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Quark model for K13 form factors*
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A nonrelativistic quark model for the Kt3 form factors is presented which provides in a straightforward
manner an explanation of their observed characteristics in terms of quark masses.

From Lorentz invariance alone one can conclude
that

(~ (I~') I v". ..(0) la'(1~))

where t = (K —K')' and V~~ „is the vector current
operative in weak strangeness-changing decays. '
In the SU(3) limit V,";,is conserved and p.,= p,„so
that one has
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where f„(t) is the pion electromagnetic form fac-
tor. On the basis of the Ademollo-Gatto theorem'
one can therefore anticipate that f, (0)=f, ~')(0) = 1,
but to say much more than this one must turn to
a dynamical theory. There is, in fact, a vast
literature on the theory of the K» form factors'
dominated by treatments based on a combination
of dispersion relations and the current algebra.

We wish to report here on the results of a study
of f, (t } in the quark model. 4 Our investigations
were motivated by a picture in which the quarks
are relatively light confined objects. We shall see
that the observed characteristics of the K» form

factors have a remarkably simple interpretation
in terms of SU(3}-breaking quark masses.

We define a mock meson IM) as being a state of
a free quark and antiquark with the wave function
of the real meson IM) . That is, IM) is the in-
stantaneous state one obtains by turning off the
forces which bind the quarks. Since IM) and IM)
are characterized by the same quantum numbers,
matrix elements and mock matrix elements have
analogous expansions in terms of the various pos-
sible Lorentz amplitudes. In particular,
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~h~~~ t = (X-&')'. Since I)r ) and IK) are com-
posed of free quarks and antiquarks, with

P
V4 „=sy u, (4)

we can easily calculate f,(t). We shall see that
these straightforwardly deduced form factors of
mock mesons are an excellent representation of
the real K» form factors.

We begin by constructing the mock meson states.
For small K and for nonrelativistic internal mo-
tions, if M is made of a type-o. quark and a type-P
antiquark, then

(M(«))=(2i)'" &'(f.())x."; a - «+) ~ qs -'«-)»'))
p

where f&(p) and ~; are the momentum and spin wave functions of the physical meson M, and p, =m«( ™8~

Note that fd plf (P) I'=1.
Consider Eq. (3) for p, =m, where m =1, 2, or 3. Then we have

(2w)'(7r (K') I V, ;,(0) IK'(K)) =f, ( f )(&+&') +f ( ~)(& &'}"-
=(&v i )"I&'Pf'(i+-' «'--' «)f (5)f

p

where

p+K' —(m, /Pr)K P + (m. /P(i) K

n
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Since for K and K' near zero, if one defines
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and uses the fact that
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then one finds by comparison with (7) that for
x -=m, /m,

(10)

(i2)

f, (t„)=1.02, $(t )=: " = —0.23. (16)

of the magnetic moment of the A'to that of the
proton then x= 1.4.

We think the last of these possibilities is par-
ticularly attractive in that it simultaneously (1)
allows the quarks to be pointlike, (2) provides an
understanding of the large anomalous magnetic
moment of the proton, and (3) corresponds in a
natural way to the hadron spectrum. In fact, the
explicit values m„=0.34 GeV and m, = 0.48 GeV,
which give x = 1.4, have recently been proposed in
a number of contexts. With x —1.4 we find here
that

(i3)

y.(0)
(15)

(14)

wher I =(j» —P, )', corresponding to K=K'=0.
Since in the symmetry limitI, &-1, B„~-O, and
x 1, one may easily verify that f, satisfies the
Ademollo-Gatto theorem.

To evaluate (13) and (14) explicitly we must con-
sider the two overlap integrals I„~ and B,„. The
usual quark-model assumption is that I„~= 1, i.e.,
f„(P)=fz(P). This would in turn imply that B,»=0.
Although this is the assumption that we shall em-
ploy here, we point out that the information we
possess regarding these wave functions argues
against it. In particular, both ()(„(0) and g»(0), the
wave functions of the relative coordinate p of the
w and K "atoms" at p =0, are known well enough
from the decays m- p. v and K- p, v to allow us to
conclude that'

and

ac= dp ~p zp (18)

d pp (19)

we can see that the combination of (15) and the
fact that the wave functions are normalized means
that I,~& 1 and B,~& 0. Relaxing the assumption
I,» =1 would therefore make f, (t„) smaller and

Before comparing these values with the experi-
mental ones we must resolve a small ambiguity.
Since both f, and f, are functions of momentum
transfer, we must decide how to make the cor-
respondence between mock momentum transfer t
and real momentum transfer t. Our choice is the
most direct and unique possible: t - I;. Since in
the case at hand t is small (I„=0.02 GeV'), this
is for all practical purposes the usual quark-
model correspondence to quantities at zero mo-
mentum transfer. The experimental data give

f, (t„)=0.97+0.04, $(t„)=—0.17+0.05. (17)

The agreement is clearly good. Since, further-
more,

so that I« is necessarily less than unity. On the
other hand, the success of the assumption that the
overlap integrals are unity [consider, for example,
the decay (d wz (see Ref. 6), where ~()( (0)l
= 4 ~(I(,(0) ~ j implies that I„» is not much less
than unity. We shall respond to this situation by
discussing at each step the effect relaxation of the
assumption I ~ = 1 would have on our results.

With I,„=1 and B,„=O in (13) and (14) one can
easily find f, (t„)as a function of x. We display
the resulting values for 1 &x &2 in Fig. 1. This
range of x corresponds to the condition that
m, ~ (m, —m„)= —,'(m& —m~). In particular, if the
quarks are very massive then x= 1, if m„= —,'mz

and m, = —,'m& then x= 1.3, while if one requires
that the quark model correctly predicts the ratio
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FIG. 1. The form factors f~ (t~) as functions of x.
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f, () ) = f, (0) () +~,'m'.

we write

(20)

g(t„) more positive, bringing the predictions (16)
into even closer agreement with the experimental
values.

One can also understand the momentum-transfer
dependence of f,(t) by this technique. Correspond-
ing to the usual expansion

and

0'f*. 0f» sf*. s'f»
(24a)

1 d3pp3 g K m (24b)

If &,» = 1, we have Z« = (p'), = 4(r'), (see Ref. 9)
and C«=0. It follows that X, = X and that

f, ( t ) f, (0) (1 +—)
'm'm (21)

2

(26)

To find }(., we simply extend the expansion (9) to
higher order in K and K', finding

For x = 1.4 we therefore find that'

1
m~' 12(1+»)

z„—( )(z, —c„)
4x

I)(» — (I„» —B)(»)
x+1+ 2

4x

= 0.033+ 0.006

in excellent agreement with the experimental
value"

(26)

(22) ~+ =0.029+ 0.002 . (2V)

where

I' s sf.* (}»
~~a-=„d'P qp' ~p

dpp wz

(23a)

(22b)

Relaxation of the assumption I,~ = 1 tends to de-
crease A, Once again this would bring the pre-
diction (26) into even closer agreement with ex-
periment.

Mock mesons, it would seem, are an amazingly
accurate representation of real mesons.
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SSince A, + is a well-established number, f+(0) can be ex-
tracted from I'(K xev) [the quoted error inf (0) is
due almost entirely to the uncertainty in sin&]. For
( (0) we have used the compilation of the Particle Data
Group, Phys. Lett. 50B, 1 (1974);by taking the error-
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are still some inconsistencies in the data, the quoted
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BThere has been some degree of confusion on this point
[see, for example, J. J. J. Kokkedee, The Quark Mo-
del (Benjamin, New York, 1969), section 10-3]. The
wave function discussed by van Boyen and Weisskopf
(Bef. 5), which is the Fourier transform offz(p) de-
fined in (5), is the wave function of the relative coor-
dinate of the quark-antiquark system. For the pion
one therefore has ( p ~) ~ =gd3 p p t

) )()„(p}[ 2 = 4 (r '
&

where (r2) ~ is the mean square radius determined by
the pion electromagnetic form factor. With this under-
stood, one can actually "deduce" ( r2) ~: With

Jd3p[ (1)„(p}~
~= I and ) (()~ (0}~ known, any one-parameter

form for g(p) is completely determined, so that |',r2) ~
=g ( p ) „may be calculated. By considering a variety
of such possibilities for g(p) one finds values for
(r } which cluster around 0.7 fm, in good agree-
ment with the measured rms radius of the pion (see
Ref. 10).

We have taken (r ) ~
~ = 0.7+ 0.].. See, for example,

C. ¹ Brown et al. , Phys. Bev. Lett. 26, 991 (1971).
This is the error-weighted average of ~+ as measured
by all methods compiled by the Particle Data Group,
Phys. Lett. 50B, 1 (1974).


