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We discuss high-energy hadron-nucleus scattering in terms of models in which the basic hadron-hadron
interaction is due to the exchange of Regge poles and cuts. Much of the paper uses a configuration-space
description in which the time scales of interactions are of critical importance, although equivalent results may
be obtained in momentum space. We study in detail the general behavior of elastic, total, and inclusive cross
sections, the relevance of the Glauber expansion, and the influence of Regge cuts and interactions. Most of the
discussion is based on the softened-field-theory model of Reggeons, although we also consider the contrasting
planar dual string model and show how one may experimentally distinguish between models of these two
types.

I. INTRODUCTION

In this paper we shall discuss some of those
aspects of high-energy hadron-nucleus collisions
which are not strongly dependent on the detailed
dynamics of the nucleus. We shall treat only large
nuclei in that effects due to the edge of the nucleus
will be neglected in comparison to area effects.
In particular we shall discuss in detail total cross
sections, elastic cross sections, and the distribu-
tion of produced particles of low transverse mo-
mentum. Most of our discussion will be based on
the softened-field-theory model of Regge poles
and cuts.

The first question which naturally arises is
whether one can obtain any information from had-
ron-nucleus collisions which is not already avail-
able from hadron-hadron collisions. The answer
to this seems to be in the affirmative. Crudely
speaking, hadron-nucleus collisions allow one to
obtain information on the time scale and longi-
tudinal distances, involved in hadron-hadron inter-
actions. (That something of this sort should be
the case has been emphasized by Gottfried' for
some time. } We shall attempt to clarify this point

in some detail later. The only other types of ex-
periments which seem to give such direct infor-
mation as to the time scales involved in almost-
on-shell hadron interactions are the inelastic elec-
tron experiments at SLAC, although the informa-
tion from these is somewhat different. Before
going further into the development of hadron-nu-
cleus collisions, let us recall what the SLAC ex-
periments have to say about hadronic time scales. '

The imaginary part of the virtual Compton am-
plitude, measured at SLAC, is

d'xe " "(Plj.(x)j„(0)l»~P,P.W(v, q')+ ",
where v =2P. q. lP) is a proton state and spin
averaging is assumed. The total photodisintegra-
tion cross section is proportional to

1
lim —,W, (v, q').
2 0 g

The deeply inelastic electron scattering experi-
ments tell us the strengths of the light-cone singu-
larities of (Plj,(x)j (0)lP). If we now fix q' (even
q' = 0 is allowed} and let v -~,

', '
W2(v, q')~ —, d'xexp i(x, -x,) —i -x, (Plj, (x)j„(0}IP)-~ ~ ~,

where we have written

in the laboratory frame of the proton. The singu-
larity at x2 =0 is not strong enough to maintain the
observed 1/v behavior of (1/q')W, (v, q'). Such a
high-energy behavior must come from coordinate

regions xo, x, = O(v} with x' = O(1/q'). Thus, long
distances and times are involved in the elastic
Compton amplitude. This is, of course, well
known, and we only emphasize it here because any
reasonable hadron theory which does not have a
sharp distinction between scattering of zeal Protons
and hadrons must involve long time scales for the
elastic hadron-hadron amplitude. We should also
say that the long time scale which we will mostly
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be referring to in this paper is the long time scale
of an elastic amplitude. ' We shall discuss in some
detail a string model without loops4 in which the
time scale for the elastic amplitude is short al-
though there may well be a long time scale involved
in the formation of a multiparticle final state in an
inelastic collision. The string model without loops
has a time scale incompatible with SLAC results.
This means that either (i) hadron-hadron scatter-
ing is very different from on-shell photon-hadron
scattering or (ii) the nonloop model is not a real-
istic model of high-energy elastic hadron-hadron
scattering and loop corrections are significant.

The theory which we shall deal with in most
detail in this paper is the Regge pole model which
comes from a soft field theory, a particular real-
ization of which is the multiperipheral model. '
This model naturally has the long time scales
which the SLAC results seem to demand. Also,
the general features of high-energy hadron-hadron
collisions are nicely accounted for once one stipu-
lates, but does not derive, that Regge cuts are
small compared to Regge poles. The detailed
structure of the field theory is not important for
these general considerations of space-time struc-
ture, only that momentum transfers are not large
and that elementary vector mesons are not pres-
ent. In the scattering of a fast particle of mo-
mentum p off a target at rest the important inter-
actions begin already at a time proportional to P
before the incoming projectile wave packet reaches
the target. "When the projectile reaches the
target its state vector, 0'"~p), has various types
of components mell formed which determine wheth-
er one or more Regge poles can be exchanged in

the elastic amplitude. Only the low-momentum
parts of these components interact with the target.
If the target is a sphere of nuclear matter of radi-
us R, then only those parts of 0"'~P) having mo-
mentum &2R, when the projectile reaches the
front of the nucleus, can actually interact with the
target. The difference between different targets is
just that the relative coupling of the Regge pole
and the Regge cuts may vary considerably from
target to target.

These space-time arguments are given in detail
in Secs. II and III, where it is shown that for a
trajectory which has o(0) = o. &1 the single-Regge-
pole contribution to high-energy hadron-nucleus
cross sections is proportional to mR'(p/R)" ' and
n-Regge-pole exchange is proportional to
wR'(P/R)"'" ". These results are rederived from
somewhat more formal arguments in Sec. V. A
curious feature is present which at first sight
seems paradoxical. When +&1 the mean free
path, as conventionally defined, is proportional
to P' . If the radius, R, of the target nucleus

is much greater than p' ~ one might expect that
the hadron-nucleus cross section would be 2''.
However, our formula above says that the cross
section is more like nR'(p/R)" ', which may still
be very small if P is in the region

R R
p p1- n ~

The breakdown of the arguments involving mean-
free-path concepts and the accompanying break-
down of the Qlauber expansion' are described in
Sec. IV. Crudely, the mean free path is not a use-
ful concept because a fast-moving hadron can exist
in many possible configurations. Fluctuations be-
tween one of these configurations and another occur
on a time scale proportional to p. When a hadron
reaches a target a reaction will take place if the
hadron is in a configuration with low-momentum
components, but no reaction will take place if there
are no components of the wave function ~2R. Only
when the dimension of the target is much greater
than the momentum is a reaction guaranteed to take
place. Thus, in the context of the multiperipheral
model and soft field theory there is no compelling
reason why total cross sections should be 2mR'

for hadron scattering off large nuclei at high ener-
gies. All one can say is that the cross section
should be proportional to mR'. '

In Sec. VI a rather strong bound on the value of
the inclusive cross section in the central region
of a hadron-nucleus collision is derived. To ex-
plain this bound define r =o»/a„„where o» is
the diffractive part, including the elastic hadron-
nucleus cross section, of the hadron-nucleus cross
section, and cr;„ is the truly inelastic part of the
cross section. Also define

(1 /o;„) (d(x;„/dy )
(1/o) (do/dy)

where o is the hadron-hadron cross section, and

do;„/dy and do/dy are the inclusive cross sections
in the central region for hadron-nucleus and had-
ron-hadron collisions, respectively. If n is an
integer such that

] 1 22-n 1 ] 21-n

21 fl 2 1 2 tl

then the minimum value of R, is n+1+2" '(2x —1)/
(1 —x). Thus, for example, if x = —,', then R, &2.
If r = —,', then R,~3. This extremely strong bound
means that one cannot have a large elastic cross
section unless the inclusive cross section in the
central region is also quite large. This inequality,
which is amenable to experimental confrontation,
is a direct consequence of the Abramovskii-
Kancheli-Gribov' (AKG) cutting rules along with
the assumption that Reggeon interactions are not
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very important at moderate energies. Since the
coupling of a Regge pole to the nucleus is finite
without any necessity of Reggeon interactions,
Glauber corrections, or rescatterings outside the
nucleus fragmentation region, there should be a
region in energy where few-Reggeon exchange
does not necessitate Reggeon interactions and pro-
vides a reasonable description of hadron-nucleus
collisions. Even without a detailed computation
the increase of the inclusive cross section as the
elastic cross section increases is clear. This is
because a large elastic cross section means that
several-Regge-pole exchange must be important.
Any soft field theory which allows several Regge
poles to be exchanged must allow discontinuities
through these Regge poles. These discontinuities
will give large inclusive production. If it happened
that R,=1 and r= —,

' for heavy nuclei we would find
it difficult to entertain a soft field theory, or the
multiperipheral model, as a reasonable theory of
high-energy hadron-hadron collisions.

In Sec.VIII we discuss apossible alternative model
of high-energy scattering. This is the planar dual
string model without loops. ' As mentioned earlier
this model has the severe drawback that its time
scale for interaction is such that it cannot accom-
modate the high-energy scattering of low-mass
currents in a way compatible with SLAC experi-
ments. Nevertheless, we feel that if r= ,' and if—
R,=1 then something like the dual model, or for
that matter Low's" development of the bag model
into a model for high-energy collisions, must be
seriously considered. So long as loops are not al-
lowed a planar string model gives R, =1. In fact,
(I/O;„)(do';„/dg) is exactly as in hadron-hadron scatter-
ing in all regions of Y. As discussed in Sec. VIII,
the nucleus fragmentation region will certainly be
modified by loops. What we cannot ascertain is
how strong the modification of the central region
and the projectile fragmentation region will be
when loops are added. The essential difference
between the multiperipheral model and the string
model without loops is that the elastic scattering
of two strings, one of which is a particle bound in
a nucleus, occurs over a very short period of
time. This short time scale for interaction modi-
fies the AKG cutting rules. " Of course loops in-
troduce a long time scale, but we have not been
able to estimate how important this long time
scale is and what the final cutting rules are.

One of the most difficult regions in which to dis-
cuss particle production is the fragmentation re-
gion of the nucleus. We know, at least in soft
field theories and the multiperipheral model, that
the size of the fragmentation region is lnRm. "
However, the exact mass scale, m, is not known.
In Sec. VII a simple illustrative model (a modifi-

cation of a model by Schwimmer") for the frag-
mentation region of the nucleus is solved. This
model, a realization of the "coalescence of combs"
discussed by Kancheli, " is an idealized version of
the actual dynamics of the framentation region.

As far as the spirit of the soft-field-theory part
of this paper is concerned we agree with and are
strongly influenced by the presentation given by
Kancheli, although we believe his diagrammatic
realization to be too idealistic. Conclusions quite
similar to Kancheli's have been reached by Leh-
man and Winbow. '4 The important paper of Gott-
fried' is much more in the spirit of a string mod-
el. We feel that there is a good possibility that
high-energy hadron-nucleus collisions may tell us
which of these types of models is close to the
correct theory of hadron-hadron collisions.

II. SPACE- TIME DESCRIPTION OF HADRON-HADRON
SCATTERING IN SOFTENED FIELD THEORY

As a prelude to hadron-nucleus scattering, we
will first transform the momentum-space descrip-
tion of hadronic interactions into configuration
space. Aside from its obvious intuitive relevance
for large nuclei, a space-time formulation of had-
ron-hadron scattering is an interesting exercise in
itself because the results are partly at variance
with the naive expectation that a fast hadron Lo-
rentz-contracts. The discussion that follows is
based on the Q' ladder model of Reggeons'; this
is the simplest of models leading to Regge behavior
(in perturbation theory}, and it will become clear
that our general conclusions would follow in any
soft field theory without vector mesons.

A. Time- ordered perturbation theory

The most convenient method of introducing coor-
dinate space is an on-mass-shell description
starting from old fashioned (time-ordered} per-
turbation theory. This approach has the advantage
of a formal similarity to potential scattering and
is closest to one's experience in nonrelativistic
quantum mechanics. An alternative off-shell for-
mulation is discussed in Sec. IIE.

Consider the elastic scattering of two spinless
particles of momenta P and P at large values of
s = (p +P)2. We find it convenient to work in the
laboratory frame, where" P =(m, 0, 0) and P
= (p +m'/2p, 0, p). We suppose at first that the
amplitude is given by single-Regge-pole exchange,
which in the P' model corresponds to the sum of
covariant ladder graphs shown in Fig. i. Each
such graph may be expressed as a sum of time-
ordered graphs, one for each possible ordering
of the interaction times. However, in this model
almost all of the internal lines carry a large z
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P)

FIG, 1. Feynman diagram model of a Reggeon in Q~

perturbation theory.

2 (s —2m') (2 w)'

I s (s —4m')] '~

n

ImA =-,'( rr)'Jm(d'P, d'p„i!'(p+P —Qp,. ~

&=1 ')

xl&.(s;P, " P.)l'.

(2.1)

(2.2)

momentum, and so the ordering in which all lines
move forward dominates the others by powers of
the large momentum, " (We shall verify these
properties of the P' model presently. ) Therefore
only the ordering shown in Fig. 2 survives. Strict-
ly speaking, the internal lines at the bottom of the
graph do not carry very large momentum and the
other time orderings are required there, but we
neglect this nicety since the Regge behavior arises
from the sum over n and not from the low-mo-
mentum rungs. The signature of the Reggeon
should be taken account of by adding to Fig. 1 a
"twisted" ladder graph, with a left-hand cut. How-
ever, it is easy to see that both twisted and un-
twisted ladders correspond to the same time-
ordered graph.

We use the normalization

time

FIG. 2. A Reggeon in old-fashioned (time-ordered)
perturbation theory. The typical time intervals are
0 (P /~2) at the top of a graph and 0 (1/m) at the bottom.

N

X " k ' —m2+zc ' (2.3)

where the labeling of momenta is shown in Fig. 2.
The dominant region of integration, that leading
to Regge behavior of ImA, is such that p, , =X,.p
with 0&3., &1 and IP, I= 0(m), for all but a fixed
number of p, . These conditions are to ensure that
k, 2 is finite, as required by the softness of the
theory, and that there be no large subenergy
across an elementary propagator. We then have

(u~, = P, + (m'+ P, ')/2P, and so

The choice of factors in (2.1}leads to convenient
unitarity bounds, while the noncovariant phase-
space element in (2.2} facilitates the formal analo-
gy to potential scattering. The production ampli-
tude is given by

(~g)"
I2(u~(2s)'2m(2s)s2&u~ . . 2&v& (2s)sy/2

&g'- m' =(P P, — -P;)'-- m'

p +

=2(P -P, —

m +p 1
m'+p' 2

P — — — "—P — — —(P, + ~ ~ ~ + P ) —(P -P, — "—P ) —m2 2 2
1 2p 2p 1 f I

m2 m + p1 m +p~''' —P ) — —' ' — —(P —''' —P )' —m'
2p 2p 2p

m'+(p, + ~ ~ ~ + p, )'-
~ ~ ~ ~p +

2(P -P, -" —P~)

m m +p1 m'+ p'' m'+(p, + ~ ~ ~ + p, )'—
x p+ -p — — -" -p — -* -(p-p -" -p)-

2p 2p1 2p,. 2(P-P, — "-P&}
=2(u„, (E,—E,), (2.4)

where

&a) = Im +(Pz+ ' '+0)) +(P -Pg —' ' ' Pg) 1

E =(0 +m, an E =(Up +' ' '+cop +coy +m. e
factor Eo —E, is just the energy denominator as-

sociated with the ith intermediate state, and thus
(2.3) is approximately equal to the time-ordered
amplitude corresponding to Fig. 2. Again, the ap-
proximations leading to (2.4) break down at the
bottom of the ladder and there is no unique time
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ordering there.
To estimate the time intervals involved in the

scattering process, note that the lifetime of the
ith intermediate state is on the order of

This follows formally from the fact that in the
derivation of the old-fashioned perturbation expan-
sion one encounters expressions of the form

«; s* «'" '«&&«+Ila, (o)l «& &«IIf, (o)l f - I&
~

~ ~ ~ ~

0

and oscillations of the exponential wash out con-
tributions with IT;(Eo —E«)I »1. Now in some of
the intermediate states in Fig. 2 there are only
secondaries with P; = O(P), and from (2.4) and
(2.5) the corresponding r; =O(P/I'). " Since high-
momentum secondaries have velocities =c, the
total distance traversed in such intermediate states
is =7,. Therefore the total time and distance in-
tervals over which the interaction occurs are
O(P/m'). ' The physical origin of this result is
clear. We have assumed that a high-energy scat-
tering event involves a sequence of basic momen-
tum-nearest-neighbor interactions, some of which
have been boosted to momenta on the order of the
projectile momentum. Each "basic" interaction
requires a time interval O(1/m) in its rest sys-
tem (for lack of another scale), and in a high ve-
locity frame this basic time interval is dilated by
a factor O(P/m).

From the point of view just described, factor-
ization is an obvious property: The projectile it-
self interacts a long time and hence a long distance
from the target and then propagates freely. The
target only enters into the scattering at (nearly)
the last stage after most of the real or virtual
secondaries have been emitted. Formally, we can
write

), (Pln«'"Va 5(z, —a,)a,'vol «'&IP),

(2 6)

where V is the «3»' interaction, a~t and a„are crea-
tion and annihilation operators for the target, IP)

is the state of the projectile, and 0"' is the
M««(lier scattering operator, with

n&'& =1+ . vn&'),
E0 —00+ Se

and we take only the single time ordering shown
in Fig. 2. Thus we see that the scattering of P on
P is essentially determined by

(2.8)

which we can call the state vector of p, a quantity
which is totally ignorant of the target.

In the &P' model, graphs more complicated than
simple ladders generate a Regge pole, " and when
we speak of a "one-Reggeon state" an average of
such graphs is implied. At high energy, where the
fluctuations about this average vanish as a power
of P, we can speak of a well-defined rapidity den.-
sity of particles for each of the virtual states
which build the Reggeon. A "two-Reggeon state, "
which can always be distinguished in practice by
the nature of its associated J-plane singularity,
would have on the average twice the rapidity den-
sity of each virtual state. Hereafter we shall speak
simply of the "particle density associated with a
Reggeon, " but this averaging should be borne in
mind.

It is easy to see that the general features of this
discussion remain valid in more general theories
provided internal lines are damped at large masses
and the basic interaction. has short range in rapid-
ity. One could also treat the case of a, composite-
particle projectile (say) by considering a two-
elementary-particle incoming state and analytical-
ly continuing to the bound-state pole. For con-
venience we shall continue to work with elementary
external particles and the &t&' model.

B. Expansion of the wave function

We have seen that essentially all of the particle
production in a scattering reaction is associated
with the incident state l«&&~), which suggests that
we expand the state in a Fock-space basis. The
normalization of the state will then imply a strin-
gent unitarity bound on the particle production.
We write

l«&=+ «t,~ Jd'», d». 5'»-», — "-»&«»;», "
where the n-particle basis vectors have the normalization

(P« "P!IP, "P.&= Q 5'(P, -P;,)" 5'(P. -P,'„).
permuta tions

Then

&0& IP«, & =5'(P -P')g ~fd'P, "d'P. 5'(P —P, — —P.)I(.(P; P, "P.)l'.

(2.9)
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The wave operator 0'" is isometric, so ~(~& has the same norm as
~ p&. Therefore

(2.10)

We can now relate the distribution of momenta in the state to the Regge behavior of the model. Let
P(P, q} be the probability that the state ~g~& contains a momentum component q, where q, «p. Clearly,
the following is the expectation value of the number operator for q in the state:

6'(P'- P)I'(P, q) = &(;In,'n, lt, &

But this is almost the scattering amplitude for particles of momenta p and q; the only difference is that
the factors V in (2.6) which couple the incoming state to the "target" are absent, and the low-momentum
components are not treated properly. Since the latter are irrelevant for the Regge behavior of the ampli-
tude,

I'(P, q)" (P"q„) '"(P/q. )" ' (2.11)

Here o. —= o.(0} is the intercept of the leading Regge trajectory in the model, and the power is a —1 rather
than n because of our normalization in (2.1}. In particular, the absorptive part of the scattering amplitude
for P off a target at rest is essentially the probability (P/m)" ' that the state ~g~& contains low-momentum
components q, -m. Similarly, the probability of finding a quantum of momentum q in a two-Reggeon state
is essentially the amplitude corresponding to a two-Reggeon cut and is proportional to (p/q, )'~ '. Strictly
speaking, since a probability cannot exceed one, a trajectory with n(0} 1 is forbidden, although in such a
case the model can still be sensible over a range of P if the coefficient of P ' is small enough. Rather
than commit ourselves to a detailed model, where numerical coefficients are calculable, we shall assume
n(0)(1 for convenience in discussion. " Note that since

&0& I4&& =6'(P'- P)

exactly, it should be the case that the p" ' probability of a low-momentum component is canceled by other
regions of phase space. It is straightforward to verify that no P" ' term appears in the (sum over n of)
completely integrated graphs shown in Fig. 3, although such a term is present if the internal integration is
restricted to the region of phase space where P„ is small.

C. Impact-space description

In many of our subsequent arguments it will be most convenient to consider amplitudes and state vectors
as a function of transverse position coordinates and longitudinal momenta. This is useful because we ex-
pect elastic scattering to be diagonal in impact parameter at high energy and because a nucleus has a large
and fairly well-defined transverse profile. Formally, we write an impact-parameter free particle state
as

IP~& =
2

d'P ~'' 'IPP&--1

with nor malization

&P'~'I P~& =6(P P')6'(~ ~'). --
Similarly, for the incident state we write

Ic«& = „J~'» «'' lt~»&. -*-

Introducing the Fock-space expansion (2.9) we have

(2.12)
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Since ~g~~) is obtained from
~ px) by an isometric transformation,

&Pp . I tp. ) = ~(p -p')~'(x -x'),
which implies

Ã(x-x')=p dp, ~ ~ d(„5 (t —g(t.) rPx, ~ .d'x„t(„"(px';p~x ~ ~ („x„)(„(p~x(,~x
~ ~ p„x ).

5 1

As above, the probability that ~g~„) has a low-momentum comPonent is Proportional to p" '; explicitly

((&. In.',n„ 10,.) "f(p -p')~'( x-x')(pie)" 'f(x, X). (2.I6)

The general features of the transverse coordinate dependence of the wave functions p„(px;p,~x
~ ~ p„x„)

can be deduced easily. " g„describes that part of the state
~ II(~„) with n quanta, and in the ladder model

(Fig. 4}we have

(„(pp;p, p, p„p„)=g" '( [2a(, (2w)'2(o~ ~ ~ (2w)'2a(, ] ' 2(o, ~ ~ 2(c, (Z, —Z, ) ~ ~ (Z, —Z„,)]

If we Fourier-transform according to (2.14) and rewrite the result in terms of k, integrals,

n-1

(„(px;p,x, p„x„)=
( ),„@„Jld'p d'k, d'k„, d'p„

exp[ip (x-x, )+ ik, (x, -x,)+ ~ + ig„~ (x„-x„,)]
(2(d~2a(~ ~ 2(u~ )~2(c, ~ ~ 2a, (Z, —Z, ) ~ ~ ~ (Z, —g„,)

Now except for the low-momentum components at the bottom of the chain, each +, depends only on longi-
tudinal momenta and may be taken outside the integral. To obtain a very rough estimate of the remaining
integral we can make the "strong-ordering" approximation p, » k, . In this case, from (2.4},

m +k~
E —Z, = — „(i=1, 2, . . . , n —2),

m +p
~0 ~n-1 2~

and then

exP[iP (x-x, )+ i&, ~ (x, -x)+ ~ ~ ~ +p„(x„-x„,)]
I d'p d'k d'p

n 1 n (m2+g 2). . . (m2+p 2) ~

Since

~.(~lxl)
d2p = g dy'2

P +m f'2+ m2
0

is ProPortional to e ~-"~ at large Lx(, we see that g„ is negligible unless Lx, -x,.„~g I/m, and the x, have
crudely, a random walk distribution. "

Finally we would like to derive two useful properties of the elastic scattering amplitude: Its diagonality

FIG. 3, Part of the normalization of the incident state
FIG. 4. A one-Reggeon component of the state I g& ).
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in x and the corresponding unitarity bound. For the reaction P +P -P'+P', define

(p'x'p'X'ITI jrxpX) =,f d'p'd p'd'pd'p exp(-((p' x'ep' X' —p x px-)]

x f (2v)'&'(p'+P'-p -P)A(p'P'; pP)}, (2.1V)

where the quantity in braces is the matrix element of T between (noncovariant) momentum eigenstates in

our normalization. Then

(p'x'P'X'~ T~ pxPX) = &((d)~r+ (d)~e (d)], -—(d)J)& (p'+P'-p —P)

x d P d P'd P'exp j P ~ x -X -P' X'-X —P' x'-X A P', P'; PP'+P'- P

(2.IS)

Now A is a function of the Lorentz invariants (p+P)' and (p -p')' alone, and at high energy in the lab
frame these reduce to 2mp and -(p —p')', respectively, and we can write

(p'x'P'X~T~ pxPX) =&(&u +&@ —&u —cu )&(p'+P'- p -P)5'(X'-X)&'(x'-x) A(p, x-X),

which is diagonal in impact parameter and where we have defined

(2.19)

Similarly, for a 2- n amplitude we define

(p, x, ~ ~ .p„x„iT]]pxPX) =
(

„, d'pd'Pd'p, ~ ~ d'p„
1

&&exp[-Z(gp x —p 'x-P X)](2m)'&'(p+P -Qp()A(p(, ' pP)

1„,5(Q(u, ,
—(u, —&u~)&(Qp,. —p-P)A„(p,', x, -X;p, x-X. ). (2.20)

Note that, without loss of generality, we can set X =0 everywhere.
Now consider the unitarity equation; if $ =1+iT then

(2.21)

We take the expectation value of this equation in the impact-parameter state
~ px, PO), and insert

1 = g dp ' ' 'dp„d x ' ' 'd x„ip 5&
' ' 'p„x„)(p&x) ' ' 'p„x„i1

n

between T and T on the right-hand side of (2.21). Then after some straightforward manipulation

ImA (px) =-,'(A(px)(+21m', „.](px). (2.22)

[By ImA(px) we mean "take the imaginary part of the elastic amplitude, as a function of momenta, and

then take the Fourier transform. "] The inelastic contribution can easily be shown to be positive definite,
and we have the unitarity condition

Im A (px) = 1 —fl —[ReA (px)] ' —2 Im A,„„(px)}'+

together with the unitarity bound

ImA. (Px) ~1. (2.23)

Saturation of (2.23) corresponds to scattering from a black disk. In the normalization of this paper, at
high energy,

cr„, =2 d2xImA px,

o'„= d~x A Px
(2.24)

as one can easily check from the definitions above.
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D. Longitudinal coordinate description at fixed time

We can also parametrize the incident state as a function of longitudinal coordinate by simply Fourier-
transforming the longitudinal components of all momenta. Thus we can define (see Fig. 4)

1
4.(p; ",.)=

( ). dp, dp. ~(p —Zp ) p[- (P, , + "+P. .)14.(p;P, , P. .)
e- $Pgy

dk, ' d „,dp„exp[i k, (z, —z, ) + + ip„(z„,—z„)]g„(px;p, x, . p„x„).

(2.25)

(We do not transform P because we wish to con-
sider scattering at a fixed energy. } At the top of
the ladder we have k, = O(P), so lz, —z;+, l

= O(l/P);
thus the high-momentum components of the state
are Lorentz-contracted. If there are low-momen-
tum components at the bottom of the ladder, then
k&

—-O(m) there and the corresponding lz; —z;+, l

= O(1/m), so there is no over-all contraction. In
a scattering event, in. particular, the latter must
be the case. Notice, however, that this is the
longitudinal coordinate distribution at a fixed
tinge, "and has nothing at all to do with the over-
all distance and time involved in a scattering event
(alternatively, the distance and time required to
form the state) which we have earlier estimated
to be on the order of the incident momentum.

E. Covariant space- time description

We can also discuss the length and time scales
involved in a scattering reaction by simply examin-
ing the covariant Feynman diagrams in coordinate
space, where the interaction vertices refer to
space-time points. While the physical interpreta-
tion is not as clear as in the Pock-space expan-
sion, the arithmetic is simpler and the result
furnishes a check on our previous statements.

Consider the covariant ladder graph in Fig. 5,
where the x, label vertex positions in space-time.
In coordinate space the graph is proportional to

1
l«0+&.31" k fo ts

1

i0 f3

(2.27)

XI
PI

1

i

At the top of the graph we have k„+k„=o(P),
Ik;. -k&, l=o(m'/p) and lk;l=o(m), and hence the
time and longitudinal coordinate differences are
O(p/m') there, while the transverse coordinate
differences exhibit the same rough random walk
behavior we found previously. Similarly, at the
bottom of the graph, all components of the coordi-
nate differences are O(1/m). The over-all coordi-
nate displacement is

X--x„—x, =$, 8+, + +$„,
and we have

x, +x, = o(p/m'),

X, -X, = O(1/m),

lXl = O((1/m) logp/m},

and thus Xz =O(P/m'). These results are similar

Xp;

, d'u e"'. . . 226

where « =x,.„-x, is a coordinate difference, and
we again do not transform P or p in order to con-
tinue to discuss scattering at a fixed energy. Since

n-I

"kn-I
Pn-I

k ( =-,' (k, + k,)(t, —(,) +-,' (k, —k,)((,+ t.,) —k t. Xn
Pn

the significant values of «satisfy FIG. 5. Feynman diagram for a production amplitude.
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to the coordinate space behavior found previously
in the on-shell description.

F. Regge cuts

The discussion of softened field theory in con-
figuration space is an amusing curiosity for single
ladders and hence pure Regge poles, but becomes
a valuable technique in the analysis of Regge cuts.
We shall see that many of the standard results
which are obtained only with great labor in mo-
mentum space are almost obvious in configuration
space.

Consider first the AFS graph' in elastic scatter-
ing. The covariant amplitude is shown in Fig. 6,
and the corresponding time-ordered graph is shown
in Fig. 7 (ignore the vertical lines for the mo-
ment). As above, all other orderings of the ver-
tices are suppressed by powers of a large momen-
tum except at the bottom of the graph, where a
sum over orderings is implied. The physical de-
scription of this process is as follows: An in-
coming fast hadron emits quanta and a time O(P)
later the state has developed low-momentum com-
ponents which interact with the target. After the
latter interaction the quanta begin to recombine and
after a further time interval O(P) only the original
two particles remain. The incident particle has
meanwhile propagated freely with a large z mo-
mentum while the target has had little momentum
transferred to it; hence at this intermediate stage
the projectile is a distance O(p) psst the target.
It now begins to emit quanta again and these, ac-
cording to the graph, are supposed to interact with
the target a further time and distance O(P) down-

stream. However, the target is far behind and the
amplitude must be zero. One can restate this by
observing that the lifetime of a low-momentum off-
shell particle must be O(1/m) while the graph al-
leges that the target persists a, time O(P) between
interactions. A nonzero amplitude can only result
from "bad" time orderings in which quanta propa-
gate backwards, and these are suppressed by
powers of p.

P

p

P D E

time

FIG. 7. The AFS cut in oM-fashioned perturbation
theory, together with some discontinuities.

It is also easy to deduce how the cancellations
occur among the various contributions to the ab-
sorptive part. Consider the various possible dis-
continuities in Fig. 7. If a Reggeon is entirely
cut, as in the discontinuity labeled 1, then the
amplitude to the left of the cut line vanishes for
the same reason the full amplitude does. Discon-
tinuity 1' is really the same as 1 because there is
no unique ordering at the bottom of the graph. The
elastic discontinuity is nonzero; the "physical"
reason being that the target is on shell after the
first scattering and can propagate indefinitely. A

discontinuity such as D, which leads to a low-mass
diffractively produced state is similar to the
elastic intermediate state and is not zero for the
same reason. Cuts partly through a Reggeon, like
I', require that there be a large mass on an in-
ternal line and are negligible because of the soft-
ness of the theory. ' The only nonvanishing dis-
continuities are of types E and D, and hence the
elastic and diffractive intermediate states must
cancel among themselves. "

We have seen that the AFS graph vanishes be-
cause each Reggeon interaction requires a long
time interval and the emission of the second Reg-
geon does not begin until the projectile is far past
the target. A graph with a nonvanishing two-
Reggeon cut must then begin to emit both Reggeons
long before the target is reached. The simplest
possibility is shown in Fig. 8—the Mandelstam
graph. " (The figure is somewhat schematic; the
order ings of emission of each chain and the sec-
ondaries on each chain can be varied, although the
over-all time scales are as shown. ) The fact that

FIG. 6. Feynman diagram model of the AFS cut.
FIG. 8. The Mandelstam diagram in old-fashioned

perturbation theory.
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the structure at the bottom of the graph must be
as shown can be verified by considering the scat-
tering in the projectile rest frame. More general
structures at the Reggeon "vertices" are possible,
and it is easy to see that a general requirement
for both Reggeons to be emitted at early times is
that the two-Reggeon, two-particle vertex function
possess a nonvanishing third double spectral func-
tion. By similar arguments one can verify that a
nonvanishing triple-Reggeon vertex also requires
such "overlapping" time order ings. One cannot
obtain any useful information on the discontinuity
content of the Mandelstam graph, at this stage,
because the amplitude as well as several possible
discontinuities are nonzero.

There is a possible loophole in the argument that
the AFS graph vanishes which will come to have
some importance for scattering on nuclei. Sup-
pose we consider the "AFS-type" graph in which
a fast hadron scatters successively from theo

targets, but with an elastic intermediate state
(I"ig. 9). If the separation between targets is
small, O(1/m), then the two hadrons will interact
with each other and essentially make up a single
composite state which will behave like a single
target as far as the projectile is concerned. How-
ever, if the separation is large enough, e.g. ,
macroscopic, then the graph is surely not zero.
This is jus~ the statement that a fast hadron can
scatter elastically in a bubble chamber and then

p+Q

2 Q

FIG. 9. Scattering from two hadrons separated by a
distance z 0.

scatter again in the beam dump. We can obtain a
rough criterion for the nonvanishing of planar or
AFS-type rescattering by requiring that the pro-
jectile should not have passed the second target
before the second Reggeon can develop low-mo-
mentum components; if go is the separation be-
tween targets then the requirement is P/m'SO(zo).

To check the qualitative argument just given we
shall reformulate it in momentum space. Suppose
we describe the interaction with the two hadrons
as occurring through approximately localized
[up to O(1/m)] time-independent external sources
J and J' with J(x,z) =J'(x, z -z,).'4'25 Then the
scattering amplitude corresponding to Fig. 9 satis-
fies

d3$d3$1d3q J P +q J Q JI QI JI Q~ q Q+q 2 P2 q2 $12 PI+q 2 q2 p ~ 2'(a )-2
p +q 2

(2.28)

where o is the Regge trajectory and P its residue
function, k and q are three-vectors, "and

J(k) = ~ d'xe '&~'"-+~~' J(x, z).
(2 )' J

Because of the relation between J and J' we have
J'(k) =e '~g'OJ(k). The quantity f is the two-par-
ticle, two-Reggeon vertex function which for an
elastic intermediate state has the form

f((p+q)', q') =[0(m', (p+q)'; q')1' p.
1

plus a similar term with (p +q) replaced by (p —q).
We are interested only in that part of (2.28) which
depends on q, , and if we suppress irrelevant
variables this is

We may suppose that J and f are nonsingular func-
tions which vanish at large values of their argu-
ments, in which case F will have these properties
as well. The contour of integration and the singu-
larities of the integrand are shown in Fig. 10 for
the case where f has intermediate states in
(p+q)'. [The (p —q)' terms in f are identically

plane

c4~ dq e ~o p+q +gc, q Eq

(2.29) FIG. 10. Singularities incog plane in Eq. (2.28).
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zero, from (2.29).] If z, =0, we may close the
contour below and obtain zero; this is the momen-
tum space argument for the vanishing of the ordi-
nary AFS cut." Suppose 0&zo«p/m'; then one
can have I pq, l and hence (p +q)' much greater than
typical values of m' in f, while lq, zol&1. Now P
and Il fall rapidly in this limit so the contour dis-
tortion argument can be repeated (with a large but
finite contour) and A =0. However, if z, &p/m'
then large values of (P +q)' require large values
of lq, z, l

and the exponential does not allow the con-
tour to be closed below and the argument fails.
This confirms the heuristic reasoning given above.

The same technique of using spatially separated
targets can be applied to graphs with nonplanar
Reggeon vertices, and one can derive the Abram-
ovskii-Kancheli-Gribov cutting rules. ~ The details
are given elsewhere" but we would like to review
a few salient features of the argument here. In
the derivation we let a hadron of momentum p
scatter successively from two sources J and J'
separated by a distance zo«P/m', and considered
different time sequences of interaction with the
sources. For example, if P interacts with Jbe-
fore J' then the situation is as shown in Fig. 11
and we see that the only possible intermediate
states (possible cuts through the diagram} are a
diffractive and a one-Reggeon state. The analytic-
ity properties of the amplitude allow one to obtain
a constraint on the corresponding discontinuities
of the two-particle, two-Reggeon vertex function.
By considering other time orderings of interactions
with the sources one can isolate other intermediate
states and obtain further constraint equations. The
key to the AKG rules is that the Reggeon vertex
involves only high-momentum components, and its
typical time scales are much larger than the time
scales relating to the direct interactions with the
sources. Hence the time sequences of interactions
with the sources are irrelevant for the Reggeon
vertex itself, and the various constraint equations
refer to different discontinuities of the same func-
tion. If the Reggeon vertex is not controlled by
long time scales, as is the case in the planar dual
string model (see Sec. VIII), the AKG cutting rules
are not correct. " See note added in proof.

L

FIG. 11. Scattering from two separated sources in
old-fashioned perturbation theory.

For simplicity we shall approximate the nucleus
by a weakly time-dependent external source
J(t, x, z), coupled to the P field through a term

dxJx x = d'kJk -k

in the action. In order that the source resemble
a real nucleus we assume J is nonvanishing only
for (x'+z')'~'& R for all times. In principle we

can allow local variations in space and time on a
scale O(1/m) although we shall neglect these fluc-
tuations in practice. In consequence, the principle
Fourier components of J(k) satisfy Ikl, k, &O(1/R),
ko sl Since these value s of much le ss than typi-
cal momenta enter into hadron-hadron interac-
tions, there will be little transverse momentum
transferred to a fast incident hadron, and it is a
reasonable approximation to assume that all scat-
tering occurs at a single impact parameter. ~

The scattering amplitude of momentum p»B
off the source J can be written

(3.1)

where U~(t„ t, ) is the time-evolution operator in
the presence of the source J'(x):

tt, (t„t,)=Texp(i I t]ldd x((d)tx('e)dx( d)])x
t~

(3.2}

If we assume the first interaction with the source
occurs at t =0 then

III. SPACE- TIME DESCRIPTION OF HADRON-NUCLEUS
SCATTERING

In this section we shall use our understanding
of the space-time properties of hadronic interac-
tions to give a qualitative discussion of hadron-
nucleus scattering. " The general aspects of the
problem are simple and obvious in this approach,
although in a subsequent section we will revert to
momentum space for more precise arguments.

where U is the usual time-evolution operator,
given by (2.2) with J=0. Since U((0, —~) =0'"',
the wave operator, we can use (2.8) to write the
scattering amplitude in terms of the "incident
state vector" as

&p'Islp&, =
& p'IU (",o)lq. &.

Now l(i)~& contains quanta with longitudinal momenta
ranging from zero to O(p); the latter have life-
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FAR'(p/R)"-'. (3.4)

Furthermore, since the components of lg~& with

P «R are unaffected by the nucleus we expect that
this part of the particle spectrum is not greatly
different than the particle spectrum for a single
hadron target. " The upper spectrum would be
exactly the same if single-Reggeon states domi-
nated, but this need not be the case (see Secs. V
and VI}. At very high energies, when there is a
range of momenta 0 such that P»k&+R, we can
speak of a central region in which the AKG cutting
rules imply that the shape (but not the normaliza-
tion) of the inclusive cross section is the same as
that on a hadron target.

The cross section in (3.4) is not the result that
would obtain in a simple mean free path argument.
Since the hadron-hadron total cross section is
proportional to P ', the mean free path is

times O(p} and if p»R they will have passed
through the nucleus before they can interact with
it. Any quanta which are going to recombine with
these high-momentum components must have
passed through the nucleus with a time O(1/m) of
2R. Therefore, we can choose a time T «2R
+O(1/m) such that no interactions with the source
can occur at times later than T, for the class of
amplitudes we consider. If we write U~(~, 0)
= U~(~, T)U~(T, 0}, then in the last equation we can
replace U~ (~, T) by U(~, T) = U(~, 0)U(0, T) and
thus"

(O'IU, (,— )IP&

= (P 'I U(, 0)[U(0, T)U (T, 0)]U(0, — )IP&

= (g, ,
l U(0, T)U, (T, 0)l q, & . (3.3)

Now in the time interval T, an interaction with
the nucleus can only occur if the state Ig~& contains
particles with momenta ~R. This follows from the
fact that in a softened theory, a quantum of mo-
mentum 0 requires a time interval O(k} to develop
low-momentum components which can interact with
the source 4. If we work in the impact parameter
basis of Sec. IIC, then the probability that

I g~„&
has a quantum of momentum ~R at impact param-
eter y is proportional to (p/R)" ' f(x, y). Here
the function f is of order unity, and from our
earlier remarks we can take y =x. If we integrate
this probability over impact parameter, then from
(3.3) we have

path reasoning is invalid because the high-momen-
tum components of

I g~& are completely transparent
to the nucleus.

So far in this section we have assumed a(0) &1
so that single-Reggeon states dominate, for mo-
mentum components «R at least, and a discussion
in terms of probabilities is quite clear. If o(0) =1
[or n(0) & 1 for a limited range of p] then all that
can be said at this point is that o„,~ 2 nR; this
bound follows from the fact that there can still be
no interaction unless lg~„& contains momentum
components &R, and the corresponding probability
cannot exceed one at each value of x. Qur remarks
on the high-momentum part of the particle spec-
trum depend only on the softness of the field theory
model, and remain valid even if o.(0}~1.

IV. THE MULTIPLE-SCATTERING EXPANSION

The standard approach to quantum scattering
from composite systems is an expansion in the
number of interactions between the projectile
and the individual constituents of the target —the
well-known Qlauber series. ' An immediate con-
sequence of this approach is that for an absorptive
elementary interaction the cross section should
approach a black disc form when the extent of the
target becomes much larger than the mean free
path of the projectile. In Sec. III we have shown
that this result fails in the softened-field-theory
description of hadron-nucleus scattering, and we
wish to discuss the physical origin of the dis-
crepancy.

Qur first observation is that an essential as-
sumption in the derivation of the multiple-scatter-
ing expansion is invalid in a softened-field-theory
model. In order to relate a double-scattering
event like that of Fig. 12 to the scattering ampli-
tude for the projectile on a single constitutent,
one assumes that the state or wave packet incident
on the second constituent has the same scattering
amplitude as an incoming free particle state. In
other words, the time scales of the elementary
interactions are presumed sufficiently short that
the projectile after its first scattering has already
evolved into a particlelike state before it begins
to interact again. When the time scales involved
in the elementary interactions grow with the inci-
dent momentum, however, then at high energy the
state only becomes particlelike a long distance

CCPI
po'

[p is the density, which is O(m')]. A naive argu-
ment would give v„, =2'' once R/I-Rp" ' » 1,
whereas our result is smaller. The mean free FIG. 12. The Glauber expansion.

+ t ~ 0 ~
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beyond the first scattering, and the Glauber series
cannot be derived. " One might hope that the ele-
gance of the result would somehow transcend the
limitations of its derivation, but this is not the
case. We shall show that in the softened-field-
theory model of Reggeons the multiple scattering
series is explicitly nonunitary.

Consider first, for orientation, scattering off a
large nucleus via an optical potential. (This can
be thought of as an interaction between the incident
hadron and the nuclear constituents through the
exchange of vector mesons, but with an imaginary
coupling to simulate an absorptive interaction. )
The first term in the Glauber series is just the
elementary interaction times the number of scat-
terers at the projectiles impact parameter, and is
proportional to R.'" At large R this violates the
unitarity bounds on the state vector or on the scat-
tering amplitude. Double scattering is proportional
to the probability of finding two scatterers at im-
pact parameter x and is proportional to R'. Each
successive term violates the unitarity bound even
more strongly. However, the sum of the Glauber
series corresponds to absorption of the incident
wave, and hence the full series is perfectly con-
sistent with elastic unitarity. The superficial vio-
lation of unitarity in the individual terms of the
series presents no difficulty because different num-
bers of elementary scatterings do not lead to dis-
tinguishable final states and it is only the full,
summed, amplitude that must be unitary. (Alter-
natively, any number of vector-meson exchanges
is coherent with any other number and we need
not expect a unitary answer until the series is
summed. ) This is physically sensible, since the
statement that the single-scattering term violates
unitarity means that single-scattering alone is a
bad approximation.

The generalization of the Glauber series to scat-
tering on nuclei in the relativistic case has been
given by Gribov. " The result is formally quite
similar to the nonrelativistic case: At each impact
parameter one has a power series in Rg(px)
where A is the hadron-hadron scattering amplitude,
proportional to P" ' for Regge pole exchange.
Again the separate terms in the series violate
the unitarity bound while the sum does not. Unlike
the potential scattering or vector-meson exchange
case, however, the individual terms are not co-
herent. For example, a general two-Reggeon ex-
change diagram can have a discontinuity through
both Reggeons leading to a final state orthogonal
to any final state associated with one-Reggeon
exchange. Thus, in any relativistic theory, where
the interaction with a constituent of the nucleus
can lead to particle production, different numbers
of scatterings are not coherent, and the unitarity

requirements must be satisfied for each incoherent
component separately. In a sense, this difficulty
is a failure of another of the assumptions leading
to the Glauber series. It is customary to consider
only the multiple scattering of the incident particle
and possibly its low-mass excitations, but not the
rescattering of an arbitrary multiparticle inter-
mediate state which can be generated by an elemen-
tary interaction. It is just the latter intermediate
states which complicate the unitarity question,
and a calculation which does not treat them proper-
ly is somewhat suspect.

In the softened-field-theory model, each term
in the multiple-scattering expansion corresponds
to a different component of the incident state

l g~„).
For example, the single-scattering or single-
Reggeon term comes from the part of the wave
function shown (in old-fashioned perturbation theo-
ry) in Fig. 13, where P„&R in order that an inter-
action can take place before the projectile crosses
the nucleus. Double scattering or two-Reggeon
exchange requires a component of the form shown
in Fig. 14, where P„, k' &R. Both Reggeons must
be "formed" at the time the projectile crosses the
front of the nucleus. The generalization to three
or more Reggeon exchange is obvious. The point
is that the higher-momentum components (P, ~ R)
of these various states do not interact with the nucleus
and remain orthogonal as the hadron crosses the nu-
cleus. Therefore, the wave functions appropriate to
the various terms in the multiple-scattering series
are orthogonal and interference effects cannot can-
cel the unitarity violations in the individual terms,

We can make these remarks more precise by
the following argument. We expand the incident
state as

(4.1)

where lhol'+l&, l'+ =1. Here lg~o') is defined
to have no quanta with momenta &R (i.e. , if we
expand

l (~~„') in the Fock-space basis (2.13), then
g„'0'(Px; P, x, ~ P„x„)vanishes when any p, SR),
while for i =1, 2, . . . the lg~"„') represent the i-
Reggeon components of the state. Thus lg~"„') has
quanta with momenta &R with probability propor-
tional to (p/R)" ',

lpga,

') has quanta with momenta
sR with probability (p/R)'" ', and so on." Sub-
stituting (4.1) into Eq. (3.3) for the scattering am-
plitude off a nucleus,

The matrix element is zero if i t j because an in-
teraction over a time T-R cannot alter the density
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of quanta with momenta &R, This is the statement
of incoherence of the exchanges of different num-
bers of Reggeons. Thus

gin our discussion by treating the case when the
momentum of the incoming particle is on the order
of the radius of the nucleus. The results obtained
10 this case will then be used 1D Obtaining the form
of the cross section when p/R»1.

Since U and U~ are unitary operators, if we write

(y~&l&, I U(o, r)U, (T, 0)I q&", )= &(p —p')&'(x —x')g, (px),

then the Schwarz inequality implies g, (px)l & 1.
Thus (at fixed x) the contribution of n-fold multiple
scattering is bounded by a constant, in contrast
to the result proportional to [p" 'R]" expected
from a mean free path argument.

V. FORMAL ARGUMENTS FOR gEGGEON-NUCLEUS
COUP LINGS

In Sec. III we saw that the coupling of a Regge
pole to a large nucleus varies as R'R' ~. Our
arguments there were based in detail on the wave
function of a rapidly moving object. These argu-
ments, especially as discussed in Sec. IV, are
very field-theory-dependent. Indeed, the discus-
sion of Sec. IV talks about the details of the Fock-
space representation of a hadron. Perhaps the
field-theory basis could be eliminated by defining
the wave function by an analytic continuation in
the energy. (Recall that for the deuteron it is pos-
sible, in potential theory, to obtain the wave func-
tion of the deuteron by an analytic continuation in
energy of the proton-neutron scattering states. )
We have not attempted to do this. Rather, we
shall present some alternative arguments which
are not so int insically tied to field theory. We
shall still talk of Feynman diagram and space-
time structure, but here a multiperipheral advo-
cate can obtain the same conclusion without using
the underlying field theory in any great detail.
The reader will recall that, as in Sec. IIE, it is
really not necessary to use the detailed structure
of the field theory in order to obtain a space-time
description of the multiperipheral model. We be-

A. Scattering off a nucleus; p on the order of 8
Consider the amplitude, A(P', p', p';P, p, p), for

the elastic scattering of a high-momentum particle
of momentum p„=((p„'+p'+ p')'~, p, p) into a
particle of momentum P'„=((P~'+P" +P")'', P', P')
off a large nucleus whose size is on the order of
P. The problem simplifies in impact-parameter
space where the elastic scattering is diagonal.
Equivalently we may just consider a one-dimen-
sional problem and at the end of the calculation
multiply all amplitudes by nR' to get cross sec-
tions. We shall follow this latter procedure so that
we are now dealing with a one-dimensional nucleus
which, for simplicity, we shall take to be without
correlations between the various nucleons.

In order to get a lower bound on the elastic scat-
tering amplitude A(P, p; Pp) we shall solve a modi-
fied problem. For our uncorrelated one-dimen-
sional nucleus the probability density that the N
nucleons are at positions py Q2 pg is given by

where g(z) is the wave function for a single nucleon
in the nucleus. The probability density for finding
a nucleon at z is simply

while the probability density for finding a nucleon
at z, and another nucleon at z, is

6', (z„z,) =
2 I g(z, )g(z, )l'.

Higher probability functions are similarly given.
The scattering of a high-momentum particle off
the one-dimensional nucleus is given in terms of
the 6', 's once the hadron dynamics is known. What
we shall do is solve the problem for the modified
probabilities 6", where

p)

P2

FIG. 13. A one-Reggeon state. FIG. 14. A two-Reggeon state.
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6",(z) =
6', (z ) if nr —5/2 & z & gg + 6/2

0 otherwise,

6'2(zi z2) =
6,(z„z,) if n, ~ —0/2 «, &n,g +5/2 and n,a —5/2 & z, &n,a+&/2

0 otherwise,

etc. , where n, &» an.«, =o, ~1, ~, ~ ~ ~ ~

probabilities 6", correspond to a subset of the
nucleus in which nucleons lying outside bands of
widths &, each separated by a distance 4, are
neglected. The reason for introducing this device
is to avoid the serious multiple-counting problems
which arise in a direct summation of hadron-
nucleon interactions. We suppose that & is on the
order of the intranuclear spacing and we shall
specify 6 later, although 6»& will hold always.
To obtain 6", from 6', one simply rejects any mea-
surement which does not occur in one of the small
intervals na —5/2 & z &n~ + &/2 for n =0, +I, D, . . . .

If the basic hadron-hadron interaction is pre-
dominately inelastic zvith slou secondaries pro-
duced, which is certainly the realistic situation,
then the probability of an inelastic reaction using
the 6",-'s cannot be significantly greater than the
situation when the 6',.'s are used. This is perhaps
clear since going from 6', to 6", means that only
interactions are counted which occur in certain
small intervals. If the basic hadron-hadron inter-
action did not produce slow secondaries the prob-
lem would be more complicated since then there
could be interferences between interactions with
various nucleons. If slow-moving secondaries are
produced, of momentum on the order of m, in
each hadron-hadron collision then an interaction
of the incoming particle with a nucleon of the
nucleus already produces physical particles be-
fore any subsequent interaction with a nucleon
further along the path of the incoming particle
takes place. Thus, eliminating matter (as going
from (P,. to (P,'. does) can only decrease the proba-
bility of an inelastic interaction.

The calculation of A'(P), the interaction of a fast
particle (in one dimension) with the nuclear source

defined by the 6",, can be done in terms of Regge
poles, at least for certain regions of ~. This re-
sult when multiplied by nR' should furnish a rea-
sonable lower bound for the interaction of a high-
momentum hadron with a real nucleus. For single-
Regge-pole exchange, as illustrated in Fig. 15,

2tl

where n =R/b, and R is one-half the length of the
one-dimensional nucleus, P is the coupling of the
Regge pole to the fast hadron, and y is the coupling
of the Regge pole to the small interval of matter
defined by d', (z). We assume p ~ R.

Two-Reggeon exchange can be similarly calcu-
lated. For brevity we give only the triple-Reg-
geon part of the coupling although the form of the
result does not depend on this simplifying assump-
tion. Then, as illustrated in Fig. 16,

2R /Q j-1
A'(p) —p p f&e, ~" '~ '~'p po

y=2 i=1

X[& "q„]"[p/p"q,]'" '

where p, is the triple-Reggeon coupling, and the
q integral and exponential factors arise just as in
our discussion of spatially separated hadrons in
Sec. II F. Since z,. —z, =b, (j —i), we may set
q, - [b. (j —i )]

' and thus

1
2x j& f-&

A,'(p)~ —P gy'pp, ~ . . [a(j —i)]'" '

Three-Reggeon exchange, as shown in Fig. 17
for a particular configuration of indices, is given
by

1 2

FIG. 15. One-Reggeon interaction with the "reduced"
nucleus described in the text.

FIG. 16. Two-Reggeon interaction with the "reduced"
nucleus.
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1 2

FIG. 18. Bethe-Sal. peter equation for hadron-nucleus
scattering.

FlG. 17. Three-Heggeon interaction with the "reduced"
nucleus.

where again only triple-Regge couplings have been
kept for simplicity. Now, one obtains

The pattern for higher numbers of Reggeon ex-
change is clear. If R "/b, & 1 we have taken into
account all relevant interactions and find that, as
far as the total cross section is concerned, single-
Reggeon exchange is not altered in any radical
way. Thus o ~ cd'(P/R)" ', where c is a con-
stant of order one, should be a correct lower bound
for the scattering of a high-energy hadron off a
realistic nucleus. If R"/6»1 we again run into
the multiple counting problems of Sec. IV and we
can arrive at no result from direct Reggeon sum-
mations. In the case of z =1, we may obtain the
lower bound simply by taking a single band.

If P/R is on the order of one then our bound be-
comes o ~ cmR2 and for an on-mass-shell particle
the unitarity bound (2.23) implies that the cross
section is in fact proportional to wR'. It is not
hard to show that going off the mass shell by an
amount proportional to I' does not radically alter
the cross section so long as P&R. To see this
we again go to one dimension although an impact-
parameter representation could equally well be
used. The integral equation

describes scattering off a one-dimensional nucle-
us. Here V(p', P) is one-particle irreducible as
far as the fast incoming hadron is concerned and
variables expressing the intermediate nuclear
states are suppressed. The equation is illustrated
in Fig. 18. Now V(p', p) is not strongly dependent
on whether or not the particles are on their mass
shell or not, and this is true irrespective of the
relative sizes of R and P. (Recall 2R is the length

of the one-dimensional nucleus. ) The lack of de-
pendence on mass-shell conditions comes from the
elimination of the one-particle intermediate state.
When P/R «1, V is very large. In fact, V must
be proportional to R/P since the interactions with
the nucleus must all take place within a distance
proportional to p and translation invariance de-
mands that this region be placed arbitrarily in the
nucleus. The second term on the right-hand side
in the above integral equation can depend critically
on whether or not the external particles are on
their mass shells. Suppose P/R «1; then if the
incoming and outgoing particles are on their mass
shells, A must be a constant independent of R for
large R. This means that the second term on the
right-hand side of the integral equation must can-
cel the first term, at least as far as any term
which grows with R. However, for off-shell par-
ticles only a few iterations of the integral equa-
tion can be important. (In general, the number of
iterations which are important will be proportional
to I'&&max[(P' —I') ', (P"—I') '], but less than
R/p. ) A few iterations cannot cancel V and the
result must be proportional to R/P. If P/R =
constant the number of iterations of the potential,
V, is always finite and again on- and off-mass-
shell behavior cannot be very different and A. must
be independent of R for fixed p/R. Thus, we ar-
rive at the result that for P/R on order of one the
scattering of an on-shell particle on a realistic
nucleus must have cross section proportional to
mR' which is the magnitude of the single-Regge-
pole residue for nuclear coupling.

B. Scattering off a nucleus; p/R &) 1

Once we know the scattering amplitude for a
particle of momentum P on the order of R off a
nucleus it is not difficult to find the amplitude
when P/R»1. To begin, define Y„=lnRm and
Y=lnp/m. Then in the one-dimensional nucleus,
or for a fixed impact parameter, write down all
the old-fashioned perturbation-theory graphs which
are relevant for the high-energy scattering. Now
take the imaginary part of the amplitude, A(P),
and keep only those intermediate states, in the
sense of old-fashioned perturbation theory, for
which the number of particles in the intermediate
state having momentum greater than Y~ is exactly
equal to n(Y —Ys}, where n(Y} is the number of
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particles produced in a hadron-hadron collision
of relative rapidity Y. Call the amplitude for all
such events A(p). It is clear that for all internal
momenta k greater than er& A(p) has a simple
one-Regge-pole structure. The connection to
momenta less than e~& can be made, approximate-
ly, by hooking two off-shell particles of momentum
less than or equal to e~& to the nucleus as given
below and illustrated in Fig. 19:

)

)

FIG. 19. Coupl. |ng one Reggeon to the nucleus.

The region of integration is lk, l
&R, and (1/k, )

x A(k} is the scattering amplitude for an off-shell
particle on the nucleus. A—„(p', k) is the imaginary
part of the hadron-hadron amplitude which has
intermediate states of exactly n(Y —Y„') particles
with rapidity greater than Y~. Now in the above
integral the region k,/R «1 is suppressed in a (p'

theory, so that the dominant region is k, /R =con-
stant, which gives, using the results of the pre-
vious section,

A(p) ~A-„(p,k)ImA(k)l, „.
Now

1 1
A. (p k)l»;s" [„-(Y Y)],g. p

(p/R},

while

ImA(k)l» s ~R;
thus

1A(p)~ [„-(Y Y ))ig, (p/R)" '

If we drop the [n(y -ys)]'+ we can identify A(P) as
the one-Regge-pole contribution to the imaginary
part of hadron-nucleus scattering in one dimen-
sion (fixed impact parameter). (The uK comes
from the fact that we are taking only one particular
type of event and the width of the multiplicity dis-
tribution of particles produced is proportional to
vn for one-Regge-pole exchange. ) If we put in all
impact parameters or go from the one-dimen-
sional case we obtain

A(p) ()- pox (p/R)"

for one-Regge-pole exchange in hadron-nucleus
scattering in agreement with the arguments given
in Sec. III. If Regge cuts or interactions are pres-
ent for rapidities greater than F~ the procedure is
similar, and a general rule is that any number of
Reggeons couple to a nucleus with a strength pro-
portional to wR' and the scale parameter of a
Regge expansion is proportional to R.

VI. INCLUSIVE CROSS SECTIONS AND REGGE CUTS

We have seen in previous sections that for z =1
the Regge pole residue is proportional to mR', and
it is also clear that the residue function for the
exchange of higher numbers of Reggeons is pro-
portional to ))R' as well. [The distinction between
pole and cut terms in nuclear scattering is most
easily made when o.(0)&1, and once the separation
is made the limit o (0)- 1 can be taken. ] Regge
cuts need not be as negligible as in hadron-hadron
scattering, and in this section we shall attempt to
qualitatively discuss their influence on elastic
and inclusive cross sections. We first describe
what we feel is the "natural" behavior of softened
field theory in this respect, and then go on to de-
rive some rather strong constraints on the pos-
sible values of elastic and inclusive cross sec-
tions. We shall work in terms of the ratios

(6.1}

and

[(1/o;„„)(do/dy )]„
[(1/o, „„)(do/dy )]„„„„„„„„.„' (6.2)

Here the subscripts had and A refer to hadron and
nuclear targets, respectively, 0» is the diffrac-
tion dissociation cross section including the elastic
cross section, o;.„„is the inelastic cross section
with diffractive excitations omitted; and do/dy is
the single-particle inclusive cross section for an
unspecified final-state hadron.

We h"ve seen in Secs. II and III that a high-mo-
mentum hadron incident on any target of size «P
"forms" most of its state long before reaching the
target. Since one-Reggeon states dominate had-
ron-hadron scattering, we infer that the proba-
bility that a many-Reggeon component is present
in the incident state is small. When the target is
a nucleus rather than a hadron, the coupling of
many-Reggeon states to the target may be larger
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l da.

Inel

nuclear target

hadron target

but since the probability of any component of the
state interacting is at most one, the target cannot
greatly enhance the small probability of many-
Reggeon states being present in the first place.
One's natural expectation, then, is that exchange
of at most a few Reggeons will dominate. Thus
one expects an inclusive cross section of the form
shown in Fig. 20, with the usual three regions:

(1) Nucleus fragmentation region: particles with
momenta ~O(R) can rescatter before passing
through the nucleus and we expect additional par-
ticle production here. An exact calculation of the
particle density is impractical, but it is easy to
see that there is an upper bound proportional to
A' '-R. This follows from the fact that each of
the few Reggeons deposits an energy O(R) into this
region and the particle density is maximum when
all of this energy is converted to slow-particle
production.

(2) Hadron fragmentation region: a detailed cal-
culation is again impossible, but we can observe
that the shape is likely to differ here because of
the cut contribution. do/dy cannot vanish because
it receives an appreciable contribution from
single-Reggeon exchange, which is nonvanishing
in this region in hadron-hadron scattering.

(3) Central region: the AKB cutting rules imply
that the inclusive cross section is given by the
discontinuity of the single-Reggeon exchange 6-
point function of Fig. 21, but the cuts do contribute
to 0;.„„and R, need not exactly equal one. To the
extent that cuts are nondominant, we expect the
ratio r of (6.1) is not greatly different from its
value in hadron-hadron scattering (~0.2). The
last statement may not be true in nature, where
r may approach —,

' for large nuclei, and we now
investigate what such a behavior would entail.
(We remind the reader that all of the discussion in
this section presupposes that P is sufficiently
larger than R that a genuine central region exists. }

If & tends to —,
' then the elastic cross section ap-

proaches the inelastic and, naively at least, one

imagines a black disc situation where a projectile
certainly interacts with the target. This is un-
natural in a Regge model (cf. Sec. III}but not
obviously impossible. In such a situation the
number of elementary interactions would be large,
and since secondaries can be produced at each
stage the inclusive cross section is enhanced, and
thus we expect that increasing & also increases
R, . We shall now show that, in the absence of
Reggeon interactions (see below for further dis-
cussion of this assumption), as x increases there
is an increasingly strong lower bound on 8, and ifr- 2 then R,-~. This result depends critically
on the use of the AKG cutting rules, and so is
restricted to softened-field-theory models of Reg-
geons. A model such as the planar dual string
model, in which the time scales for an elastic
interaction remain finite as the energy increases,
wouM not satisfy the constraint equations we de-
rive here. See note added in proof.

We begin with a simple example: Suppose
n(0) =1 and only one- and two-Reggeon exchange
is allowed. The total cross section is then

o„,=A, -A, ,

where A, (A, ) is the one- (two-) Reggeon contribu-
tion, with A. , and A., positive, and the AKG rules
state that the partial cross sections for diffractive
(including elastic), one-Reggeon, and two-Reggeon
final states are, respectively,

+DD +2 ~

0, = A., —422,

o, =2A, .
To maximize x= a'nn /o;„, we —maximize A2 but
must respect the constraint that each partial cross
section is non-negative. The maximum value oc-
curs when 0, =0 and A, =-,'A.„ in which case 0„,

1
4Aly oDD 4+19 o2 &A 1 and we find r = 3 and

1 ~ 1

R, =2. Similarly, if one-, two-, and three-Reg-
geon exchange is allowed it is easy to show that
the maximum value of r is —,', in which case
B,=3. A large diffractive cross section is only
obtained at the expense of a large inclusive cross
section.

fn(mR) 4n (p/m)

FIG. 20. Inclusive particle densities in hadron-hadron
and hadron-nucl, eus collisions.

FIG. 21. Heggeon diagram for the inclusive cross sec-
tion in a hadron-nucleus collision.
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The diffractive cross section in hadron-hadron
scattering has always been troublesome for Regge
models, but the constraints of the AKG rules are
particularly awkward. For example, the smallest
value of r compatible with existing PP experiments
is &= —,

' at Fermilab energies. " If we suppose that
one- and two-Reggeon exchanges are to account
for this, then arithmetic similar to that just per-
formed yields A2 = o» = v, = 5Al o2 5A„and
o„,= 5A, . The triple-Pomeron contribution to the
total and all partial cross sections is phenomeno-
logically negligible here. The two-Reggeon term
is "small" in the sense that the magnitude of its
imaginary part is only —,

' that of the one-Reggeon
term, but we see that it has a very large effect on
the partial cross sections. The two-Reggeon cut
is negligible for the total and single-particle in-
clusive cross sections, but can be expected to
have a strong long-range effect on the two-particle
correlation function. (One can easily show that
allowing a three-Reggeon coupling as well does
not alter this conclusion. ) The Pisa-Stony Brook
data" has no indication of long-range correlations,
but one can presumably appeal to corrections from
secondary trajectories and the absence of a suffi-
ciently long rapidity interval.

Returning to hadron-nucleus scattering, we now
consider the case where any number of Regge cuts
(but still no Reggeon interactions) may be present.
We write cr, =2nR'y, v»=2nR'yr, a,nd o,„
=2vR'y(1 —r) where o, is the total cross section.
y and ~ are positive and less than one while R is
the radius of the large nucleus. Further, write'
y= P„,(-1)""a,where a„ is the contribution
to 0, of v Reggeon exchanges. We are taking
n(0) =1 so all of the a„~0. Define o, to be the
cross section corresponding to exactly 0 cut Reg-
geons. Clearly

DD k'
k=1

Define crk =2xR2ok. Then, the AKG rules give

or

yr= g (-1)"(2' ' —1)2' "g o
V=2 k=p V

(6.5)

y~ = Q o«[1 —2' «j
k=2

The other relation between yr, y, and the 0„ is

y =ye+ crk
k=1

(6.6)

which simply expresses the total cross section in
terms of the various types of events present. Now
from the definition of R we can write

(6.7)

What we shall do now is to solve (6.5) and (6.6) for
ct„, and o„ in terms of r and y. Then we shall
minimize R, over the remaining o„ i en, n —1,
holding r and y fixed. This will give us the mini-
mum value, R;„which R, can take for given y
and r. That is, this will give the minimum pos-
sible value of R, for fixed value of 0, , 0», and

ann.

Now (6.5) and (6.6) give

I
o„=2y(l —r)+2" 'y(2r —1)— o«(2' "—2' '),

where the prime means that the k=n —1 and k'=n
terms are not included in the sum. From this ex-
pression and (6.6) we obtain for (6.7)

2" '(2r —1) ~i o«(k-n —1+2" «)
R, =n+1+ +~

( )

(6.8)

We can now try to fix y and r and minimize over
the ok. If the ok can take the value zero, this will
certainly be the minimum value of R, . The crk

can be zero only if

yr = o„,(1 —2' ") + o„(1—1' ")

and

and

yr= g (-1)"a„(2' ' —1)
V=2

ir = g (-1)" '( )2" 'a

(6.8)

(6.4)

y(1 —~) =o„,+ o„

is possible. This is possible if

(6.9)

It will prove useful to express all quantities in
terms of the o'«. Equation (6.4) can be inverted to
yield

Thus if r lies in the region (6.9) for some n then
the minimum value of R, is obtained by setting
ok =0, k w n, n —1, and this minimum value of R, is

2" '(2r —1)R;„=n+1+
1 —r (6.10)

Substituting this expression into Eq. (6.3) gives Recalling that »o/o;. „=r/1 —r it is clear that



J. KOPLIK AND A. H. M UE LLER 12

(6.10) means that if a'no is at all comparable to
o,.„, then R, must be rather large.

If we attempt to understand a large value of ~
by introducing many strongly coupled Regge cuts,
then the neglect of Reggeon interactions requires
further thought. If only a few Regge cuts are pres-
ent, then we could argue that the phenomenology
of hadron-hadron scattering indicates that Reggeon
couplings are small, and hence Reggeon inter-
actions could only be very important in nuclei if
these couplings were somehow enhanced. Such an
enhancement would occur at very high energy, in
the form of powers of the total rapidity interval
arising from integrating over the position of the
vertex, but this is of no interest for any feasible
hadron-nucleus experiment. The only other pos-
sibility is a multiplication arising from a com-
binatoric factor reflecting the possibility of cou-
pling to different nucleons in the nucleus, but we
have seen that such enhancements are forbidden
by unitarity. This we can safely neglect Reggeon
interactions when only a few Reggeons are present.
However, if we allow many-Reggeon cuts to ap-
pear, the situation changes. Recall that in con-
figuration space a many-Reggeon state has a high
density of particles at each rapidity and impact
parameter, and it would be unreasonable to as-
sume that the particles do not interact among
themselves. This argument provides a loophole
of sorts for evading the bounds (6.9) and (6.10): if

—,
' then many Reggeons are present and perhaps

their interactions become critical. Physically,
Reggeon interactions correspond to rescattering
and/or reabsorption of produced particles, as in
Fig. 22, and the statement that Beggeon interac-
tions are important would imply that only a very
complicated calculation of rescattering effects
would suffice to describe hadron-nucleus and also
hadron. -hadron scattering, and a simple Regge
expansion would have no value. In such a case
it is possible that R, could be considerably smaller
than required by (6.10), but it is unlikely that it
would be close to one.

VII. AN ILLUSTRATIVE MODEL GF THE NUCLEUS

FRAGMENTATIGN REGION

Our previous arguments have not directly ad-
dressed the detailed dynamics of how a Reggeon
couples to a nucleus. In Sec. III we simply as-
sumed that the quanta in a Reggeon. ladder with
momenta k, s O(R) can and in general will interact
with a nucleus of radius R, and in Sec. V we have
shown that in fact the probability of such quanta
interacting is bounded from above and below by a
constant at each impact parameter. The reason
for this circuitous procedure is that all slow

FIG. 22. Correspondence between some production
amp). itudes and Heggeon interactions.

kaO(R) quanta can interact and rescatter repeated-
ly and a direct calculation is quite impractical.
Of course, something more can be said if enough
approximations are made, and in this section we
will present a simple although quantitatively un-
reliable calculation of the nucleus fragmentation
region, showing how various very complicated
interactions can yield a result of the necessary
form. The discussion in this section only depends
on Sec. II, and the motivation for the approxima-
tions is clearest if we take a didactic point of
view.

Suppose one assumes that high-energy hadron-
nucleus scattering should be controlled by Regge
poles and sets out to compute the residue function
of the nucleus. Naively, one might say that since
the basic inter actions are of short range in mo-
mentum space, only the slowest particles in the
Reggeon ladder can interact directly. Hence the
elastic hadron-nucleus amplitude satisfies

(7.1)

for Lx~s R, where the nucleus residue function P„
is proportional to the cross section for slow
(k, -m), slightly off-shell (k'- -m') particles on a
nucleus of radius R. Now an off-shell particle can
only propagate a finite distance from its first
interaction as its lifetime is O(k, /m ), and the first
interaction can occur anywhere inside the nucleus,
so P~ must be proportional to"

2z, (x)-=2 (R' —x')'~', (7.2)

the width of the nucleus at impact parameter x.
Therefore the unitarity bound is exceeded for
large-enough R.

The calculation just described only leads to em-
barrassment when applied to a nuclear target,
which suggests looking for corrections which are
small in other cases. An obvious candidate is the
(time-ordered) graph shown in Fig. 23, which cor-
responds to rescattering of the virtual particle k.
If the target were a single hadron the graph would
be suppressed just as the AFS cut is suppressed:
The lifetime of k is O(k, /m') and the second ladder
only develops slow momentum components when it
is far past the target. As in Sec. II F, such effects
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FIG. 23. Inelastic rescattering off a nucleus. FIG. 25. A more complicated inelastic rescattering.

are appreciable in a nucleus when the lifetime of k
is less than the nucleus' size, or k, &O(R). Of
course, interactions much more complicated than
that shown in the Fig. 23 are possible, since al/
virtual particles with k, &O(R} can rescatter. This
means that a single Regge pole has no physical
relevance for a scattering reaction with P &O(R),
although if P»A there is no difficulty for the high-
er momentum components.

We would like to believe that such nuclear re-
scattering effects restore a sensible (i.e., uni-
tary) Reggeon-nucleus residue function. An ac-
curate calculation is clearly infeasible, but we
shall present a simple illustrative calculation in
which rescattering is included in an approximate
way, and we trust that the functional dependence
of the result is reliable even if its details are not.
The calculation to follow was motivated by related
work by Schwimmer, "although we would disagree
with this reference in part. The graph shown in
Fig. 23 is a particular discontinuity of Fig. 24,
while the more complicated rescattering in Fig.
25 is a discontinuity of Fig. 26. As a simple mod-
el of nuclear rescattering, we shall consider the
sum of all graphs of the form of Fig. 26 where the
momentum at the uppermost triple-Regge vertex
is &O(R). (A vertex at larger momentum corre-
sponds to an ordinary hadronic triple-Regge ef-

feet, which is small. } We are making a great
idealization since all of the rescattering occurs
over a rather limited momentum interval and the
ladders do not contain a sufficient number of
"rungs" to be accurately represented by a Regge
pole. Furthermore, we neglect processes in which
a recombination occurs, as in Fig. 27. This is a
mathematical convenience; Fig. 27 corresponds
to a certain discontinuity of Fig. 28, which is a
closed-loop graph and requires a much more diffi-
cult analysis.

Notice that the graphs of Figs. 23 and 25, when
Lorentz-transformed to the rest frame of the pro-
jectile, exactly describe the "coalescence of the
combs" in Kancheli's" terminology. Unlike Kan-
cheli, however, we do not in general assume that
the "fusion" is complete —that there is only a one-
Reggeon state at momenta greater than O(R).

The summation of rescattering graphs can be
carried out in either of two ways. The first is a
straightforward graphical summation, leading to
an integral equation. It is easy to convince one-
self that all graphs of the type shown in Fig. 29
(we omit drawing the coupling to the nucleons) are
generated by the recursion relation illustrated in
Fig. 30. If we work at impact parameter x and in
terms of rapidities, with Y=—in(Rm), then Fig. 29
corresponds to the series

FIG. 24. Beggeon diagram corresponding to inelastic
rescattering. FIG. 26. Beggeon diagram corresponding to Fig. 25.
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d(y, x) =ixz (x)e e" e f dye"' "XC(y)ez" '"
0

Y

+ dy e"' "'gC(y) e'" "" dy 8"&" '&'gC(y ) e&'" ""&+~ ~ ~

0 0
(7.3)

The over-all factor of A. zo(x), where z, is defined in (7.2), occurs because each diagram contains at least
ope Reggeon whose coupling to the nucleus is proportional to z0. The coupling of the other Reggeons to the
nucleus, C(y), is in general smaller because they originate at virtual particles whose momentum may not
be sufficient for a typical lifetime to extend fully across the nucleus. Since the number of nucleons ac-
cessible to a Reggeon is proportional to its highest momentum component, we make the simple approxi-
mation C(y) &)c e'. The constant g is a triple-Regge vertex strength; because the important time orderings
in these graphs are not those which are significant in ordinary hadron-hadron scattering, g has no simple
relation to couplings phenomenologically determined in inclusive reactions. " Since the rescattering here
is an absorptive effect, g&0.

If we convert Fig. 30 into an equation, we have

d(yx)=ixz (x)e Ie" e dye"' "dC(y)e '(z)(y, x)/Zl z (x)e ') I.0
(7.4)

As a check, note that this equation reproduces
(7.3}upon iteration. Defining

a(Y x)=e-- .
""-'

iXz, (x) e r '

and taking C(y}= e', with the appropriate constant
of proportionality shifted into g, (7.4) becomes

B(Y,x) =1+ dy ge""[B(y,x)]'.
0

Differentiating,

a(Y, x) =pe""[a(Y,x)]',

and then integrating with the "boundary condition"
B=1 when g=0,

1
1 —(Z/ )

""'
Thus

For nuclear rescattering we consider Y=lnzo(x}
» 1, and hence

-i&a
X(Y,x)~, &„,,&„)- (7,6)

which is a positive imaginary constant. This is
equivalent to the statement that the cross section
for a particle with P =O(R) on a nucleus is pro-
portional to pR'.

The summation of graphs can be carried out by
a simpler method" if we notice that Figs. 24 and
26 are tree graphs, and make use of the well-
known result that the sum of all tree graphs is the
solution of the corresponding classical field theo-
ry." The field theory in question is that of the
Reggeon calculus, described here by the Lagran-

giann

8 I 8+~='& s &' 's

( )
i&z, Qx)e&" ""

1 —(g/~)e"' ' (7.6) +(1- ~(o)}4' 0+ige"0 0',

where we have adopted the convention that P
creates Reggeons. The term in sf/Bx is negligible
to the extent that we ignore local variations on a
scale O(1/m) over the nuclear impact profile. The
corresponding field equation is

FIG. 27. Inelastic rescattering and reabsorption. FIG. 28. Reggeon diagram corresponding to Fig. 27.
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FIG. 29. Model of inelastic rescattering.

8
0 = + (1 —n}((]]+ i ge'(P',

ay

which is just the differential equation satisfied by
[ie'" ""B(&,x}].

VIII. PLANAR STRING MODEL WITHOUT LOOPS

The planar string model without loops4 presents a
very different picture of Regge behavior than does a
field theory or multiperipheral model. We shall
see that in the string model a Regge pole is formed
in a finite time in contrast to (p'-type models. The
consequence of this short time scale i:s that the
AKG cutting rules are changed" and it is impos-
sible to cut through more than one Reggeon at a
time. Thus when a string scatters off a large
nucleus, and dual loops are neglected, in order to
calculate the elastic scattering amplitude one must
calculate a sequential set of scatterings as the ini-

FIG. 30. Integral equation for inelastic rescattering.

tial string moves through the nucleus. The pro-
cedure for calculating the elastic amplitude is
much like the Glauber series with inelastic cor-
rections absent. Between scatterings the string
moves freely from one scatterer to the next. Let
us begin by calculating the scattering of a string
off a localized on-mass-shell external source in
order to find the time during which interactions
can take place.

Suppose we have a classical external source
which emits and absorbs on-mass-shell ground
states of the string. At a given time, say t=0, we
can localize the source to be in the region
(x,'+x,'+x,')'+ s 1/l(, where g is less than or on
the order of the mass, [m~ characterizing the
mass scale in the string model. To second order
in the source, J, the amplitude for scattering of
a string off the source is

OO 0
A (x Q d'k d~ exp(-iv. [(p, —p, ), +(k, —k, ) —(P, P,)„]}-

n=0 ~ OO

x V~„V„,J'(k) J(k')5([(p( + k —p~)2 + m2]'~' —(p(- p~) 0
—(k'+ m~)j'},

where the process is illustrated in Fig. 31. Here p,. and P& are the initial and final momenta of the string
in the i and f states, respectively. V is the dual resonance vertex function and k' is determined by over-
all energy-momentum conservation. Also,

'+k 2+0 2+m2 =k ' k»+k»+k»+m' =k1 2 3 0 & 1 2 3 0

Now (p, ,), +k, , =(P, ,)„and (p, + p, ), +k, +k, =(P +P,)„so

(P, +P,)„2(P,),. '

where M„ is the mass of the state n and P= (P„P,). [We now assume that i and f are low-lying excitations
so that (pa+ p, )=2(p,), for a fast-moving string. ] Thus

A Q fd'4!I(((p, +( -pl)'+m']" —(p, -pq] —(('+m']'']
n

0 2

x dTexp —i7. (k'+m')' —k, — " +i& V&„V„,J(k) J(k').
~ 00 ps (

P)
0

2"Q

FIG. 31. Elastic scattering in the planar dual model.

2 4
FIG. 32. Scattering from two targets in the string mod-

el.



3662 J. KOPLIK AND A. H. MUELLER 12

Now for a fixed P,. and P&

V~„V„,

N =N
n

varies very slowly with M since that sum gives the residue of the pole in the four-point amplitude at
(p+k)' =M'. The scale of the M dependence of

N =N~

must be the order of M' itself. Thus we may replace

v,„v„,
M =Nn

by p«(M') and write

(0
dw)t d'k5([(P,. +k —P )'+m']'' —(P —P ) —(k'+m')'k) p, (M')dM'

a)

Mxexp -i7 + 0'+vs' '' —0, — +i& J 0 J 0' .
2(P, )g

If m is positive the argument is trivial. Since the scale of variation of M is on the order of 2(p, ),m,
the average value of M', the values of 7 must be less than or on the order of I/m. Since v =x, +x„ the
time during which interactions can take place in an elastic or quasielastic scattering must be on the order
of 1/m. In a "realistic" string model m' =-1 and so the above argument is not so simple. However, we
can simply take J(k) so that ~k~ is greater than, say, )]2m. Then the argument goes through as before.

Thus we see that an elastic scattering in the string model takes place over a very short time interval
which clearly means that a Regge-pole exchange occurs over a very small time interval. This does not
mean that an inelastic process of many particle production takes place over a small time interval. It may,
in fact, take a very long time for the highly excited states of the dual resonance model to decay into the
"stable" ground states of the string. The short time for the elastic scattering just reflects the presumed
equivalent completeness of states of the many-particle ground states of the string and the highly excited
narrow resonances. There should be no difficulty in extending the above arguments to external sources
consisting of excited states of the string model.

Now consider a string scattering off two well-separated classical sources, J and J'. For simplicity we
shall take the classical sources to emit and absorb on-mass-shell ground-state excitations of the string,
but we shall assume that the mass of the ground-state excitation, m, is real. The process is illustrated
in Fig. 32 where 1 and 2 refer to scatterings off J and 3 and 4 refer to scatterings off J'. J and J' are
identical except that J is displaced a distance z0 further in the +z direction than J. Then the amplitude for
forward elastic scattering is

0 T3 T2 M„
dr, dv, dr, exp +i(v, —7,) [(k, +q)']'' —(k, +q), — ' +i&

00 Oo ~ oo

M„2
+ 'tfxexp g j g 3

—72 Q& gg gyp' —
Q& gyp' —q

M

]

x V&„V„„V„„V„,J(k, +q) J(—k, )J(k,)J(-k, —q) e"&'o,

Q . f d'q, q'q q'q q(((q, +q)'+m']'q —((q, +q)'qm']m ~ (q, '+m')'* —(q, '+m')m)
"t'"2' 3

where k» = (k, '+m')'+, (k, +q), =[(k, +q)'+m']' ',
k~0 = (k,'+m')'~'. We have taken only a particular
7 ordering where emission occurs after absorption
of particles of the source. The other orderings

are trivially added when 7, and 7., are exchanged
and 7, and v, =0 are exchanged. It is clear from
the sequential ordering of the scatterings that a
discontinuity involves only one Reggeon at a time.
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Thus the final states produced by taking discon-
tinuities of this amplitude will be exactly as in
particle-particle scattering at least so long as
q' «m' and triple-Reggeon couplings can be ne-
glected.

Now, as is w'ell known, the discontinuities of
those time orderings which give the dominant con-
tribution to the elastic amplitude at high energy do
not necessarily give the correct final states. ~

Thus, in the case considered here, there is the
time ordering where vy +'73+74 +72 0. Because
of the arrangement of the sources, the elastic
amplitude at high energies is zero for this v

ordering, illustrated in Fig. 33, as are the indivi-
dual discontinuities for well-separated sources.
Clearly, adding more scatters is not going to
change the situation as far as the final states are
concerned. It appears that so long as one does not
include dual loops the final-state spectrum of in-
elastic events in hadron-nucleus collisions is
exactly as in hadron-hadron collisions.

The above picture of inelastic events will be modi-
fied when loops or nonplanar graphs are included.
Since elastic high-energy scattering can take place
over a short period of time in the laboratory system it
is clear that in passing through the nucleus an excited
state of the string can emit additional low-momentum
hadrons which will modify the nucleus fragmenta-
tion region. These are parts of dual loop contribu-
tions and they presumably will not be small. An

example of such a contribution is shown in Fig. 34.
At v, a low-momentum string is emitted and re-
absorbed at v, . (This amplitude is zero but its
discontinuities are not. ) We know that the emis-
sion of low-momentum hadrons as the string
passes through the nucleus must be important. The
question which we are unable to answer is whether
the probability of emission of high-momentum ex-
cited states is also large. If this were the case
the central region and hadron fragmentation re-
gions would also be modified from the nonloop
case. The question is very much the same as how

an excited string decays into the many-particle
ground-state excitations of the string. In addition
to such modifications of the nonloop situation there

are, of course, those loops where the string
breaks up before it reaches the nucleus. These
latter modifications presumably also include terms
with long time scales of interaction. We are un-
able to give any indication of the relative impor-
tance of these various contributions. Finally, we
do not mean to propose that the planar string model
without loops can be a truly realistic model of hadron-
hadron scattering as it stands. In particular, such
a model requires that all cross sections be equal,
which is very unrealistic. ~ Its particular interest
lies in the fact that elastic cross sections can be
large and still not require large multiplicities,
because of the short time scale of interaction.

o""- wR'(P/m' R)" '+ ~ ~ ~ (3.4)

Let us now view this process in the rest frame of
the hadron": An incident nucleus with momentum

P per nucleon begins to emit quanta which may
interact with each other and with various nucleons
in a complicated way, and after a time O(p/m')
there appear, with constant probability at each
impact parameter, one or more quanta with mo-

IX. NUCLEUS-NUCLEUS SCATTERING

The high-energy scattering of two nuclei is of
less immediate interest than hadron-nucleus scat-
tering because detailed high-energy experiments
are not expected in the near future, but the subject
nevertheless deserves mention because it helps
clarify certain basic issues. We shall only con-
sider the softened-field-theory model for the scat-
tering of two large nuclei.

It is convenient to first restate our analysis of
hadron-nucleus scattering. In the rest frame of
the nucleus an incident high-energy hadron begins
to emit quanta in the form of one or more ladders
and after a long time has developed quanta with
momenta O(m2R) or less. The corresponding prob-
ability is proportional to (p/m' R)" ' for a single
ladder, and so on for other configurations. These
slow quanta then interact with the nucleus with
constant probability (nonzero and independent of

p and R) and integrating over impact parameter
we obtain

Pt =Pf T6
r2= 0

FIG. 33. A different time ordering for double scatter-
ing.

FIG. 34. A graph with a. discontinuity contributing to
the nucleus fragmentation region in the string model.
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Comparing (3.4) and (9.1) we see that even if a
single ladder dominates the intermediate momen-
tum region the resulting total cross sections do
not factorize and we do not have Regge poles in the
usual sense. (This probably remains true in a
model with instantaneous interactions. } If we could
integrate sePaxately over the transverse coordi-
nates of the nucleons which emit and absorb the
ladders the result would be a factorized form
proportional to wR, ~zR, ', but this result' only
obtains when the Regge radius is comparable to
the nuclear radius, (o.'1nP/m)'~-R, and requires
astronomical energies. Indeed, the factorized
form would violate the unitarity bound (2.23) unless
the energy is high enough for a Reggeon to be
fairly "transparent" in impact parameter.

The single-particle inclusive cross section will
display two nuclear fragmentation regions, of
rapidity intervals ln(mR, ) and ln(mR, ), respec-
tively, together with a central region if
p»m'R, R,. The height of the central plateau is
now

central region
(9.2)

the reason is that we know (from the AKQ rules)
du/dy arises from the discontinuity of a one-
1adder exchange graph and the ladder in question

mentum O(p/mR). The latter continue to emit
sequentially and independently, forming one or
more ladders which eventually develop slow quanta,
which finally interact with the hadron at rest. We
oversimplify in saying that the entire interaction
occurs at a single impact parameter independently
of the rest of the nucleus, but the form of the
cross section remains valid if we allow a finite
transverse correlation.

Now if we consider a nucleus of radius R, and
momentum per nucleon p incident on another nu-
cleus of radius R, at rest, the total cross section
is the product of four factors: (1) a constant proba-
bility for the incident nucleus to develop quanta of
momentum O(p/mR, ), (2) a probability
(P/m' R, R,)" ', say, for a particle of momentum
O(P/mR, ) to evolve through a one-ladder state
and develop quanta of momentum O(m' R,), (3) a
constant probability for the latter quanta to inter-
act with the second nucleus, and (4}a factor
m(R, +R,)' for summing over impact parameters.
Note that the last factor arises because the basic
hadron-hadron interaction occurs effectively at a
single impact parameter (compared to the trans-
verse extent of a large nucleus) and the nuclei only
interact if they "overlap. " Thus

cx 1
&RgRs +(R +R )2 + ~ ~ ~

tot z a m3R R1 2

may be coupled, so to speak, in nR, ' ways to the
projectile and independently in nR, ' ways to the
target. In this crude approximation the inclusive
particle density does factorize although the total
cross section does not. All this is simply a re-
statement of what Kancheli has already said. "

Note added in proof

(i) The arguments given in Sec. IV showing that
a simple Glauber expansion does not follow in a
softened field theory also show that a "Regge-
eikonal" expression

A(S, x) =-i(l'"&"'s) —1)

with y(&, S) given by single-Reggeon exchange,
lacks motivation in such theories. If g is large,
this model will be unitarity-violating for the same
reasons as discussed in Sec. IV.

(ii) Our statements on the validity of the AKG
Reggeon cutting rules are, perhaps, in need of
elaboration. Consider the scattering of a string
off two well-separated and large hadronic sources.
The planar process shown in Fig. 32 has only
elastic and one-Reggeon discontinuities so long
as q' is near zero, and these discontinuities have
relative weights +1 and -2, respectively, as
shown by DeGrand and DeTar. " It is true that in
the string model a planar two-Reggeon exchange
corresponds to a single Regge pole rather than a
Regge cut, but this is of course irrelevant for our
purposes. If different ends of the string scatter
off the two sources J and J', then this nonplanar
graph has the usual AKG cutting rules, as McLer-
ran and Weis" have shown. In order to get dis-
continuities through more than two Reggeons it is
necessary to attach dual Pomerons to the internal
region of the string. Such connections, unfor-
tunately, violate the Froissart bound and would
have to be modified considerably before they could
be used in a realistic situation. Thus for all planar
scatterings o =2'' and R, =1, while if planar and
nonplanar interactions are allowed a =2'' and
R, =2 for the scattering of a string off a large
nucleus.

(iii) A simple example of hadron-nucleus scat-
tering not discussed in the text of this paper is
hadron-deuteron scattering. On this matter we are
in complete agreement with the result obtained
by Gribov. 4' For a discussion on the validity of
the Glauber expansion in this case see Landshoff. "
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