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The pattern of scaling violation in deep-inelastic scattering implied by renormalizable field theories is studied.
A set of model-independent predictions are extracted from a series of model calculations involving both
asymptotically free and conventional theories. These are contrasted with the pattern of scaling violation
predicted by modified parton models. A procedure for comparing the predictions with experiment is discussed
and applied to existing data from the Stanford Linear Accelerator Center. General qualitative agreement is
indicated. Crucial tests for the predicted pattern should come from the forthcoming Fermi National
Accelerator Laboratory experiments. The possibility of distinguishing the predictions of asymptotically free
theories from those of conventional theories by these experiments is found to be untenable due to various

uncertainties in the theoretical considerations.

I. INTRODUCTION

The scaling behavior of the deep-inelastic lep-
ton-hadron scattering structure functions observed
at the Stanford Linear Accelerator Center (SLAC)
has been the focal point of much theoretical study
in the past few years. It suggested the physically
appealing interpretation of scattering off pointlike
constituents of the hadron target (the parton mod-
el).! Alternatively, one speaks of canonical light-
cone expansion of products of current operators.!'?
In many ways, these two languages are equivalent.?
Theoretical attempts to justify either of these sim-
ple pictures have, however, met with difficulties.

In particular, within the framework of renormal-
izable field theories it has been shown that strict
Bjorken scaling for the structure functions cannot
hold.? Violation of scaling invariably arises as a
consequence of the renormalization procedure.
The rate of this scaling violation can, however, be
different for different types of field theories.
Thus, the much publicized asymptotically free theo-
ries* imply a logarithmic scaling violation where-
as the conventional -type theories® entail a power-
law breaking?® (see Sec. II for precise statements).

In view of the situation, two important questions
to bear in mind as the new generation of deep-in-
elastic lepton-hadron scattering experiments are
about to yield results are the following: Will Bjor-
ken scaling persist to these high energies with
good accuracy, or will a pattern of scaling vio-
lation emerge? In the latter case, will this pat-
tern agree with that implied by field theory? An-
swers to these questions are crucial toward re-
solving the long-standing question of whether field
theory is relevant for hadron physics.

In fact, as new theoretical techniques for ex-
tracting high-energy behavior of the structure
functions in field theories advanced to yield more
precise predictions (especially for asymptotically
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free theories), the hope has been raised that these
new experiments may even distinguish between the
predictions of different types of field theories—
thus select out those underlyinghadrondynamics. In
particular, it appears feasible to distinguish be-
tween asymptotically free? (hereafter referred to
as AF) and the conventional-type® (hereafter re-
ferred to as CT) theories on account of their dif-
ferent asymptotic behaviors. Thus, since the con-
ception of the theoretically appealing AF theories,*
several papers have been devoted to the implied
scaling violation effects as possible experimental
tests of these theories.® In order to interpret the
comparison of these estimates with experiment
in a truly meaningful way, however, it is impor-
tant to systematically study the similarities and dif-
ferences between the predictions from CT and AF
theories. This has not been done in the literature.
In this paper, we address ourselves to the prob-
lems posed in the previous paragraphs. We sum-
marize the existing technique for calculating the
structure functions from a set of given initial val-
ues at some fixed ¢*=¢,%. From extensive cal-
culations, we extract a fairly specific pattern of
scaling violation common to all classes of renor-
malizable field theories. This is contrasted with
other scaling-violation patterns implied by phe-
nomenological models.® We compare the predic-
tions with recently available data from SLAC.®
The comparisons show general agreement but are
not necessarily conclusive because of the limited
range of existing data. It is pointed out that the
soon to be released data from Fermilab should
provide crucial tests of the theory. The very pre-
liminary data from the Cornell-Michigan State
group’ are discussed in this context. The pros-
pect for distinguishing the predictions of AF and
CT theories within present-day experimental cap-
ability is found to be not very promising. This is
due to theoretical uncertainties as well as to the
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limited ¢? range accessible to experiment.

One of the reasons why a systematic study of
this kind has not been done previously is the lack
of precise knowledge of the “anomalous dimension”
parameter A(z) (to be defined in the following sec-
tion) for CT theories. In this work we overcome
this obstacle by adopting a phenomenological param-
etrizationof A(#) consistent with the known gen-
eral constraints on this function.!' The pattern of
scaling violation extracted from our extensive cal-
culations contains only those aspects which are in-
dependent of the parametrization. Therefore,
these results are consequences of the general con-
straints which are known to be reliable.

Since the problems posed in this paper should
concern both theorists and experimentalists, the
presentation is made to be reasonably self-con--
tained. The main theoretical ideas and calcula-
tional techniques are summarized so that experi-
mentalists will be able to compute their own set
of curves based on input initial conditions appro-
priate for their particular experiments.

II. BASIC FORMALISM

In order to see the basic theoretical ideas clear-
ly, we first consider deep-inelastic scattering
through a scalar current Jz). The structure func-
tion is just the current correlation function

Wi, a) = [ diqe = pla)I0)]p), M

where x=¢?/2My and My=~-q+p. It is a simple
property of the Fourier integral that in the Bjor-
ken limit (g2~, x fixed) the integral on the right-
hand side of Eq. (1) is dominated by {(p|J(z)J(0)|p)
near the light cone, i.e., 22=0."'? In particular, if
(plJ(z)J(0)|p) has the simple power behavior

(1)) p) =5 @D ez * p), (2)
then® W(x, ¢%) ~ **2F(x) or equivalently,
v7I2W (x, ¢?) = Fx). 3)

Hence one has Bjorken scaling. Unfortunately,
renormalizable field theories are incompatible?:®
with the simple behavior assumed in Eq. (2). Ex-
cept in the trivial case of free particles, all theo-
ries of this kind imply a more complicated singu-
larity structure for the current correlation func-
tion near the light cone.?'® They invariably lead
to violation of strict Bjorken scaling.

The general singularity can be studied by means
of the Wilson expansion of the current product,?

J@)J0)=2, zF1zkeeeszbn

neven

XD ENEHOE .. . 4 (0), )

where E}(z%) are c-number functions and
Oﬁ‘luz. .. u{0) are tensor operators of rank n. The
scale dimensions of O ..., determine the be-
haviors of E%(2?) near the light cone which in turn
determine the behavior of the structure function
W(x, ¢°) in the Bjorken limit through Eqs. (4) and
(1). The violation of strict scaling comes about
because the scale dimensions of these operators
do not take on their naive canonical values (hence
the terminology “anomalous dimensions”). The
relevant behavior of E }(z2) can, in principle, be
calculated using the Callan-Symanzik equations.!?
Contact with experiment is established through the
moment integrals!®

[(axxwis, )= Mo, ). (5)

The behavior of M(r, g%) as ¢~ < is closely rela-
ted to the aforementioned singularity behavior

of E} [much in the same manner as in Egs. (2)
and (3)]. Thus, typically in CT theories one
finds?'1*

M, g% ~c@)(g®) '™ as ¢, (6)

where c(z) is some unknown constant and A(z) is
the (in principle) calculable “anomalous dimen-

sion” function associated with the leading tensor
operators of Eq. (4). In contrast, the AF theo-
ries imply*®

qz - \n)
Mn, qz)-w(n)(ln—“—z) as g%—, (7

In this expression p is an unspecified mass scale
parameter. The exponent function A(z) is very
similar to that in Eq. (6) and can be calculated
reliably for any given theory which is asymptotic-
ally free. It turns out the functional form of A (z)
is rather modelindependent whereas its normaliza-
tion depends on the particular gauge group chosen
for the theory. We shall discuss the properties
of A(n) in both cases [Egs. (6) and (7)] in some de-
tail later. To pursue the connection with experi-
ment, we assume, for the time being,

M) =AX(n), (8)

where A(n) is a known function of » and A is an un-
determined constant.

Equations (6) and (7) are not very useful for
practical phenomenological studies because (i)
the function c(z) is unknown and (ii) the evaluation
of the moment integrals demands experimental in-
formation on the structure function at all x. Al-
though estimates on A(z) have been made based
on Eq. (6) with extrapolated data, the results are
not very conclusive.!® Much more powerful results
can be obtained if one assumes'® the limits in Egs.
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(6) and (7) are reached uniformly in#. In that case
both of the above-mentioned obstacles can be by-
passed and direct predictions on the behavior of
the structure function itself can be made provided
its initial values at some fixed ¢*=q,? are given.
One first rewrites Eqs. (6) and (7) in the form

(@*/g,57™ ((ehy)
M@, ¢*) =M, q,%) X In(g?/p2) 7™ ©)
[ln(qoz/u2 (AF),

whereby c(r) is replaced by the function M(r, q,%)

at fixed q,2. The two forms of Eq. (9) can be uni-
fied and put into a more useful form by a change

of variable

M, k) =M@, 0)e "™k (10)
where
Aln(g?/q,?) (CT)
k= (11)
In(q*/p?)
A lr.l[ln(qoz/ uz)] (AF).

Note we have absorbed the unknown constant A

[of Eq. (8)] into the definition of % so that Eq. (10)
fully determines the function M(x, k) when A ()

is specified (theoretically) and M(r,0) is given
(experimentally). This initial-value problem for
the moments M(n, k) can be converted into one for
the structure function W(x, k) itself because the
defining equation for M, Eq. (5), is invertible.

In fact, using well-known properties of Mellin

(or Laplace) transform’” one obtains

1 T+ joo

Wx, ¢) =5

dn x""M(n, q%). (12)
T—i%
Hence, substituting (10) into (12) one obtains an
equation which determines W (x, ¢) provided A(r)
and W(x, q,%) are given.'®

In practice, it turns out, the most convenient
way to implement this scheme is to start from the
differential form of Eq. (10),

9 -

ﬁM(n,k)=_>\(n)M(n,k). (13)
Then by taking the inverse Mellin transform of
this equation, one applies the convolution theo-
rem®® in evaluating the right-hand side and obtains

9 1
W B = [ dy Al WO, B). 14)
Here A(x, y) is related to A(z) by
11 e (x)‘"‘l-
Ax, y) = ——=— dn (= _
=g J_a(3) e (15)

Equation (14), together with the initial condition

W(x, k=0)=W(x, ¢*=q,%), (16)

completely determines the structure function
W(x, g*). Note the integral in (14) only runs from
x to 1, i.e., to determine W(x, ¢%) we only need to
know W(y, g,°) for x <y <1. A better way of saying
this is the following: if we krow W(x, q,%) for

%, <x <1, then we can calculate W(x, ¢°) for any ¢
with x in the same vange. This is important phe-
nomenologically since for fixed ¢®=g¢,?, data on
W(x, g,%) are not available for small x (because of
finite incident energy of the accelerators). The
predictive power of Eqs. (14)—(16) is illustrated
in the kinematic plot, Fig. 1.

The theoretical input necessary for implimenting
the above program resides in the function A(r)

[or A(z) which differs from it by a constant factor
A]. Our knowledge on A(z) for various theories is
not complete. But some quite general properties
as well as a number of specific examples are
known. These give us a sufficient handle on A(z)
to extract useful predictions on the structure func-
tion.

From the factthat the energy-momentum tensor is
the dominant second-rank tensor (with isospin
zero) and that it must have the canonical scale
dimension 4, we know

X (2)=0. 1)

Here the superscript s stands for “singlet” (or
I[=0). Moreover, from the fact that W(x, ¢?) is

the forward virtual Compton amplitude, related to
a positive definite total cross section by the op-
tical theorem, it was derived!* that X’ (#) satisfy
the following useful inequalities:

X +m)= X (),

m (18)
X +m’) <X () +——[X (0 +m) - ()]

Here n, m, ™ are even positive integers and ne’
>m, A number of interesting consequences im-

FIG. 1. Kinematic region for deep-inelastic scattering.
If the structure functions are given on the heavy line
@= qoz, xg<x<1), their values in the entire hatched re-
gion can be calculated from Eq. (14).
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mediately follow from these inequalities:

(i) A*(n)> 0 for n > 2;

(ii) if A°(n,) =0 for any n,#2, then X° (r) =0 for
all n, but this is possible only if the theory is a
free field theory;

(iii) A’ (#) can at most increase linearly with n.
We mention in advance that these general prop-
erties are crucial in giving rise to the pattern of
scaling violation to be derived in the next section.
For the nonsinglet (ns, or I#0) case, the only
known general information is

) = X (n). (19)

As mentioned previously, in any given renormal-
izable field theory, A(z) are in principle deter-
mined by a set of Callan-Symanzik equations.'? In
the case of asymptotically free theories, the coef-
ficient functions in these equations are calculable
and A(z) can indeed be determined.® We shall re-
turn to the explicit form for A(z) in the next sec-
tion. In the case of conventional-type field theo-
ries, these equations can only be solved in certain
approximations.!?:1%:1°® The resulting expressions
are consistent with each other and are similar to
those obtained for the AF case. In addition, they
satisfy the general constraints Eqs. (17) and (18).
We can, therefore, use these expressions with
some coafidence. Possible effects due to the re-
maining uncertainties can be investigated phenom-
enologically by adopting certain general param-
etrization of A(z) consistent with the constraints
(17) and (18) and studying the dependence of the
predictions on the parameters.

We already mentioned that the normalization con-
stant A for A(2) is determined by the structure of
the gauge group in the case of AF theories. Inso-
far as there are many possible candidates for this
group, the value of A is somewhat constrained but
not determined by theory. In the case of CT theo-
ries, one has very little handle on A. 1t is related
either to the coupling constant in perturbation cal-
culations'?'*® or to the € parameter in the (4 — €)-
dimension calculation.’® It appears, therefore,
that the most prudent approach is to leave A as an
unknown parameter to be determined by experi-
ment.

III. APPLICATION TO ELECTROPRODUCTION

The formalism of the previous section can be
applied to the realistic case of electroproduction
in a straightforward manner. We now have two
independent structure functions W, and vW,. The
relevant moment integrals are

1
f dxx"—lwl(x, qZ) =M1(n7 qZ),
° (20)

1
j dx x"PuW,(x, %) = My, q2).
0

Here again the large-g® behavior of M, (n, ¢®) is
expected to be of the form represented by Eq. (10).
Carrying through the program outlined in Sec. II,
one can again calculate W;(x, ¢%) for all (x, ¢®) pro-
vided theory supplies A(z) and experiment supplies
W;(x, q,%) at some q,°. In the following, we shall
only explicitly deal with vW, which we simply write
as F, i.e.,

’

Flx, 4%) = vW,(, ¢%). @1

The corresponding formulas for W, can be ob-
tained by replacing xW, for F(x, ¢?) in all subse-
quent formulas.

The required experimental input, F(x, ¢?) for
fixed q,%, exists at present only for proton target.
For this reason, we shall restrict ourselves to
this case. The initial value ¢, is chosen to be
4,>=4 GeV since this is a reasonably large ¢? at
which data over an extended range in x exist.
Throughout this paper we shall take “large ¢*” to
mean ¢%>4 GeV2 This is certainly within the
deep-inelastic region where the structure functions
are observed to vary only slowly with ¢* for fixed
x. Consequently, the asymptotic equations of the
previous section should apply. (Theory itself does
not say what ¢* is asymptotic.) Needless to say,
entirely similar calculations can be carried out
with other initial conditions appropriate for other
targets.

The required theoretical input function 75(11) sat-
isfies the same general requirements as discussed
in the previous section for the scalar current case.
The specific form for A(#) can be calculated more
readily for the asymptotically free theories. It
was shown that the situation is simplest for the
isospin nonsinglet (ns) case where

N )= -3 ~2/n(n +1) +4 2 (1/m). (22)

However, we are more interested in the isospin
singlet (s) piece which dominates the proton struc-
ture functions at large ¢* [cf. Egs. (10) and (19)].
The situation is slightly more complicated here
because for each n, several tensor operators play
a role. We do not have a simple closed formula
like Eq. (22). Fortunately, we already know A®(2)
=0 and X (2 +1) > X’ () from general grounds (Sec.
II). The additional knowledge® that A" () — A* (1)
is very small for all except #=2 (i.e., n >4) then
severely restricts the possible behavior of A® (r).
The results previously reported in Ref. 7 and re-
produced in the following are calculated with the
phenomenological formula

N)=-3-18/n(n +1) +4 3 (1/m) (23)
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which satisfies the above requirements. Other
possible forms have also been studied and found
to yield qualitatively similar results. These will
be discussed in Sec. VI

For conventional field theories, X() cannot be
obtained without using approximation methods.
Several basically different approaches yield very
similar results which in addition are consistent
with the general constraints of Sec. II. A typical
form is

Nm)=1-6/mm+1). (24)

This expression is similar to the first two terms
of the corresponding formula for the asymptotical -
ly free case, Egs. (22) and (23). It is obtained both
from perturbation calculation of the Callan-Syman-
zik coefficient functions!? and from Wilson’s (4 — €)-
dimension method.'® Other more elaborate ap-

_ In(q%/ )
k=Aln [m(q:/w]’

F(x,k=0)=F(x, ¢°=q,"),

S F 1) =[3 +41n(1 )L F(x, )+ | dy-)%—[lé}(l - %) F(y, k) +

Likewise, with the simpler formula, Eq. (24), for
the CT case, we obtain

k=A1n(q*/q,?),
F(x,k=0)=F(x, ¢*=q?), (26)

d 1oox x
—_ =_ — (1 - =) F
s F (%, k)= =F(x, k) +6 f dy > (1 y) , k).

Given F(x, k=0) for 0<x <x,, these equations can
be trivially integrated numerically to yield F(x, k)
for all 2 and 0<x <x,.

The results of such a calculation are presented
in Figs. 2-5. In Fig. 2 and Fig. 3 we give the fa-
miliar plotof the structure function vs the variable
x for some fixed values of k& (~¢?). One sees the
well-known trend of an increasingly peaked curve
F(x, ¢%) toward small x as ¢* increases for both
the AF (Fig. 2) and the CT (Fig. 3) case. The area
under the curve remains constant in all cases. To
see the scaling violation effects more vividly, it
is more convenient to plot the structure function
vs k (~¢?) for fixed values of x. This is done in
Fig. 4 and Fig. 5 for the AF and CT cases, re-
spectively. If strict Bjorken scaling holds, F(x, ¢%)
would be independent of ¢% and all the curves in
these plots would be horizontally flat. The pre-
dicted curves show F(x, ¢%) as an increasing func-
tion of ¢® for small x and a decreasing function of

proximation methods lead to results milder than
(24) in the sense that the poles at # =0 and -1 are
either softened to a cut'® or moved farther from
the physical values'?® (# >2) resulting in milder ap-
parent scaling violation for the same value of A
(the normalization constant relating A to X). Since
this constant is not known a priori, very similar
patterns of scaling violation are obtained from the
various formulas when the scale is set by an ex-
perimental input point. For this reason, we shall
use the simplest and most singular case, Eq. (24),
as an explicit example in the following discussions.
Sensitivity of the results to the other possible
choices of X’ will be explored in Sec. VI.

Carrying through the program outlined in the
previous section with the input A(z) of Eq. (23)
for the AF case, we obtain the following equations
for the structure function

(25)

4(96/3))F(3’,k) - F(x,k)]
1-(x/y) )

Fix,q?)
6

k = Aln In{q)
5l ) ln(qﬁ//ﬁ)

FIG. 2. The structure function F (x, ¢°) plotted against
x for three values of # in the AF model, Eq. (23). The
k =0 curve is the experimental input F(x, g =4 GeV?).
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q® for larger x.

This pattern of scaling violation is qualitatively
different from that implied by most phenomeno-
logical scaling violating models.? These models
predict structure functions which have factorized
dependences on x and ¢%, i.e., W;(x, ¢®) =G;(q?)
F,(x), for large ¢*. This means the dependence
on ¢% would be independent of x except for normal-
ization. In terms of a plot like Fig. 4 (or 5), the
curves for different x would then all be parallel.
The distinction between the two cases will be very
marked.

IV. DISCUSSION OF GENERAL RESULTS

The first impression one obtains by glancing
at Figs. 2-5 is the apparent similarities between
the predictions of conventional and asymptotically
free theories. The only differences lie in the scale
of the variable & and the different relations of this
quantity to the physical variable ¢?, Eq. (11). We
will discuss first the common features, their
physical origins, and then the differences and their
significance.

The broad trends observed in the last section
are previously known and are attributable to the
general properties of the theoretical framework
previously discussed. From Eq. (20) we see that
the =2 moment of F(x, ¢%) (in the variable x) is

F(x,q%)
=
i 2
k=Aln Sy
5 %

FIG. 3. The structure function F(x, ¢%) plotted against
x for three values of 2 in the CT model, Eq. (24). The
k =0 curve is the experimental input F(x, g% =4 GeV?).

15 .50 ]
\
T 10

I R S S S
0 .02 .04 06 .08 .0 .2 .4
2 2
k=AIn[in()/In(z8)]

FIG. 4. The structure function F(x,%) calculated
from the AF model, Eq. (24), plotted against # for fixed
values of x.

equal to the area under the curves in Figs. 2 and
3. The fact that this area remains constant for
different values of ¢% is a direct consequence of
the general requirement 23(2) =0, Eq. (17). In con-
trast, the higher moments do depend on ¢?. They
are all decreasing functions of ¢? because A(z) >0
when n >2 [cf. Egs. (6) and (7) and the discussion
following Egs. (18) and (19)]. As the higher mo-
ments of F(x, ¢°) are more sensitive to its value

| |
2 3 4 5
- 2/.2
k=A In(q%q,)
FIG. 5. The structure function F(x,%) calculated from

the CT model, Eq. (24), plotted against 2 for fixed values
of x.
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near x=1, F(x, ¢®) must be a decreasing function
of ¢* for large x (i.e., near x=1). The conserva-
tion of area under the F(x, ¢%) curve then implies
the opposite behavior, i.e., that F(x, ¢ be an
increasing function of ¢? at the lower end of the
x range (x~0). This is, of course, just the pat-
tern we observed from our explicit calculations.

It is to be noted that for any fixed x, F(x, ¢%)
eventually decreases to zero provided one goes
to sufficiently large ¢* [the only exception being
x=0 where F(0, ¢%) increases indefinitely with ¢?].
On the other hand, for any fixed range of ¢% (ac-
cessible to experiment), there are always three
different regions of the x variable within which
F(x, ¢°) has distinct dependences on ¢2: increasing,
decreasing, and approximately constant. Our cal-
culations, of which the cited examples are typical
cases, reveal that one can go beyond this general
observation. In fact, within the range of ¢ cov-
ered by foreseeable experiments, we found a num-
ber of specific features of this pattern of scaling
violation which are universally shared by the dif-
ferent types of theories and are quite independent
of the theoretical uncertainties associated with the
calculational scheme. We state these features
here (cf. Fig. 4 and Fig. 5):

(1a) For 0.25 <x <1, F(x,q? is a decreasing
function of 4%,

(1b) the rate of decrease in ¢? is greatest for
x=0.4 and tapers off at both ends;

(2) In the vicinity of x ~0.2, F(x, ¢°) has little
or no dependence on ¢®*—this is the “apparent”
scaling region;

(3a) For 0<x<0.15, F(x, ¢? is an increasing
function of ¢?,

(3b) the rate of increase grow monotonically as
x approaches zero. This universal pattern holds
to within 0.05 in the values of x quoted for the wide
range of theoretical models that we have explored
(cf. Sec. VI).

Why is this pattern of scaling violation so speci-
fic for such a wide class of theories? We have
already discussed the origin of the qualitative pat-
tern [namely, A(2)=0 and A(#)>A(z —1)>0]. In
addition, the fact that the transitionfrom an increas-
ing to decreasing dependence of g®occurs closer to
the lower end of x(~0.2) follows, to a large extent,
from the shape of the input experimental curve
F(x, g,%). It is not hard to see from Egs. (25) and
(26) that since F(x, ¢,?) is tilted toward the lower
end, the rate of change of F(x, k) in & is also
greater in this region. The conservation of area
then implies that the crossing point be nearer to
the lower end in x.

To shift from the general pattern to the details
we need to discuss the scale of the variable 2 and
its precise relation to g% In particular, in order

to compare the specific results of Figs. 4 and 5
with each other and with experiment, we need to
fix the hitherto unspecified parameters A and p
[cf. Eqs. (25) and (26)]. We have explained (cf.
Sec. II) that these parameters are model dependent
and should be determined by experiment. All that
is needed is to pick one (or two) well-measured
points for F(x, ¢®) at fairly large ¢% and compare
with the theoretical curves; that will determine
the constant A (and, for the AF case, also ).
This will be done in the next section.

Before turning to that, let us briefly comment on
the anticipated qualitative difference between the
two types of theories, AF vs CT, as exemplified
by the two special cases shown by Figs. 4 and 5.
To compare, we have to plot the results on the
same scale. Let us imagine converting the hori-
zontal log-log ¢* scale of Fig. 4 into the log ¢2
scale as in Fig. 5. What would the effects on the
curves be? Obviously, the general trends for the
curves will remain the same except the variation
of the curves will be compacted near the lower g2
end and stretched in the higher ¢® range. Since
the apparent shape of the curves in Figs. 4 and 5
started out very similarly, we anticipate detec-
table differences between the predictions of these
two types of theories only at low (near ¢,%) and
very high (asymptotic) ¢

V. COMPARISON WITH DATA

Shown in Figs. 6 and 7 are data on F(x, ¢%) from
SLACS® plotted against ¢® for several values of x.
The range of ¢® covered is fairly large for 0.4 <x
<1, but becomes very restricted toward the lower
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q%®. The curves are calculated from the AF model,
Eq. (23), with A=0.085, p=1 GeV. The data points
are from Ref. 9.
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calculated from the CT model, Eq. (24), with A=0.25.

end of x. The main feature of approximate scaling
holds to within 20-30% over the measured ranges
of ¢°. We are, of course, interested in the devia-
tion from strict scaling. In this respect one dis-
cerns a systematic decrease of F(x, ¢%) as a func-
tion of g% in the measured range of x. To compare
this pattern of deviation from scaling with the the-
oretical calculations, we use one of the measured
points [at x =0.57, ¢2=10 (GeV/c)?] to determine
the unknown scale parameter A and, for the AF
case, choose a “reasonable value” 1 GeV for p.?®
The predicted curves of F(x, ¢%) for the same x
values (as the measured ones) are then plotted on
Figs. 6 and 7 for the AF and CT cases, respec-
tively. The value of A turns out to be 0.085 for the
AF theory and 0.25 for the CT case.

We now make a series of remarks on the com-
parison between theory and data.

(i) The observed general trend of F(x, ¢%) falling
with ¢? in the range 0.25 <x <1 is certainly inaccord
with the theoretical expectation as stated in point
(1a) of Sec. IV.

(ii) The rate of decrease with ¢® within the range
seems to be in general agreement with the pre-
dictions of both types of theories also [(1b) of Sec.
IV]. It is to be noted, however, this agreement is
not really so striking since (i) the range of ¢? is
limited on the lower x end, and (ii) the experimen-
tal input point was chosen near the upper x end.

A new experiment at SLAC?! is expected to mea-
sure the structure functions in the same x range
but extending to larger values of ¢ With the ad-
dition of these new data we hope a more meaning-
ful test of the predictions can be made.

(iii) The value of A~0.085 obtained for the AF

TUNG 12
case is compatible with typical theoretical values
like & for some popular choice of the gauge
group®; the value A =0.25 for the CT case does not
have any unique theoretical interpretation; it is
consistent with previous crude estimates of the
same parameter,!®:®

(iv) Crucial tests of the theoretical ideas can,
in principle, be furnished by data at low values of
X, as theory predicts quite different ¢ dependence
in this region. For the present, however, useful
data of this type do not yet exist. (As seen from
Figs. 6 and 7, even for x=0.2 we have no data be-
yond ¢®*=4.) Fortunately, this is exactly the kine-
matic region where most data from the new gener-
ation of uN deep-inelastic scattering experiments
at very high energies are expected to lie.!® The
new data should provide us with a good test of the
predicted pattern [points (2), (3a), and (3b), Sec.
IV] and hence the underlying theoretical principles.

There are, of course, already some preliminary
data on deep-inelastic uN scattering available
from Fermilab.'® However, this very first experi-
ment is not designed to provide the detailed infor-
mation necessary for a direct comparison with
our previous analysis. We shall, therefore, re-
strict ourselves to a few qualitative remarks. As
is the case with the first SLAC-MIT experiment,
the most prominent feature of the new data over
greatly expanded kinematic ranges is the approxi-
mate scaling behavior of the structure functions.
However, we are, of course, interested in the
finer deviations from strict scaling.

The preliminary data do seem to show a system-
atic, dependence of the ratio of cross sections at
different energies on the (scaled) variable g2 In
particular, there seem to be many more events
for low ¢® (scaled) at high energies than at low
energies. At this stage, events are not separated
into x bins (as is needed for a more direct com-
parison with our discussions).?'* However, because
of kinematic constraints, the low ¢ events are
predominantly associated with small x. Inasmuch
as we expect the structure functions to be an in-
creasing function of ¢% at small x, this trend
agrees with theoretical predictions. At larger val-
ues of g%, the events involve larger values of x.
The preliminary data indicate a possible falloff
with increasing ¢?, again in agreement with the
theoretical pattern, but this is not yet well estab-
lished.?'? Clearly, to obtain a more definitive com-
parison, one has to wait for the more refined data
from this as well as other deep-inelastic scatter-
ing experiments at the high-energy accelerators.
We note in passing that the range of x values cov-
ered in the new generation of experiments at Fer-
milab is roughly’® 0 <x <0.4, thus nicely compli-
menting the existing ranges measured at lower
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energies.

Our comparison of the predicted pattern of scal-
ing violation with existing data, although not con-
clusive, indicates the potential for shedding light
on the theoretical issues and helps to put certain
crucial features in focus for the interpretation of
new experimental results. In this connection it is
perhaps worthwhile emphasizing the importance
of looking at the ¢® dependence of the measured
quantities separately in the three regions x <0.15,
x=0.2, and x >0.25. Interesting distinctive fea-
tures in these regions can be easily washed out in
any averaging procedure. In a different vein, even
in a crude experiment where the structure func-
tions are not directly measured, one can go beyond
the very qualitative comparison of theory and ex-
periment as discussed above. The specific pat-
tern of scaling violation stated previously can be
tested by feeding the theoretical predictions into
the Monte Carlo calculations made in comparing
high-energy and low-energy data.

At the end of Sec. III we mentioned the difference
in the patterns of scaling violation implied by field
theory and those by phenomenological (parton)
models. What can we say about this point in the
light of these available data? Within the range
of the SLAC data, we cannot tell the difference.
However, the two points of view imply opposite
q® dependences for the structure functions at small
x. In particular, the feature of factorized x and
¢* dependences for the phenomenological models
implies the structure functions should decrease
in g2 at small x (since they are found to do so at
large x). As already pointed out, the initial indi-
cations from the u-N experiments at Fermilab are
that the opposite is true. Thus, if this result holds
up, the pattern of scaling violation implied by
these phenomenological models can be ruled out
whereas that implied by field theory will prove
worth further scrutiny.

VI. DISCUSSION OF THEORETICAL UNCERTAINTIES
AND COMPARISON OF AF AND CT THEORIES

So far we have not discussed the theoretically
important issue of differentiating the AF and CT
theories by comparing their predicted scaling vio-
lation effects against each other. (By seeing
whether the differences are experimentally dis-
tinguishable, one can evaluate the prospect for
deciding which type of theory is more likely to be
relevant for strong interaction physics.) To carry
out this comparison, we have to know the theoret-
ical uncertainties associated with the predictions.
(The “typical examples” cited in the previous sec-
tions do not give information on this question.)

The uncertainties obviously have mainly to do with
the CT theories where no demonstrably valid ap-
proximation scheme is at our disposal. We attack
this problem by a phenomenological approach.
Based on the fairly restrictive general constraints,
Egs. (17) and (18), and the specific examples of
A(n) given by the various models, we adopt the
following parametrization for the effective expo-
nent function

S0 B ~ 1
Mn)__(n+a)(n +a+1)_7‘+6m21'r7 @7

subjected to the conditions

X(2)=0, 28)
d
-J;I-X(n) >0.

Here « controls the location of the pole in the pole
term (inn), whereas B, ¥, and 0 controls the rela-
tive magnitudes of the pole, the comnstant, and the
logarithm?®® terms, respectively. We then calcu-
late the predicted structure function F(x, k) based
on this X(n) for a variety of values of the param-
eters and compare the results within the experi-
mentally accessible region of g2. Features of the
predicted structure function (both qualitative and
quanitiative) which are generally independent of
the parameters are interpreted as consequences
of the rigorously established constraints and hence
model independent. (These are the results quoted
in Sec. IV.) The range of variations of the pre-
dictions obtained for different sets of parameters
is taken to give an estimate of the theoretical un-
certainty associated with this approach. Several
examples of these trial calculations are given in
Fig. 8. These graphs should also be compared
with Figs. 2 and 3.

It is perhaps worth pointing out that the reasons
we can extract a set of fairly specific features
of scaling violation effects in spite of the theoret-
ical uncertainties represented by Eq. (27) are the
following.

(1) Within the available range of g%, many asymp-
totically different patterns are indistinguishable.

(ii) As the overall constant A is adjusted to fit
with experiment, often the effects due to different
choices of the parameters «, 8, v, 8, can be ab-
sorbed by a change of A.

Beyond the features cited in Sec. IV, it is very
hard to distinguish more quantitative differences
between specific models. The reasons, separately
mentioned before, are the following: (i) we only
used a one-term (effective) formula in the high-
energy expansion [cf. Eq. (10)], (ii) there is always
the ambiguity associated with which “scaling vari-
able” to use,?? (iii) the uncertainty associated with
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FIG. 8. Calculated F(x,#) from typical extreme cases
of the phenomenological formula, Eq. 27): (a) =0,
¥=6, 6=4; (b) =0, p=36, v=0, 6=4; (c) =2, =20,
vy==1, 6 =0. The examples given previously correspond
to =0, =18, y=3, 6 =4 (Fig. 2) and ¢ =0, =6,
y=-1, 6 =0 (Fig. 3).

the precise form of A¢z) in CT theories, and (iv)
we do not know what the parameter u is for AF
theories. There is, of course, one significant
difference between AF and CT theories—they pre-
dict different asymptotic ¢ dependence for the
structure functions. In our calculations, this dif-
ference manifests itself in the different relations
between the (physical) variable g% and the variable
k (which is conveniently chosen for calculations),
Eq. (11). However, within the experimentally
accessible ¢* range, this difference is insignificant
as compared to the other uncertainties inherent in
each class of theories by themselves.

In conclusion, then, we see the deep-inelastic
scattering as offering an excellent test of the gen-
eral features of scaling violation implied by field
theory. These features are in accord with the
trends of available preliminary data and will be
crucially tested in the very near future. A com-
bination of theoretical uncertainties and experi-
mental limitations prevents the possibility of dis-
tinguishing the predictions of AFvs CTfield theories.
The choice with regard to which of these theories
is more likely to be the one underlying strong-
interaction dynamics will remain a matter of aes-
thetic appeal until a better test is devised.

ADDENDUM

Since this paper was written, more definitive
results from the first Fermilab p-N inelastic
scattering experiment have become available?** 25
Extensive data obtained at 56 GeV/c and 150 GeV /c
incoming muon energies are compared with each
other (Ref. 24) as well as with calculated extra-
polations from the much lower energy SLAC data
assuming strict scaling (Ref. 25). These com-
parisons, especially the second one, show a clear
pattern of scaling noninvariance in the measured
kinematic region (which spans a ¢? range of 5
(GeV/c)? at x ~0.03 increasing to 30 (GeV/c)? at
x=~0.3). Although this experiment does not mea-
sure the structure function vW,(x, ¢%) directly, in-
formation on the (x, ¢*) dependences has been ex-
tracted from Monte Carlo calculations. The sys-
tematic change of the ¢® dependence as a function
of x agrees very well with the pattern predicted
from our field theory calculations (Sec. IV). Thus
vW, is a decreasing function of 4¢* in the range
0.2 <x<0.3, it remains fairly constant at x ~0.2
and becomes an increasing function of g2 for
x<0.2. The rate of change of VW, as a function of
¢* was found to increase monotonically as x de-
creases from x=~0.3 to x~0.03. This is again in
accord with our prediction. Theory predicts this
rate of change will have a minimum (negative
maximum) at x=~0.4 and increase to zero as x in-



creases from x=0.4 to 1. This latter behavior is
already confirmed by the SLAC results as treated
in the text.

The observed pattern of scaling noninvariance
clearly disagrees with that expected from modi-
fied parton models.® As discussed in the text,
these models imply similar g% dependence for all
ranges of x.

The rise in vW, with ¢ at small x can be at-
tributed to the excitation of new degrees of free-
dom.?® This point of view is not very quantitative;
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it also only applies to the large w, or diffractive,
region. It is, however, not incompatible with the
field theoretical considerations discussed in this
paper. In fact, if one accepts the rise with ¢*

at small x (as due to the excitation of new degrees
of freedom) and also the constancy of the area
under the vW, curve (as due to the dominance of
the energy-momentum tensor in the second mo-
ment integral) then one arrives at an alternative
“explanation” of why the structure function falls
with ¢® at large x.
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