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Scattering of polarized electrons in the quark model and in the quark-diquark model
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The inelastic scattering of polarized electrons from polarized nucleons in the resonance region is studied in the
quark model and in the quark-diquark model. It is suggested that by the measurement of the polarized cross
section in the resonance region information about masses of the constituent particles (quark or quark and

diquark) wi11 be obtained.

I. INTRODUCTION

In the nonrelativistic quark model it has been
known that if we use a harmonic wave function,
which is indicated by level spacing, the elastic
form factor is predicted to be a Gaussian. " This
form factor drops much more rapidly with increas-
ing momentum transfer than does the observed di-
pole form factor. If a 1/r potential is used, then
the elastic form factors are improved, but it pre-
dicts too small values for the higher-resonance
production proces ses.'

Recently, the author has calculated" the form
factors, using the modified Woods-Saxon potential
(MWP),

r/5+I' r/b+exp[(r -R)/a]
This potential has merits of both the harmonic-
oscillator potential (HOP) and the 1/r potential,
and gives good agreement with the experimental
data." This potential also predicts desirable
energy levels. 4

Similar results have been obtained in the quark-
diquark model' proposed by the author' and
Lichtenber g'.

In the calculations made by Thornber for the
HOP and for the 1/r potential, the nonrelativistic
form factors were obtained in the N~ rest frame.
After that, an improvement of the nonrelativistic
approximation was proposed. ' " First one cal-
culates the 8-matrix element relativistically and
separates out the kinematical factors. Thus the
Lorentz-invariant matrix elements are extracted.
If the relativistic calculation of this matrix ele-
ment were possible, this matrix element should
have a constant value for any frame. However,
since we need to calculate it nonrelativistically
this quantity depends on the frame chosen. If we
choose the frame in which the nonrelativistic ap-
proximation is good, i.e., the least velocity frame
(I VF), then we can obtain the best approximation.

In this note we compute the asymmetry parame-
ter of the polarized electron scattering using this
approximation. This experiment is supposed to be
made in the near future. Several years ago ex-
perimental data for the unpolarized electroproduc-
tion processes were obtained by the SLAC-MIT
group. " " In this experiment three prominent
bumps in the inelastic electron-proton scattering
cross section were observed. The lowest peak is
at W =1236 MeV. This corresponds to 4»(1236).
The next bump is at W= 1525 MeV (S», D»), and
the last at W= 1690 MeV (D», D», E», S», S», D»).
We compute the asymmetry parameter, assuming
that in the polarized experiments, which will be
done in the near future, these three bumps will
also be observed and the asymmetry parameters
will be measured not for each resonance but for
each bump.

The unpolarized cross section contains only the
combined forms of

Q I(& I l~,"""'ll&;)I'

and

of the reduced matrix elements. Qn the contrary,
the polarized cross section involves the magni-
tudes and the relative phases of the quantities
(&gllM

"" 'll~;), (&gll& ll~;), and (~gll&, "ll~;)
Therefore, these relative phases will be obtained
if we make a polarized experiment.

In Sec. II we have shown how to make the non-
relativistic approximation in the cross section.
In Sec. III the polarized cross section is expressed
in terms of the reduced matrix elements. In Sec.
IV and in Sec. V, the asymmetry parameters are
obtained using the quark model and quark-diquark
model, respectively. In Sec. VI we present sever-
al concluding remarks.
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II. CROSS SECTION

The scattering matrix in the Born approximation
is given by

N

S=1 —i Jtd'xa, (x)

d4xj'„x J„x, (2)

n = I/137.036

where j'„(x) is the electron current, J „(x) is the
nucleon current, and q' is the square of the four-
momentum transfer.

Denoting the matrix element of the interaction
operator between initial wave functions and final
wave functions by M&&, the transition matrix ele-
ment is given by

Sfj 5f( i (2[[)45'(P,' +P ' -P, P)Mf[-

and the cross section byEc,dp,' dP' 4

P 'P ' (2 )' (2 )'

x 5q(p,'+p'-p, -p), (4)

(4m'

&&5 (P'+P' —P -P),
where the notations of momenta and energies are
the same as those of Refs. 4-6 and are shown in
Fig. 1. Since this expression of the scattering

e

FIG. 1. Isobar electroproduction in the one-photon
exchange approximation.

cross section is in Lorentz-invariant form, the
factor ee'EE'(Mf, ~' should be the same in all
frames. We choose to calculate it in LVF (the
frame in which the proton and the resonance have
equal and opposite velocities), because in this
frame the velocities of the proton and the reso-
nance become minimum. ' " We will mention the
frame dependence of the obtained results later.

If the factor ee'EE'(Mf, p is calculated in the
laboratory frame, one gets

=2m —
~ Jg M~

""
q J]

-.+(xx' — P [i(Jx((f'P(iq()((JAN)l +l(Zx(IT, '(Iql)lit)l'II,
2q 2

(6)

der n' cos'(8/2) 1
dQ „~ 4e' sin'(8/2) 1+(2e/m) sin'(8/2) '

where

Mx'"" '(Iq() = Jx'x(, (I qlx) ) xx(n, ) x(x),

q' (Iq()= = fd'x[«j (Iqlx)T;"„((),l) ~ q(x),
(6)

fx "(Iql)= fd'x[jx(iqlx)V„, (n, )I ~ f(x),

where J (x) and p(x) are the nucleon-currents op-
erators to be calculated in various models.
Yff, (Q„) is a spherical vector harmonic. 8 is
the scattering angle. Equation (6) is the expres-
sion of the unpolarized cross section obtained by
de Forest and Walecka. "

III. POLARIZATION EFFECT

The most general calculation, in the framework
of the first Born approximation, of the effects of
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electron polarization and target orientation which
has arbitrary spin on nuclear electron scattering
was performed by Weigert and Rose." The form
factors were calculated in the laboratory frame.

The differential cross section for the electroex-
citation of the oriented nucleon by polarized inci-
dent electrons is composed of two parts:

dO' dO'0 C$0'p

dQ dQ dQ '

where do, /dQ is the differential cross section of
unpolarized electrons from unoriented nucleon

target. The remaining contribution do~/dQ comes
from the polarization of the incident beam and the
orientation of the nucleon target. The contribution
from the orientation of the target with unpolarized
electrons does not arise, because in our case the
spin of the target is —,. This term contributes if
the spin of the target is more than 1.

The polarized cross section differs from the un-
polarized cross section only if both the target nu-
cleon and the incident electron are polarized.

Calculating the invariant quantities ee'EE'IM&, I'
in LVF, we obtain the unpolarized cross section

ct'EE' '(8/2) —V' l(j IIM
'"'

llj )I'

2 g oo

+ =2+tan'- Jf TJ" Jf '+ Jf TJ"' Jk ' )E
J =1

(10)

where the quantities in parentheses or brackets with the subscript E should be calculated in LVF and the
other quantities in the laboratory frame. der, /dQI, is the cross section measured in the laboratory frame.
The last factor E'/m was neglected in Ref. 15.

The scattering cross section of polarized electrons from the oriented nucleon target is

dQ „b cos'(8/2) ee'EE'

A =o P (()s s
Iv 'P P (oosss)Pio(LL Lsd&)'

I,r, '

x[(jylIM """"IIj;)(jglIM,"""'ll j,)*+(jgll&,"IIj;)(jfll&,"IIj;)*
+ 2 (jul I &,"I Ij()(jul I &~ I I jg) *]s, ' 'P,'(oooo„)P("'(LL'A, L;)(A, lliif,"""'ll )((ZA,IIP;!IIA;)—(L,IIP„"IIA,)I I,q'

(12)

F&'&(LL' jy J )=(-1)~y ~)+'[(.2L+1)(2L' pl)(2j,. +1)]')' W(J;j;LL'; v j~)(L1L' —ll v0),

y'~OL)(LL' j~j,. ) =(-1)~y ~L+'[(2L+1)(2L'+1)(2j,+1)]' ' w(jg j;LL'; v j~)(LOL'1I vl),

where n, is the first-rank statistical tensor" for
the target nucleon. If the target nucleon is or-
iented parallel to the z axis, no Q] 2 and if the
target nucleon is oriented antiparallel to the z
axis, n, =&, a, =-&. J; and Jf are the spins of the
target nucleon and the final resonance, respective-
ly. W(J;J;LL', vjz) are Racah coeffi'cients. P,
is the polarization vector of the incident electron.
The vectors V2 and VI are described by their com-
ponents along the three directions p, (the direction
of the incident beam), S=p,xp,'/lp, xp,'I (the unit
normal to the scattering plane), and a—= s xp, (ly-
ing in the scattering plane).

V, j,=~lql-~q, q j„
V, ~=0(m, )=O,

Vz, ~ s=0,

p, = —me' sin8 cos P» (15)

V, a=O(m, )=0,
Vz. s =0(m, ) =0,

where the angle 8„and P» describe the direction
of the target orientation n in the (sxq)-s-q-sys-
tem (see Fig. 2).

In this paper we neglect the mass of electron
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rn, . Therefore, V~ and V~ are parallel to the in-
itial electron momentum and the target orientation
perpendicular to the incident electron momentum
gives no contributions to the asymmetry parame-
ter .

In the quark model the final resonance state and
the initial proton state are composed of three
quarks. Since the spin of the quark is —,', the total
spin (S~) of the three quarks in the final resonance
state is 2 or —', . This spin angular momentum S&
couples with the orbital angular momentum Lz.
Therefore, the total angular momentum of the
final resonance state Jz becomes Jf Lf + 2 + p.
In the multipole expansion for the N*-N-y vertex,
matrix elements for the Coulomb transition
(J,lla,"""'ll J;) and for the electric transition
(JfI I T,"I

I J;) are not zero only for J=Lz and the
matrix element for the magnetic transition
(Jyl IM~"IIJ&) is not zero only for J=Lz+pz, where

Py -—1 for Jf Lf+ 2 or Jf Lf+2 p

1 3

q = (p -p ')/l(p -p')l

s=p Xp /lp Xp l

n
SXq

FIG. 2. The angles 0& and Q~ describing the direction
of target orientation n in the {8x q)-s-q system.

Now we can obtain the asymmetry parameters"

P~ = —1 for Jf ——Ly —2 or Jg = Ly —2 . (16)

The values of J for the nonzero reduced matrix
elements in the quark-diquark model are the same
as those in the quark model, assuming that S& and

L& are the total spin of the quark and the diquark
and the orbital angular momentum between the
quark and the diquark, respectively.

(do'/dQ)(0-) —(dv/dQ)(0 )
(do/dQ)(0 -) + (do/dQ)(t -)

(der/dQ)(04) —(da/dQ)(40) N
(da/dQ)(t4)+(der/dQ)(ft) U

We have defined

(18)

2

U 2f f cos2 J M coulomb J 2 + +tan2 J + J 2+ J ym&s

& = —Vr P, cosB,(F,'(L, Ly Jy ~2)l(Jyll Tg I I Jg)l'+ F,"(Lf+P„Lq+&„Jy)a)l(JyI I T, ",~ I I J;)I'

+ 2Fc'(Ly, Lg+&g, Jy, 2)(JylI & I IJ;)[-~(JglI &, ",,,I IJ;)]*(-1)'~"~']
2

+ ='. ~2 &, J.»ne, (Fc"'(L„L„J„!)(J,IIMf """
I I J;)(J,l I Tg,'ll J,)*

—Ff"'(Lg, Lg+Pg, Jg, 2)(Jyl IM~c"" "I IJg) [- ~(JylI ~p,"g II Jg)] *(-1)'&"'~']'. (20)

(dv/dQ)(tb), for example, is the cross section
when spins of the electron and the nucleon are
antiparallel. 8, is the angle between q and p, .
The values of F~C''(LL'Jz 2) and F~C" (LL'Jz 2) for
each resonance are listed in Table I.

3

p(x) = g j(z)6(x —r,),

3

J(x) = g . [5(x —r, )V+95(x —r,.)]
(21)

IV QUARK MODEL RESULTS

In the first place we calculate the asymmetry
parameter in the quark model. Assuming that
quarks are point particles, electric densities
and currents are

3

+ 7x QQ(j)p j&(x-r&)g(j).

Using these expressions, the absolute values of
the reduced matrixes (J&I IMc'"" bI

I J,),
(J&I I

T"
I I J&), »d (J&I I

T-'
I I J&) are already
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TABLE I. The quantities F~f)(LL'~f-) and F~ ~(LI'Jf-), the phases of the reduced
matrix elements, and the asymmetry parameter &II, for each resonance. 1. F i (LfLf+f 2).
2. F,' (Lf+Pf)Lf+Pf, Jf, , ). 3. F,' (Lf)Lf+Pf) ~f, —, F f (LfLf4f, ). 5. Ff (Lf)
L~+Pf, &~, ~~). 6. (z IllÃ'""mbll& )/I(& II j)fc'""m II/j)l in the quark model (QM).
7. «yllf'Eg+J, II~&)/I«jll@p", ~ ll~;)I inthe 0M. 8 (~fllf'I, 'II~))/l(~gll&g', ll~j)l intheQM.
9. lim 2 Ohll in the QM. 10. lim, p 04ll in the quark-diquark model.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

P» (940)

Pff(1470)

Df 3(1520)

S»(1535)

0 -1
0 -1
i f
2 2

v3
2

f
2

1
2

Ff5{1690)

Pf f(1751)

f
3 3

0 —1

Pf3(1861) -1
2

f
2 2

Gf7(2190) i
4

v15
4 4

-(~)'/'

P33(1236) 1 0

S 3i(1640) -1 -1
2

f
2

D33(1691)

F35(1913)

P3f(1934) -1
F3)(1950) 1

2 2

f
3 3

1
4

vS
2

2'
f
2

v3
2

1
2

~ ~ ~7f
f7i

1
4

obtained and listed in Ref. 4 in the quark model.
In order to compute the polarized cross sections,
we must also know the relative phases among
these reduced matrixes. These are listed in
Table I. These phases coincide with those in Ref.
19. We must mention that the phases listed in

Ref. 19 are obtained in the limit of ~q- 0, but
our results are calculated in the limit of q~- ~.

If the masses of the quarks m, are infinity,
reduced matrix elements (J&l Mc'"" "I

I J,),
(&gl I

f'"
I I&j), and (&g I I

~™"l«)»e propor-
tional to the overlap integral If, .

A. Elastic scattering

The elastic scattering cross sections depend
neither on the quark mass nor on the form of the
binding potential. From Eqs. (18)-(20) it follows

b. „(elastic)

p(l ql')j, cos e, —
I ql e'sin esine, )

e ' cos'( 8/2)(1 +
I
1+2 tan'( 8/2) Jq g') j, '

Since for elastic scattering q' =~q holds,

jy;(I%I) = f ~'&,,(~jj,,(I%I~)~s(")d (22) lim 6„(elastic) =0.
q2~ 0

(24)

From Eqs. (18)-(20) we see that 6
g

for each
resonance does not depend on the form of the
binding potential as long as we calculate it sep-
arately for each resonance. Since the second peak
and the third peak are composed of several res-
onances, AII for these peaks still depends on the
form of the potential.

The asymmetry parameter b, „(elastic) predicted
in the quark model is shown in Fig. 3 for various
scattering angles 8. b, „ is negative and

I
b,

~~ I
is

small (40.1) for the small scattering angles
( 8 6 30 ) b

g
becomes large and positive (-1) for

the large scattering angles (ea 135').
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41)(elastic) —8=&35

e=90'

&(&(first peo4 ]

8- 5o
8=& 5'
8=30

——8=45

5-

8= &5'

—8=90'
8=&3

I I

2 2 2 3
q [(GeV/c) ]

FIG. 4. Same as Fig. 3 but with b,
]1

(first peak).

8. First peak: 633(1236)

4~1 for this peak also depends neither on the
quark mass nor on the form of the potential. The
asymmetry parameter 611 is

b. „(first peak)

I
2I ~ 0

2 ~2
~

2
~

~

~
7 25(1 q1 —qq cos8,) cos8,

2e' cos'(8/2)[q'/q'+ 2 tan'(8/2)) )»
'

lim A(((first peak) = -G .
q2 ~0

(26)

I

q [(GeV/c) ]

FIG. 3. The q2 dependence of 611 (elastic) for various
scattering angles 8 obtained in the quark model (QM) .
b,

11
(elastic) depends neither on m, nor on the form of

the potential. The quark-diquark model (QDM) predicts
the same 411 as that of the QM.

The predictions of this model are shown in Fig. 4.
Except for small q' [q' ~ 0.6 (GeV/c)'] b

l,
does

not sensitively depend on q'. 6„ is negative for
all q' and 8. 1&„1 becomes large as 8becomes
large and it approaches

1

C. Second peak

The second peak is composed of D»(1520) and
S»(1535). For the unpolarized scattering D»(1520)
dominates this peak in the quark model. ' The pre-
dicted asymmetry parameter for the polarized
scattering sensitively depends on the quark mass
m qe

In the first place let us assume that masses of
quarks are infinity (1qqq=~). Neglecting the mass
difference between D»(1520) and S»(1535), one
gets

q'11 sin 8 sin 8e+ ( I q I /& ')(
I q I

- qo cos 8,) cos 8,q p,
'

21 q 1
cos'( 8/2)(q'/q'+ q p, '[q'/q'+ 2 tan'( 8/2) ]]

ll (S11) & (27)

lim 6, (D„)= ——', lim A, (S„)= 1.
q~~O q ~0

(28)

=0. (29)

Adding the contributions of D» and S», we obtain

6
ll (D» + S11)= b

((
(second peak)

where R$ and RJ, are radial wave functions for the
S state and I' state, respectively. Assuming
m, =m~/2. 793, i.e., g, =l, and using MWP with
the set of parameters'

For the finite quark mass, this accidental can-
cellation disappears and 6(((second peak) depends
on A, defined in Ref. 4,

R =1.1 fm,

a =0 03R, I) =.0.07R, V, =23.5/(m, R'),
(31)

+]= &Rp & j2 q & +j{) q & R$

(30) we obtain b,
l, (second peak). The results are shown
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in this model
resonance
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e in our model
& baryon octet
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'

thtio, = 4 ho ld (
ark a q

investigate the
espectively).

th
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e magnetic

~ ~

i~ (third peak) N
q

4

e =15'

e= 304

8=45'

&i~ ( third p eQ k) HOP

8=5'

-/, 5- 8=135'

-.5-
8= g, 5'

1

I

2 2
q [(GeV/c)']

e q dependenence of &„(th rird peak) obtained

- 8
0

I

2 2

l

q [(GeV/c) ]

8=131

FIG. 7.. 7. Same as F'xg. 6 but using harmg armonic-oscillator
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E]f [ third peak) M~'P mq mp / 3The predicted asymmetry parameter in the
quark-diquark model has similar properties as
in the quark model. Assuming that quarks and
diquarks are point particles and that masses of
quarks and diquarks are infinite, the electric
density and the current are

e= 15'

e= 30'

e =45

B=]35'

I I

C [(GeV/c) ]
p(x) =q, |)(x-r,)+q,6(x —r, ), (33)

J(x) = . [6(x i,-)V],„+ . ' [6(x -7;)V],„
d

FIG. 8. Same as Fig. 6 but with m, = m&/2. 793.

tions from the other resonances are not negligible.
The results which are calculated using MWP be-

tween the quark and diquark with parameters
+ t)(x F)—P, Vx~+6(x —rz)P4Vx J4,

(34)
where

R =2.8 fm, a =0.058, b =0.15R,

V, = 2 x 9.38/( p, R'), p, = -,'))G, , (40)

are shown in Fig. 9.
The predicted & is negative and ]4[[] is substan-

tially smaller than those in the quark model. Since
in the quark-diquark model the Moorhouse selec-
tion rule does not hold, many resonances contri-
bute to this peak. In the numerator of &[i they can-
cel with each other, but in the denominator of
l A[[[ they contribute positively. Therefore, the
absolute values of 4li in the quark-diquark model
become smaller than those in the quark model.

M, and M4 are the masses of a quark and diquark,
respectively. From the experimental values of
the magnetic moments of a proton and neutron, we
obtain2' g, =16.8 and gd =4.2.

For M, =~, Md =~, reduced matrix elements
(J/llM""" 'IIJ(}, (&~lli "[IZ) and (Jf'll& "IZ) are pro-
portional to the overlap integral Jz;(lq ):

jr, ([tj[)=-f r'R (r)j ([e[r/2lj(, (rldr, (35)

where &~ (&} is the radial wave function betweenIf
the quark and the diquark in the final state.

Comparing with Eq. (22), one gets

VI. COMMENTS AND SUMMARY

Till now we have shown the results in the case
where nonrelativistic form factors are calculated
in LVF. The larger the difference between the
mass of the initial target (proton) and that of the
final resonance becomes, the more 4ll depends on
the frame. Therefore, in order to see the frame
dependence of our results we have shown the third
resonance predictions for LVF and for Breit frame
in Fig. 10. As can be seen from this figure, &ll

does not depend on the frame sensitively. This is
also true for the other resonance production pro-
cesses which are considered here.

As is shown in Sec. V, except for the third peak
the quark model and quark-diquark model predict
nearly the same values for 4l~. From Table I we
see that the predicted values of lim, 2 p+l, in both
models are also nearly identical. In Sec. IV we

J/;(Iq[) = I~, (lql/2). (36)

The factor 2 comes from the removal of the cen-
ter-of-mass motion. For the elastic scattering
and for the first resonance production processes,
the predicted +il in the quark-diquark model is
completely the same as that in the quark model.

For the second peak the relations

A [[(D„)= ——,
' n,

,[(s„), (37)

lim 4([(D ) = ——', lim 6[[(S»)= I, (38)
q2~ p

A[[(D»+S») = A[[(second peak)

=0, (39)

hold in the quark-diquark model as well as in the
quark model.

The only difference between the quark model and
the quark-diquark model comes from the third
peak composed ofGD»(4P»), F»(GD«, ), S»(4P«, ),
S»(P«G}, and D»(4P«G}. Since the Moohrhause se-
lection rule' does not hold in the quark-diquark
model, none of contributions of these resonances
vanishes. E»('D, ~, ) gives the largest contribution
to the asymmetry parameter 4l„but the contribu-

~(( third pea k ) Q DM

0 5o

e=45'

8=135

I

4 [(GeV/c) ]
4

FIG. 9. The q2 dependence of d
ll (third peak) obtained

in QDM using MWP.

SCATTERING OF POLARIZED ELECTRONS IN THE QUARK. . .
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have already mentioned that &II does not sensitively
depend on the form of the binding potential.

On the contrary, &„ depends on the masses of
the quark and/or the diquark sensitively for the
second peak and for the third peak. Especially
for the second peak, if the mass of the quark in
the quark model is infinity, the asymmetry para-
meter is nearly zero. If the mass of the quark is,
for example, m, /2. 793, &„becomes large posi-
tive. For the third peak IA,~[decreases rapidly if
the mass of the quark is changed from infinity to

m, /2. 793. Similar results are obtained in the
quark-diquark model.

Therefore, we can obtain information about
masses of constituent particles (quark or diquark)
by measuring 4[[ in the energy region of the second
and third peak.

From the unpolarized cross section, the q' de-
pendence of the combinations I(J&I [Mz'"'

I [J;)I and

I (~fl I Tgl IJ~ )I' + l(J, I I T:,~, l I& )I' were obtained and
from them the form of the binding potential was
determined. 4 ' The relative phases between re-
duced matrixes (J/[[M&'"" [I&) (&/II T& [I&) and

(8&[IT~ g~ [[J;) can also be determined from the
data o(the polarized cross sections.

(i) Elastic scattering. Assuming the scaling law

p, Gs/G„= 1 and (J/[I T~ I IZ) = 0, which hold in the
quark model and in the quark-diquark model, we

get
1(J/IM;;"' 'll Jg)l

I (J I I TZV~, I IVI

1

~lqlu '

(41)

p. =2.793
2m P

and

~6 (third p60 k[

LVF

——e= 5'

—,5-
BF

LVF

B=4 5'

mental data. " For the electroproduction process
(J/[[T~" [[J,:) and (J/[[M o"" [[J,:)are zero in both the
models. Only one reduced matrix element
(J&II T~",~ I [J;) remains.

Ly+PyThe absolute phase of (J/I I T~ '„'~
I IJ;) has no phy-

sical meaning and no new information about re-
duced matrix elements will be obtained by the
polarized experiment for the first peak.

(iii) Second peak and third peak. Theoretically,
it is possible to determine the relative phases of
the resonances composing these peaks from the
polarized scattering data. However, these deter-
minations are very complicated and we do not men-
tion them in this paper.

Finally we will briefly mention the results of the
neutron scattering, especially for the elastic en
-en scattering and for en-e433 scattering. The
reduced matrix elements and the asymmetry pa-
rameter for the en- en scattering in the quark
model are

(J/I IM """IIJ ) = (J/I IT~'IIJ;)

=0
(44)

I I

2 q [IGeV/c) ]

FIG. 10. Same as Fig. 6 but nonrelativistic form
factors are calculated in LVF and in the Breit frame
{BF). From Fig. 3 to Fig. 9 form factors are calculated
in LVF.

4 it(elastic)
~~

p'Iq[ 'cose. [I —(—1)"(e'/q'p)sine tane. ]
e/cos'(8/2)(1 +

I
1 + 2 tan'(8/2)] q'p, ']

(42)

(J/IITp/". ~, IIJ;) =- 3, lql~uie-g,
2 1

[q[cose.
,a '[ 1+sin'(8/2)l I

(45)

where

„(J,I IM,';"'-"
I [J;)/I(J IIM', """IIJ ) I

~Up[IT;;sp, l[J, )/I (&pl l&i,5, 1 I&i)l

In the quark model and in the quark-diquark model,
(—)"=1. In this way, the relative phase between
(J&[[M~'"' [lJ;) and (J&[[T~"„J)[[J,) canbe determined
by mea. suring

(ii) First peak: &»(1236). For the decay pro-
cess emitting a real photon (6»-Ny), the E~ am-
plitude vanishes in the qua. rk model" and in the
quark-diquark model" and agrees with the experi-

=0

(J/I I T;,'g+p, l [J;)= ~3„[il~s I~a,

(46)

A„(en-en) is independent both of the quark mass
and of the form of the binding potential. Thequark-
diquark model predicts the same h„(en-en). We
have shown the results in Fig. 11. The predicted
4~, (en-en) is positive. For the small values of the
scattering angle 8 (865') 4~~(en-en) becomes very
small (4~~~ 0 007).

For the process en- s,e, ( 2 16)3one gets

(J/I[M,
""""I IJg) = (J II T I Pj)
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(iqj-(I,cos8, )cos&.
2e '|os'(8/2)[q /P+ 2 tan (9/2)]I

(O'I}

in the quark model. Therefore,

d»(elastic) e n~ en

8=&35

8= 9O'

(en-cess) = A(((eP-ew,',). (48)

A„(en-eb, ~»} predicted in the quark-diquark model
is the same as that in the quark model.

2
q [(Ge)//c) ]

9= 3p'

e=15
e:- 5'
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