

mm(B(2)IB„(0)l y(0)& =2.~B'( ' ' «(0)y, ((+ y, ) «(B)
1 2

d Xe '~~2 ~1~ —G, X' +2G, X' +2G, X'x

Integrating (BS)by parts gives the result

m~(B(0)IB.,(0)l y(0, )&=-20*(0'0' (P, 0,&,0(0.&y«(2+ 2 )«(0-,&B((0,—0,)'),
1 2

where E((P, -P, )') is the Fourier transform of the function

[-G,(X')+2G,(X')+2G,(X')].
Thus the effective bilinear form for a matrix element between two baryon states arising from a current-
current weak interaction is

mm 1~2
(B(0)(B«f(0&(y(0,)) -(B'B' (0, ) (0(2)y«««(2+y, )«(0,)-

1 2
(B10)
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