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The problem of quantized scalar field creation in an anisotropic spatially homogeneous background
universe is reexamined from a Schrodinger-picture point of view. For each mode a complete set of
orthonormal wave functions, Q„, is obtained using the method of Salusti and Zirilli. These wave

functions are valid at all times even if there is an initial cosmological singularity and depend only on

the solution of the classical equation of motion. The wave functions are fixed completely by requiring

the classical solution to have positive-frequency WKB form when the universe reaches the stage of
adiabatic expansion. These wave functions are eigenfunctions of a conserved number operator which has

the usual particle interpretation in the adiabatic regime. An intitial state near the singularity is chosen

as a superposition of the wave functions, Q„, and the particle number in the adiabatic regime is
calculated. For plane-wave initial states, which follow the classical behavior near the singularity, the

final particle number depends only on the parameters of the initial wave packet. For an initial state
which instantaneously diagonalizes the Hamiltonian, an {arbitrary) initial time must be chosen. If the

mode in question is in the adiabatic regime at that time almost no particle creation occurs. If it is not

adiabatic, creation occurs and becomes infinite if the initial time is taken to be that of the singularity.

This creation is a consequence of the failure of particle number to be well defined in this regime.

Comparisons with other particle-creation studies are made.

I. INTRODUCTION

Scalar particle creation in a classical background
cosmology has been studied by several authors. ' '
In this paper we shall repeat this calculation for
an arbitrary homogeneous, anisotropic, but topolog-
ically 3-torus background spacetime. We shall
ignore changes in the background metric due to the
stress-energy tensor of created quanta. "W'e
shall also ignore questions of regularization and

re normalization of the stress-ener gy tensor whic h

have been discussed by Zel'dovich and Starobinsky, '
Parker and Fulling, ' and others. '

We shall consider here the dependence of parti-
cle-creation results on the choice of initial condi-
tions and shall suggest three classes of initial
states which yield interesting information for a
background universe which has an initial singular-
ity and then expands forever. For the opposite
problem of a universe which is collapsing" the
results of this paper can be used to interpret the
state of the system during the late stages of the
collapse. The methods used here are quite differ-
ent from those of Refs. 1-4 and 5a.

For 3-torus topology of the space1. ike hypersur-
faces in the background spacetime, the classical
and second-quantization wave equations are easily
separable into equations for the spatial and time
dependence. '" Each mode (i.e. , Fourier compo-
nent") of the scalar field satisfies a classical
equation of motion for a harmonic oscillator with

time-dependent mass and frequency. '
Second quantization as shorvn in Sec. II yields

a Schrodinger equation which is that for a quantized
harmonic oscillator with time-dependent mass and
frequency. This equation has been studied by
several authors" " and the wave functions are
given in Ref. 11. The methods of Salusti and
Zirilli" may be used effectively to construct the
wave functions even in the case of the frequency
going to zero (with the time-dependent mass trans-
formed away).

In Sec. III we show that the wave functions are
exactly expressible at all times in terms of the
solutions of the classical equation of motion. They
form a complete orthonormal set and each is
characterized by an integer N which is an eigen-
function of a time independent number operator.
The particular solution of the classical equation
is chosen so that in an adiabatic regime the number
operator is just the usual one for the harmonic
oscillator and the classical solution has the WKB
form. " If the time coordinate is chosen so that
the oscillator has unit mass, the adiabatic regime
is controlled by the condition that the logarithmic
time rate of change of the frequency be much less
than the frequency itself. "'

Once the complete set of wave functions is ob-
tained and defined uniquely by adiabatic boundary
conditions, remaining questions concern interpre-
tation only. We present here two classes of initial
states defined as superpositions of the above wave
functions and discuss the number of quanta ob.-
served at infinity in each case. In Sec. V we dis-
cuss plane-wave initial states"' which reflect the
classical behavior near the initial singularity
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II. THE WAVE EQUATION

The equations of motion for the massive scalar
field in a specified background spacetime

dS2 = —+2dP + g AX~

(where N, g;, are functions of t only) may be
found from the Hamiltonian density"

(2.1)

characterized by the harmonic-oscillator frequency
for each mode going to zero. The final particle
number depends only on parameters of the initial
wave packets.

The earlier particle creation results of Berger"
are reproduced in Sec. IV by considering as initial
states those which diagonalize the Hamiltonian at
some fixed time (which is not that of the singular-
ity). Here the final particle number depends on the
choice of time at which the diagonalization is made
and appears to reflect the inappropriateness of the
particle definition at times near a singularity.
The results of Zel'dovich and Starobinsky' and Hu'

may be reproduced by representing the wave func-
tions found here as superpositions of the states
which diagonalize the Hamiltonian at some time. "
The special case of the flat Kasner universe is
discussed in Sec. IV.'4

In Sec. VI we show that the results are indepen-
dent of a time coordinate transformation which
does not change spacetime slicing but may differ
for two fields related by a conformal factor. A

summary is given in Sec. VII.

H = — P'+ —,
' m(t)&u'(t)q'

2m(t)
(2.4)

(2.6)

where H {for the mode k) is now the operator

82
H = —,2 + pm(t}d (t)q2m(t} sq' (2.7)

III. THE WAVE FUNCTIONS

Equation (2. 6) is that for a time-dependent mass
and frequency harmonic oscillator. A complete
set of orthonormal solutions is well known" and
may be expressed in terms of a solution of the
classical equation of motion (2.3).

We find that there exists a complete set of solu-
tions to Eq. (2.6) characterized by the quantum
number N (where k is suppressed):

for the mode k;, i = 1, 2, 3 where»i(t) and u'(t)
are given above [Eq. (2.3b)J and P is the momentum
conjugate to q. (For convenience, the indices k;
are suppressed on P and q. )

To quantize this system, we impose for each
mode the canonical equal-time commutation rela-
tion (h = 1= c)

(2.5)

where the q's and P's from different modes com-
mute. We define a wave function gq(q, t) for each
mode k to represent the amplitude for a given q
at time I; as a solution of the Schrodinger equation

(2.2)

where P(x) is a scalar field of mass M and w is
its conjugate momentum. The spacetime (2.1)
is assumed to have 3-torus topology by requiring
0 & x, y, z & 2w; g =- det g;, , where g;; is the metric
of the spacelike hypersurface orthogonal to the
t direction and g" is its inverse.

It is easy to show that each mode of the scalar
field Q satisfies the classical equation of motion'

P+—P+z P=0
'nl

(3.2}

such that

p*p —pp* = i/m. (3.3}

P
'"' '"'H„(q/v 2 (P })exp(tmPq'/2P),

(3.1)
whereH„ is the Hermite polynomial of order N and

P(t) is a solution of

n2
ff)'+ —

g + (d q= 0
ns

(2.3a)
For convenience, in the following we shall per-

form a time coordinate transformation t- T = f(t)
such that m(r) = 1, i.e. , P (and q) satisfy

for

m(t)=- g"'N ', uP(t)—= N'(g'~k;k, +M'),

(2.3b) and

Q2p„,+ &u'(T)p= 0
d7 (3 4)

where q(t) is the field amplitude for the mode
characterized by the integers )||; obtained as sep-
aration constants. Equation (2.3) may be regarded
as the equation of motion obtained from the Hamil-
tonian

, dP dP*
d7 di (3.5)

rather than Eqs. (3.2} and (3.3). We shall show
that the results are independent of this transforma-
tion. In terms of the metric coefficients this
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transformation gives

~'(7) = g(g'k;k, +M'). (3.6)

If there is an adiabatic limit such that inequality
(3.7) holds, then

If the Hamiltonian (2.4) for ni(r) = 1 possesses an
adiabatic limit characterized by' '"

(3.7}

i.e., a limit when the frequency time dependence
may be neglected, the wave functions !!)»[E q.

(3.1)I may be completely specified by requiring

lim g»(q, 7) = C»((u, q)exp —i(fq+ —,') (u(v. )dr,
tu adiaba tie

(3.8)

llXll A = a
(u adiabatic

(and its Hermitian conjugate),
the usual harmonic-oscillator
ilation operators for the fixed
wave functions (3.1) are at all
of a number operator

N=—A A,
i.e. ,

(3.14)

where a and a are
creation and annih-
frequency ~. The
times eigenfunctions

(3.15)

(3.16)

where 4»(~, q} is the N-quantum harmonic-oscil-
lator wave function for fixed frequency ~. In this
regime P(7} must have the form

From Eq. (3.14) we see that in the adiabatic limit
N reduces to the usual harmonic-oscillator num-
ber operator. We shall later use this fact in the
interpretation of particle number.

))()=(2 )
"*

y f ()& (3.9a)
IV. VACUUM INITIAL STATES

with

dP
dj
—= i+P. (3.9b)

. dP 8
A = -i —!) + p(7) —,

dT Bg
(3.10)

and A is its Hermitian conjugate. These opera-
tors have the properties

(N( ) (/2(A l)»(j (3.11)

The wave functions (3.1) may be generated by the
method of Salusti and Zirilli" by assuming har-
monic-oscillator spatial (i.e. , q) dependence to
obtain equations for time-dependent coefficients.
This method yields creation and annihilation oper-
ators A~, A where

In this section we follow the treatment of
Zel'dovich' and assume that there is a regime
7. ~ 7, such that the inequality (3.7} holds so that
the usual harmonic-oscillator states may be con-
structed. We choose as the vacuum wave function
the state 4p defined by

—,'~(r, )4, = H (r,)4„
where the HamiltonianH(r, ) is the operator

1 82
H (7) =— ——,+ —,

' &u'(r)(j '
2 Bg

(4 1)

(4.2)

evaluated at T = Tp Thus C, is a harmonic-oscilla-
tor ground state for the frequency ~(r,).

Since the ())» of Eq. (3.1) form a complete ortho
normal set for all r, we expand 4p in the gN eval-
uated at r= r„

where (!)» is given by Eq. (3.1) (for m= 1 in the

following unless otherwise noted), 4'o=Qe»(j)»(q &0) (4 3)

Agp= 0,
and

[A, A ]=1.

(3.12)

(3.13)

and solve for the c„. We find

(4.4a)

I/4 7 p i P* -i/2- pg -1 N

s = ~ exp — ~d7 (2N!)"'(H!) '2™p"p " "' —~ + —— (2~p)') '
2N 2 2 2 P 2 P* 2 P 2 P*

(4.4b)

where ~, =- ur(7, }and p and p -=ap/dr are evaluated
at T Tp

It is easy to show, using the relation (4.5)

that Cp is normalized, i.e. ,

and to calculate the expected value of the number
operator N in the state +p,
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= l(~. IPP+ It}P/~. —I), (4.6)

where all quantities are defined as in Eq. (4.4}."
Since in the adiabatic regime N becomes the
usual number operator, (N) is interpreted to
mean the expected number of quanta in the adiaba-
tic limit for an initial vacuum at To.

We now evaluate Eq. (4.6) for the following two
cases:

Case f. Inequality (3.7) is valid for all r ~ ro
i.e. , the system is always adiabatic. This case is
generally applicable for modes with frequency high
compared to the background universe expansion
rate.""For case 1, P retains its adiabatic
form [Eqs. (3.9)] at r, so that (in lowest order in
the small quantity &d/&o~)

(N} = 0+ O(~/uP) . (4.7)

Thus if the system is always adiabatic (almost)
no particles are created. "

Case 2. Inequality (3.7) is not valid at r, and,
in fact, lim„„, co= 0. This case is applicable
near a singularity in the background cosmology. "

For e-0
1

p= —+ i&7,
2b

(4.6)

where b is a real constant which is a feature of
the exact solution of Eq. (3.4) in a form having
the correct Wronskian (3.5). In lowest order in
the small quantity e, the expected particle num-
ber becomes

Q2
(N) = —+ O(1),

(do
(4.9)

ds'= -dt'+ t'dx'+ dy'+ dz' (4.10)

With the transformation ~ = lnt, we find that the
field amplitude q satisfies the equation

g2q+ [k,'+ (k, '+ k '+M')e"] q= 0 (4.11}

where &do= e(ro). If, for the thus far arbitrary
~„we choose ~, = ~ „, the time of the initial
singularity (where ~ = 0), we find that &8} is
infinite.

To summarize: For a given choice of ro (either
chosen arbitrarily or the time such that r - 7.,
really is an adiabatic regime) particles in those
modes which are adiabatic are not created to any
great extent, while those in nonadiabatic modes
are created in numbers inversely proportional to
&d (r,).

It is appropriate to mention here the special case
of the Kasner universe" which is really flat
space. 2'~' ' The m, etric has the form

(N) = (e ' —I) (4.13)

which is at most 0.002 for the mode k, = 1. (Of
course, for Euclidean topology, there is an in-
frared divergence. )

The nonzero creation is a consequence of the
noncovariance (i.e. , dependence on spacetime
slicing) of the vacuum state 4, of Eq. (4.1).""

V. PLANE-WAVE INlTlAL STATES

Rather than force an adiabatic regime T ~ To,
i.e. , an instantaneous diagonalization when the
spacetime has a singularity at v = v „, we con-
struct in this section initial states which reflect
features of the behavior near the singularity. "
Since lim, , &u(r) = 0, we choose as initial
states wave functions f „which are solutions of
the Schrodinger equation

8$ 1 8$
2 9q2

the limit of Eqs. (2. 6) and (2.7) for r- 7. „[and of
course t - r = f&t) such that m(r) = 1].

We characterize these initial states which will
be plane-wave packets by an initial position q,
and momentum P, such that the expectation values
follow the classical equation of motion [limit as
r - r „of Eq. (3.1)J

(5.1)

d'q/dv = 0. (5.2)

That is, we require

&f) = q, + p, r (5 3)

(5 4)

in the state P „. The expectation value &t)) satisfies
the classical equation of motion

d+ + ~'(r)&0) = o (5.5)

at all times. Thus (g) must have the form

The function P(r), also a solution of Eq. (4.11}, is
taken to be

t&(r) = (./4t)"'e-" "H",,', ( Ke'), (4.12)

whereH, ' is a vth-order Hankel function of the
tth kind and s—= (k,'+ k,'+M')"'. The constant
factors and choice of Bessel function are made to
ensure properties (3.5) and (3.9) for P(r).

This model has no physical singularity" and
lim, „&d(r}=k„a constant. We easily find that
the measure of adiabaticity &d 'd&d/dr has a maxi-
mum value of (~,)"'k, ' at r = ln (4 2k, /s). For 3-
torus topology, with k, = 1, 2, . . . , we would there-
fore expect very little particle creation. Evaluat-
ing Eq. (4.6) for (N) using Eq. (4.12) for P at
v., = -~, we find
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(g) = q()Z, (r)+ p()Z, (T)

where

lim Z, = j., lim Z2= T,

(5.6)

(5.7)

The regime T»T „is the adiabatic regime and 6
and Q are constant features of the exact solution
of Eq. (5.5). The initial wave function (t) is
fixed completely by the requirements (5.3) and
(5.4) and the requirement that

Z~ Cos (A7 dT +bW
( P, = q, = 0) = lim P,(q, T), (5.8)

llm
7 )&T

where (j), is the wave function (3.1) for N= 0. We
find

(j „(q, r, P„q,}= [1/k2 + 2ir] "2(2/vf)2)'t'exp[i P,q —i P,2r/2 —(q —q, —P,TP/(1/k'+ 2ir)]. (5.9)

We can show" that for all P„q„ the g „form an overcomplete family of states and span the Hilbert space
of solutions of Eq. (5.1}.

To calculate quantities of interest, we expand (I/ „ in terms of the (t)N of Eq. (3.1}evaluated near the
singularity,

We find

= Q s» 1lm 4»(q, T) .
g 0 T Tm (5.10)

2 ia, = m)t(i(» ~ l) /4((lVI) "'(- )"(4b') ""((1' ~ ~'ii') "»)1 —
ti* '1 P.i.—

1
1'1.*) (5.11)

H(p, q, T}= 2 p'+ g(g' k(k, ™}q, (6.2)

VI. FIELDS RELATED BY A CONFORMAL FACTOR AND

TIME COORDINATE CHANGES

We first consider the field amplitude q(t)
satisfying Eq. (2.3a) where m(t) and 22(t) are given
by Eqs. (2.3b). Let t T(t). Th-e Hamiltonian
(2.4), H, becomes for the new time variable T

H(p, q) = H —.dt
(6.1)

To eliminate m(t) as in Eq. (3.4), ' if we have init-
ially that t is proper time (i.e. , N= 1), requires
that dt/dT = g'". (This is exactly what one ob-
tains from the coordinate transformation which
has N-g"'. ) Using Eq. (2.4), Eq. (6.1) may be
rewritten

(N) = QN ls»12 = p.2/4t)2+ t)2q.' (5.12)

Here (jc)') represents the final number of particles
given an initial wave packet characterized by pO,

q0 near the singularity. We remark here that ex-
cept for the constant k, (N} in Eq. (5.12) is inde-
pendent of the specific form of the background
metric —i.e., for an initial state (t) „of Eq. (5.9),
(N) quanta [Eq. (5.12)] are present for T» T „in

any universe where lim, , ~ = 0 and the adiabat-
ic regime exists.

as required.
For m(t) equal to 1, it is easy to show that rather

than Eq. (3.1), we require

( t) PwN/2 P-(N +1)/ 2 2 2(N2/)-v1/ (N4()- 2-1/

xHN (q/v' 2
l t) l) exp(i13q'/2 p), (6.3)

(6.4)

where the subscript 0 denotes evaluation at tO and
(d = (g"k(k/+M')'/'. But for m= g'/', m(d = &u where
(d = g"'(g "k,k, + M')"' is the frequency used in
Eqs. (6.2) and (4.1). Further,

(d(t)dt = ~ T T (6.5)

since dt/dT = g"'. Thus q/, (q, t, ) = q, (q, T,) of Eq.
(4.1). Since the wave functions and initial states
are the same whether t or T is used as time

where the overdot denotes d/dT and P(T) is a solu-
tion of Eq. (3.4). The transformation dt/aT = g"'
just gives Eq. (3.1) with P replaced by dP/dT and
m= 1 which are the wave functions (6.3).

The initial state of Eq. (4.1) becomes for m = g'"
TO

4,(q, t,) = w "'(m, cu, ) ex1/p —,' , mq'(d+—,'- i (u(t)dt
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(6.6)

If, rather than dt/dT = g'", we perform dt/aq
= g"', g satisfies an equation of the form (3.4)
with the overdot denoting d/dq and

(6.7)

where up =(g'~k, k&+M }'~'. In the adiabatic regime,
the last two terms in Eq. (6.7}may be neglected
with respect to (O'. In this regime

))IT)=[2 ( \) ")exp if P)dT'(6.8)

while

g(q) = [2(u(n)] '"exp i ~(q)d)}" . (6.9)

Since [d(t) = g'"[d(t) and [d(q) = g"'&u(f}, the expo-
nentials in Eqs. (6.8) and (6.9) both reduce to the
same exp [if~(t)df] Since t.he remaining terms
differ only by functions whose time derivatives
may be neglected in this limit, results in the
adiabatic limit will be independent of whether X or
38 is used.

The interval of t for which the adiabatic regime
is valid does, however, differ for g and P since
v and v differ by time-dependent factors whose
time derivatives may be important in certain
regimes. As an extreme example consider the
massless scalar field in an isotropic background
unive rse. Then

ds' = —dt'+ a'(t)(dx'+ dy'+ dz') .

In this ease for an average mode number%

while

(3= a% and ~= k.

(6.10)

(6.11)

(6.12)

Since (d is a constant at all times, ' the adiabatic
condition is identically satisfied, we have the
usual flat spacetime field equation, and no particle
creation will occur for the field y. Since r3 is not

constant and is in fact small in the limit g-0 one
could" obtain nonzero creation for the field q.
Thus Eq. (4.6) for ( N) gives a nonzero result for
creation of massless scalar quanta in a conformal-

variable, all results must be independent of this
coordinate transformation. "

We now wish to compare with several authors' ""
who discuss particle creation in terms of the con-
formally invariant part g(f) of the scalar field )I
(where we have for convenience specialized to a
single mode}. Following Refs. 2, 3, and 4b we
define

ly flat spacetime as compared with Refs. 2, 3, 4,
and 29.

UII. DISCUSSION

In this paper we have attempted to show ex-
plicitly the dependence of the concept of particle
creation on the choice and interpretation of the
initial states of the system. We have allowed the
following options for a background universe which
has an initial singularity at r „and an adiabatic
regime at T,„:

(1) Require the system to be in an eigenstate of
the operator N as defined in Eq. (3.15). Then, by
definition, there is no particle creation. An ex-
amination of the g„of Eq. (3.1) shows, however,
that the particle nature of the system only exists
in the adiabatic regime. Thus while no quanta are
created in these states, the particlelike structure
of the quanta emerges only in the adiabatic regime.

(2) Choose as an initial state [)) „(q, T, P„q,) as
defined in Eq. (5.9). This initial state most closely
follows the classical behavior. Here too the
particle creation occurs in the sense of appearance
of particlelike characteristics in the adiabatic
regime from an initially nonparticle state. In this
case the interpretation of the wave functions near
the singularity as plane wave packets is made ex-
plicit. Since the g „for all p„q, form an over-
complete family of states, "these initial states
are completely general.

(3) Assume that the frequency ~(T) is a constant
m(TO) for all T ~ T, Choo.se as an initial state the
ground state (N= 0) for the Hamiltonian (4.2) for
e evaluated at 7, and assumed fixed. If the adiabat-
ic condition (&u d&d/dr), , & 1 is satisfied, then

0
(almost) no particle creation occurs. The nonzero
terms are of higher order in the small quantity
&u '(T,) These term. s do, however, produce an
ultraviolet divergence"' which we shall not con-
sider here. If the adiabatic condition is not satis-
fied at T, (which will occur only for sufficiently
long-wavelength modes), we find (N}- [d '(ro}which
becomes infinite for 7, = 7 „. This creation is a
consequence of the failure of the particle descrip-
tion in this regime —i.e. , the fact that the N= 0
eigenvalue of N, )))„ from Eq. (3.1) does not in
this regime have the form of 4, [Eq. (4.1)] which
we used as the initial state.

Of the three options, the plane-wave initial
states appear to most accurately reflect the class-
ical behavior of the system and so might best
serve to isolate purely quantum-mechanical ef-
fects which might be present in universes with

mode mixing. 3' The g„eigenstates are also
interesting and have in fact been used by Parker
and Fulling to discuss adiabatic regularization of
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the stress-energy tensor. "
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