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Recently the author proposed that the forces between quarks of two of the colors in the
colored-quark model are of shorter range than forces involving quarks of the third color,
and showed that if this color-symmetry breaking mechanism is strong, the favored baryon
SU(6) representations and parities are 56 and 70, in agreement with experimental indi-
cations. In this paper it is shown that this prediction also results if the symmetry break-
ing is small, in which case the sign of the symmetry breaking is irrelevant. A discussion
is given of a possible experimental way to test the validity of the mechanism and measure
the approximate size of the symmetry breaking. A useful list of orthonormal quark-model
wave functions of specific energies and symmetries is given.

I. INTRODUCTION

The existing data on baryon resonances suggest
that the even- and odd-parity baryons correspond
exclusively to the SU(6} representations 56 and 70,
respectively. ' This contradicts the one-triplet
quark model with Bose statistics and harmonic-
oscillator forces (symmetric quark model) for all
but the two lowest energy levels. ' For example,
the symmetric quark model predicts even-parity
resonances corresponding to the representations
56, 70, and 20 at the second excited level.

I call the "color-symmetric" quark model the
model with three triplets of quarks, with color
SU(3) symmetry as well as the usual SU(3) sym-
metry, Fermi statistics, harmonic-oscillator
forces, and the identification of observed hadrons
with color singlets. This model predicts the same
hadron spectrum as the symmetric quark model.
However, there is no experimental evidence that
the proposed color symmetry is exact or nearly
exact. One would expect color-symmetry break-
ing to lead to octet admixtures in the predominant-
ly singlet states identified with the hadrons. How-
ever, the unobserved, predominantly octet states
may still be either at very high masses or non-
existent. It has been shown in a recent paper that
large color-symmetry breaking can lead to a pre-
dicted baryon spectrum of the SU(6) representa-
tions and parities 56 and 70, in agreement with
experimental indications. ' The main purpose of
the present paper is to show that this result also
follows if the color-symmetry breaking is weak.
In Sec. IV I discuss briefly the possibility of mea-
suring the size of the symmetry breaking.

Since I am concerned with representations pre-
dicted in the color-symmetric quark model that
have not been observed, I neglect mass differences
between states of the same SU(6) & O(3) representa-
tion [where O(3) refers to the quark orbital motion] .

Exact SU(6) symmetry is assumed.
It is helpful to review some basic facts concern-

ing hadron spectra in the color-symmetric quark
model. The quark-antiquark states that constitute
the mesons correspond to the SU(6) representa-
tions 35 and 1. These both are observed in the
same mass region. Consequently, if SU(6) sym-
metry breaking is negle""ed, it is reasonable to
consider the 35 and 1 meson states to be degen-
erate. This implies that the force in the cross
channel not only is SU(6) symmetric, but trans-
forms as an SU(6) singlet.

When one considers the three-quark baryon
states, the statistics of the quarks comes into
play. The lowest orbital state is completely sym-
metric. If this state is a pure color singlet, and
so is totally antisymmetric in the color indices,
Fermi statistics requires that the SU(6) wave
function must correspond to the symmetric 56
representation, in agreement with experiment.
Similar reasoning implies that the first excited
orbital state corresponds to the mixed-symmetry
SU(6) representation 70.

Of course it is possible that the quark-quark
potential contains a piece that does not transform
as an SU(6) singlet. This would affect the relative
masses of different predicted three-quark states.
However, it is observed experimentally that the
70-fold representation corresponding to the first
excited quark-model states lies approximately
midway between the 56-fold ground state and its
first Hegge recurrence, as expected in the color-
symmetric quark model. This supports the evi-
dence from the meson spectrum that the potential
is an SU(6} singlet. Therefore I make the usual
assumption that the potential depends only on
color and orbital quantum numbers, so that it is
an SU(6) singlet. The predicted baryon represen-
tation structure depends on the symmetry of the
orbital and color wave functions.
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If color symmetry is broken, the wave function
is no longer completely antisymmetric in the
color indices. Because of the requirement of
Fermi statistics this affects the symmetry of the
rest of the wave function and hence influences the
predictions concerning which SU(6) representa-
tions occur.

The basic procedure for the calculation is given
in Sec. II and the results are listed in Sec. GI.
The orbital wave functions for the lowest baryon
levels are listed in terms of relative coordina, tes
in the Appendix. These are needed in the calcula-
tion, and may be useful as well to other calcula-
tions involving modifications of the color-symmet-
ric quark model for baryons.

II. PROCEDURE

The baryons are nonrelativistic, three-quark
states. The quark binding forces are transmitted
by the exchange of an octet of vector gluons
coupled to the color indices of the quarks. ' For
calculational purposes, the radial dependence of
the quark-quark potential is taken to be that of a
harmonic oscillator. The possible effect of devia-
tions from this assumption is discussed in Sec. IV.

The colors are labeled r, w, and b (for red,
white, and blue), and the Hamiltonian is assumed
invariant to the SU(2) of the colors red and white.
Thus the color-symmetry breaking is taken to be
analogous to the observed breaking of ordinary
SU(3). The breaking of ordinary SU(3) is neglected.

The gluon-exchange potential is a sum of two-
body potentials V= V„q+V8„+ Vz, where a, P, and
'Y are the three qua, rks in the baryon. It is assumed
that V» is the sum of a short-range part V and a
long-range part V, , i.e. ,

V„r =Q J,J,' U, (rq, ) +Q 8",2; U, (rq„),

where r„,=
~
r„—r„~, J", is the ith Hermitian gen-

erator of SU(3), operating in the color space of
the quark p, , and J„J„and J3 are the generators
of the no SU(2) subgroup of color SU(3). The con-
figuration-space potentials U, and U, are decreas-
ing functions of &&, , they would be positive if
Yukawa potentials were used. Exact color sym-
metry corresponds to U, = U, . A simple possible
cause of range difference between U, and U, is
mass splitting of the vector-gluon octet trans-
mitting the forces, if the three gluons coupled as
the generators of the rzu SU(2) subgroup are
heavier than the other gluons. '

I also allow the mass of the blue quarkM, to be
different from M„„,, the common mass of the red

and white quarks. The kinetic energy operator
for the quark p. is

T„= -(e'j2M„)V„',

Mq
——M„~(5P„+6q~) +Mb5qb .

(2)

(3)

Vuv = Vp, uv+ Vu»

8

V, q„-—g J~(J," U, (rq, },

3

VI, = QZ", 4," ——',QJ,". 8,")U'(r„„l,

where Up and U' are given by

U= —'U +3U
0 8 l 8 S

U'=U, —U, .

The total unperturbed potential V, 8+ Vp gy+ Vp

transforms as a color singlet and the perturbing
potential V~+ V8 + Vy~ transforms as a color octet
state. This may be shown by making use of the
equa, tion

Q O',"J," = —,
' [C(t ) —C(p, ) —C(b )],

i=1

where C(i) is the eigenvalue of the SU(3) quadratic
Casimir operator for the representation i, and t
is the p, v representation. '

In a similar fashion, the kinetic energy operator
of Eq. (2) may be separated into unperturbed and
perturbed par'ts,

Tu T u+Tu

such that the unperturbed kinetic energy Tp +Tp ~

+ Tp y transforms as a color singlet and to first
order in the quark mass difference the perturbed
kinetic energy T~ +TH +Ty transforms as a color

In R1 it was assumed that the breaking of color
symmetry is so large that the red and white quarks
in a baryon are very tightly bound, so that there
are no orbital excitations in the relative red-white
coordinate. The excited baryons then correspond
to orbital excitations of the blue quark around the
red-white center of mass. The baryons have a
simple quark-diquark structure.

However, there is no reason to believe that the
color-symmetry breaking is so large. I take
the alternate view in this paper. It is assumed
that the color-symmetry breaking is small enough
to be treated by second-order perturbation theory.
The unperturbed states are color singlets. Since
the perturbation is symmetric in the red-white in-
terchange, the perturbed states are singlets in
the rw SU(2). Thus we need not consider color de-
cuplet states, only singlets and octets.

In order to apply perturbation theory, I rewrite
the potential of Eq. (1) in the form
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octet. The exact definition of &0 & and T& will be
given later.

The baryon states are color singlets to zero
order. Since the perturbing Hamiltonian trans-
forms as an octet state there is no first-order
contribution to the energy. The energy correc-
tion to lowest order is the second-order term
g&)H~„P//(E„—E&). Only octet intermediate states
j will contribute.

Since the octet unperturbed states are of high
mass compared to singlet states, the second-
order energy contributions to the hadron states
are negative. Therefore, the favored SU(6) rep-
resentations for a particular oscillator level are
those with the largest second-order energy con-
tributions.

I list here some needed properties of functions
of mixed symmetry. All permutations of the three
variables n, P, and y may be obtained from pro-
ducts of the two transpositions (o'P) and (o.y). If
a function A(epy) is of mixed symmetry, there
are two components A ' and A ~~ with the per-
mutation properties'

(aP)A"'8=A '

(~y)A" ' = --.'A' '--,'~3A",
(~P)AP "' = -A' ",

)AP, ns z AP, a8 x ~3',a8

(8)

where the superscripts s and a denote totally sym-
metric and totally antisymmetric functions. If
A is of mixed symmetry and B is antisymmetric,

C x APB CP — ALBA

That part of the wave function having to do with
ordinary SU(3), spin, and orbital angular momen-
tum is denoted by P. The total wave function g
is antisymmetric in the three quarks +, P, and Z,
so for a color-singlet f is completely symmetric
For a color-singlet state n, g„may be written

4 =(,')"P&'~,p-.y.k: (~p»,

where the superscript of P denotes the symmetry;
&, ur, and b are the color indices; the sum is over
the six permutations of &, P, and y; and the sig-
nature factor 7 is 1 for even permutations and

The symmetry properties of quadratic combina-
tions are needed also. If A and B are functions of
mixed symmetry in three variables, and C is
bilinear in A and B, the symmetry properties of
C are

C' =AB +A B, C' =A B —AB,
Cx = APBP —ARBOR CP =AABP +APBx

—1 for odd permutations. Since g is completely
symmetric, the quark indices of &f& may be re-
placed with color indices, i.e. ,

4. =(~)'~'g&"&,p y&4:(r~~)

A color octet-wave function g& is of mixed color
symmetry, so it follows from Fermi statistics
and the combination rules of Eqs. (9) and (10) that
P& is of mixed symmetry. The only states j for

I
which H&„may be nonzero (with n a color singlet)
are composed of one red, one white, and one blue
quark. It is convenient to write the color-octet
states in terms of P" ""and PP " rather than in
terms of p '" and Qp' ~. Since p'„and H' are
both invariant to transposing the red and white
quarks, there is no contribution to H&'„ from p p "".
The contributing color-octet wave functions may
be written

4j =
( ,') Q—«„p~ypd'g "(r~'&) (12)

V,'„= (4, ", (V,'.+V„', +V.', )4.). (13)

In this equation V&, includes the appropriate eigen-
value for the state antisymmetric in i and j. If
V'from Eq. (5) is substituted into Eq. (13), the
result is'

V&„'
--(Q" ",[ ,'U'(r, )+ --U-'(r„s)+ U'(r, )]$'). (14

A convenient set of variables is

R =' [M, (r„+r„)+M, r,j /(2M„„. +M, ),
&= (r, +r 2r, )/~6,—

p = (r„-r )/W2.
(15)

8 is the center-of-mass coordinate. It is easy to
show that & and p have the mixed-symmetry prop-
erties defined in Eq. (8), corresponding to the
labels &,~e and p, re.

The total kinetic-energy operator &, expressed
in these variables, is

If the P&'"" in this equation is written in terms of
and P ', one can see that the color wave

function is a pure octet.
We consider next the matrix elements of V'= V'~

+ VII&+ V&„. The operators p~-, &q J~ and p', ,4",8," of
Eq. (5) are diagonal in the representation of color
wave functions symmetric and antisymmetric in
p and &. The color-singlet, unperturbed wave
functions g„are antisymmetric in each pair of
quarks. Therefore, only the eigenvalues corre-
sponding to antisymmetric pairs are contained in
V~'„. By using Eqs. (11) and (12) one may write
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T= .'n-'[-(au„„+M, ) 'V„-'+(,'M„-.-'+ ', M,—-')V,'

+M„„'Vp']. (16)

The quark masses may be written in terms of
the average mass M, and the mass difference M',
l.e. q

I expand the mass terms in Eq. (16) to first order
in M'/M, . The singlet or unperturbed part of T is
given by

T, = --2'(h'/M, }(—,
' V„'+V„'+V, '). (17)

The matrix element &,'„of the octet part of & is

T'= -a'(M'/6M')(g"" (V'- V')y'& (18)

V 3k/(f o'Pw
(p2 y2)ys& (19)

For simplicity I assume that the symmetry-
breaking parameters in &' and V' are related by
the equation

(M'/M. }= —(9/8)(k'ik, ). (20)

%"ith this assumption the ratio of the A.
' and Vq'

terms (or of the p' aadnV~' terms) in H'is the
same as in H.

III. CALCULATION AND RESULTS

It was shown in Sec. II that the contributing ma-
trix elements of the perturbing Hamiltonian are
givenby the sum of Eqs. (18}and (19), where j
and n are color octet and singlet states. It is con-
venient to write Q in terms of direct products
UB, where U is an SU(6) [spin and ordinary SU(3)]
wave function, and & depends on the relative or-
bital coordinates ~ and p. I denote states of the
symmetric and antisymmetric SU(6) representa-
tions 56 and 20 by U' and U', and the two com-
ponents of a mixed-symmetry 70 state by ~ and
U . The possible symmetries of the orbital wave
functions B are determined by the combination
rules, Eqs. (9) and (10). If U corresponds to the

I take the configuration-space dependence of the
potentials of Eq. (1}to be of the harmonic-oscilla-
tor type, and define an average force constant ko
and a force-constant difference k' by the equations

U, (r}= ——,'(k, + —,'k'}r', U, (x) = -2(k —,k')r'.

The minus signs are included since U, and U, are
defined to be decreasing with increasing distance.

For a color singlet state n, the matrix element
V, „„ is ka(~'+ p'}, where the components of V, are
defined by Eq. (4). The octet-singlet matrix ele-
ments of the perturbing potential, Eq. (14), may
be written

56 or 20,

56 case:

20 case:

and P& must be of the following types:

(f)$ UaBa (f) UaB

ys UaBa yX UaBP

(21)

(22)

All mixed components are of one of the types ~, ne,
or p, roe, but the &zo indices have been suppressed.
If the SU(6) representation is 70, there is only one
type of color-singlet state Q'„, but there are three
types of color-octet states, corresponding to the
three possible types of symmetry of B:

70 case: P'„=(1/v2)(U~B'+U"B"„}; (23)

(24a)

Q;.
" =UPB; (24b)

Q~" —(1/v 2)(U~B~~ U "B~). (24c)

The first superscript of Q is the symmetry of B,
and m denotes mixed symmetry.

The perturbation H' is SU(6) symmetric and so
does not mix SU(6} representations. The matrix
elements of H' in the 56 and 20 cases are of the
forms

H (Bj'HB &

H'~ = (B,', H'B'„).

(25)

(26)

In the case of the 70 representation, the three
possible types of H,'„are

H';P =(1/v 2)(B;,H'B„&, (27a)

H,".„~ =(I/v 2)(B;, H'B~&, (27b)

H~„"~ = —,((B~, H'B„) —(Bi",H'B„&). (27c)

where the first superscript of H' is the symmetry
of the intermediate orbital state.

In order to compute the matrix elements of H'

one can express the orbital wave functions & in
the representation of the rectilinear harmonic-
oscillator excitations, i.e. , in terms of the quan-
tum numbers N(p~) and N(&~), where i denotes
x, y, and z. The total oscillator level E is given
by N=N(p)+N(A), where N(p) =N(p, )+N(p„)+N(p, ),
etc. The unperturbed energy E, is equal to
S(u(5+3), where ~=(2k,/M, )'~2. Because of the
assumption of Eq. (20), H' is diagonal in the
N(p;) —N(~;) representation. The diagonal matrix
elements are

( ", ~H'~ N„"& =5»,, —', (k'/k, )aa[N(p) —N(A)], (28)

where 5», is the product of 5's for all six N(pi)
and N(~i }.

In order to compute the H&„ for a quark-model
level N and orbital angular momentum L, one
needs the orbital wave functions classified by their
symmetries. I will consider all states up to and
including N=3, and the I =W=4 states. The rele-



HIC HARD H. CAPPY

vant wave functions have been obtained from the
results of Karl and Obryk, and are listed in the
Appendix. '

The unperturbed energies of all states of a given
E are equal. The degeneracy is broken by the
second-order perturbation term P, ~H,

' „P/(E„.—E; ).
The intermediate states j are color octets, so
E„—E; is negative. I assume that color-octet
states of the same N are degenerate. Since the
perturbation connects only singlet and octet
states of the same N, the energy denominator
(E„—E~) is the same for all states of the same
quark-model level. The energetically favored
states of a particular N are those with the largest
factor P; jH', g The s.um includes all relevant
states of the proper symmetry, and in the case of
the representation 70, the different symmetry
possibilities shown in Eqs. (27a)-(27c).

The relevant Q, ~H, „'~' may be computed by using
Eqs. (25) through (28) and the list of orbital wave
functions in the Appendix. In making these calcula-
tions one may use the fact that all the following
polynomials B satisfy the normalization condition
of the Appendix:

2Y",Y~Y,Y, .

I define the operator 6=%(p) —N(X), whose eigen-
values are N(p) —N(X) in the K(p&) —N(&;) represen-
tation. It is seen from Eq. (28) that H;„' is propor-
tional to b,,„, so that the quantity P&~a~„~' is a
measure of the amount by which the color-sym-
metry breaking lowers the energy of the state n.
The values of A and

~
b, ~' = 6' for the states under

consideration are listed in Table I.
The notation is similar to that of Eqs. (25) to

(27c). The numerical superscript of b. is the SU(6)
representation, which is of the same symmetry as
the orbital wave function of the singlet state n.
In the cases of the representations 56 and 20, the
intermediate state must be of mixed orbital sym-
metry, while in the 70 case, the orbital sym-
metry of the intermediate state is given as the
first superscript. Subscripts are given only for
those N and I for which there are two orbital
states of mixed symmetry. In these cases the
states are denoted by n and P, as in the Appendix.
The two subscripts of 6 refer to the intermediate
and initial states, respectively. For a particular
state n, if there are none or only one intermediate
state that may contribute, only 6' is given. The
d' include the sum over intermediate states, and

(LP )' denotes PJ(a,'—')'.
It is seen from the results of Table I that when

there are two states of intermediate orbital sym-

TABLE I. Values of & an.d & for levels up to &=L =4.

N=p

&=2, I =2:

(g 56)2 4

N=2, L =1:
&=2, L=P:

(&—) =4

N=3, L=3:
(~56 )

2

~& 70 ( 3)1/2

N=3, L=2.
X=3 L =1.

Qs70
(

3)i/2sn
gm 70 gm70

n8 8n
~s 70

s8

N=4, L=4:
~ 56 (12)i/2

~s 70
sn

~m70 ~m 70
n8 8n

~s70 psa

(~56) 2 p

(g70)2

~s70

(g20) 2 p

~s70

(~20) 2

~m 70

(~70 )
2

g20 p

&a 70 ( 3
)X/2

an 2

(+70 )
2

~a 70 pag

~56 p8s
~m70 pnet

(~70) 2 1p

~m70 p88

~m70 p (~70)2

gm70 p g 70)2

~s70 ( 3)i/2
2

(~70 )
2

(g56) 2

(g20 )2

—=-2m70
nn

=1 (+70)2 188 8

(~56)2

(+70 )
2

8

metry for a particular lV and I, , the states and

P are the proper ones to diagonalize H to second
order, i.e. , H'&H~'8 is zero for all states j.

The results concerning which representations
are favored are essentially the same as when the
color-symmetry breaking is large. ' When N= 2

(L= 2 or 0) and when A'=4, the representation 56
is favored, and when X=3 (L=3 or I), the rep-
resentation 70 is favored. When there are two
states of the 70 of the same N and I., the energy
correction is small for one of them.

IV. CONCLUSIONS

Color-symmetry breaking removes the degen-
eracy of the color-symmetric quark model. It is
assumed here that the symmetry breaking is suf-
ficiently great so that the comparatively unfavored
states do not appear in the same mass region as
the favored states. The type of deviation consid-
ered is essentially one in which the forces between
red and white quarks are of range different from
that of forces involving blue quarks.

In 81 it was shown that if the symmetry-break-
ing is large and of such sign that baryon wave
functions consist of a tightly bound red-white di-
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quark, with a comparatively loosely bound blue
quark, the favored states are of the SU(6) rep-
resentations and parities 56 and 70 . This is in
agreement with experimental observation. One of
the main conclusions of this paper is that this re-
sult remains the same if the symmetry-breaking
is sufficiently weak so that one may use eigen-
functions of a color-symmetric Hamiltonian as
unperturbed wave functions.

For simplicity it was assumed in Sec. II that
the quark mass-splitting is such that only states
of the same total harmonic-oscillator level are
connected by the perturbation. However, some
calculations have been done for levels up to. A'=2,
in which this mass-splitting is not included; the
results concerning which states are favored are
not changed.

Since the symmetry breaking of Sec. II contrib-
utes only in second order, the effect does not
depend on the sign of the perturbation. The re-
sults would be the same if the red-white force
were of relatively long range. However, if this
were the sign and the symmetry breaking were
large, the wave function would not be so simple
as the quark-diquark structure used in R1.

The difference between the 6' for the favored
and unfavored states in Table I is the same order
as the size of b,' for the favored states. Clearly,
if the symmetry breaking is very weak, the un-
favored states (such as the 70 for I.=I)/= 2) should
be observed experimentally. It was pointed out in
R1 that, for strong symmetry breaking, some un-
favored 56 and 70' states should appear for
sufficiently high N. Thus, if color-symmetry
breaking is responsible for the observed devia-
tions from the predictions of the color-symmetric
quark model, some 70' and 56 states should
appear for high N. If this occurs, whether or not
such states occur also at low N will be an indica-
tion of the strength of the symmetry breaking.

The favored hadron states discussed in Sec. III
are predominantly color singlets, with some oc-
tet admixtures. One expects that predominantly
color-octet states should exist also at higher
masses. Whether the color-symmetry breaking
is weak or strong, one can group the predicted
states for each level N into three mass regions,
the light group consisting of 56 or 70 states.
The structures of the medium and heavy groups
depend on the size of the symmetry breaking. If
the symmetry breaking is small, the light and
medium groups together have the SU(6) quantum
numbers and parities predicted in the color-sym-
metric quark model. These are predominantly
singlet states. The heavy group consists of pre-
dominantly color-octet states. Since only the
light states have been observed, and some rele-

TABLE H. Orthonormal polynomials D corresponding to
specific symmetries and oscillator levels.

N=o and 1:
Do 0=1

D)~'f =W2 y~~ W2 y+p

¹2:
D~ = YPYP+ Y~Y~

2s2 + + + +

D2'2 ——(YP YP —Y"Y+), 2Y+ Y+P

D2 1=&2(Y YP —YP Y )

(1 )1/2(~2+y2 3q)

DX,P ( 1 )1/2(~2 g2) ( 1 )1/22', ~

N=3
Ds (

1 )1/2( YXYXYX+ 3Y~YP YP )

Da (1)i/2( Yp Yp Yp 3Yp YXYX)

(y Xykyk+ yXypyp)

(YP YP YP+ Yp Y~Y~)

DX,p ( 8) j/2(yX yp ygyX)y p
3 + p 0 +

( 8)1/2( YP Y Y~ YP) Y

D' =(—')'/'[(r" —~')Y +2~ V»]
D =(~)1 2[(p2 —~ ) Yp —2g 'pY~]

p —
( 1 )1/2[(~2+@2 1pq) YX+ 2g p Yp]

(-)' '[(3p'+A. ' —log)YP +2k, .p Y ]

D 'j'8 ——( ) [(—p +q)y +g ~ pyp]

( 4 )1/2 [( A 2+ g) YP +A, p Y~]

N=4, l =4:
D4 4

=
2 (Y~PYp~ Y+P Y+P + Y+ Y+ Y+ Y+ + 2Y+ Z+ Y+P Y+P )

DX g (g) 1/2(ypyp y pyp ykykykyX)

(
4 )1/2(Yp Yp + YXYX)Y) Yp

D~~p —(
1 )1/2( YP YP YPYP Y~Y~Y~Y~+ 6Y~Y&YP YP)4,4, 8

( 4)1/2(YXYp YP YP —YP Y"Y~Y~)

vant force parameters are not determined theoret-
ically, one cannot predict the approximate masses
of the octet-like states at present.

We next consider the case of large color-symmetry
breaking of the type discussed in R1, so that the
baryons have a quark-diquark structure. The red-
white diquark is then in its lowest orbital state for
both the light and medium groups of baryons. The
light states are predominantly color-singlet, 56
and 70 states, and the medium states are pre-
dominantly octet, 70' and 56 states. There are
no states of the representation 20 in the light or
medium groups. In this case the heavy states in-
volve excitation of the diquark, and do include
states of the 20.

Whether the symmetry breaking is large or
small, the predicted energy gap between the %=0
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(56) and Jq = 1 (70) levels is greater than that be-
tween the E= 1 (70) and N= 2 (56) levels. ' This
prediction is difficult to test experimentally be-
cause of the mass differences between states of
the same level. However, if one considers only
zero-strangeness states of the same Regge se-
quence, and measures in terms of either mass or
mass squared, the N=O-1 difference is larger
than the N= 1-2 difference. '

There is another possible source of degeneracy
breaking of such states as the ¹ L= 2, 56 and 70
states of the color-symmetric quark model. The
radial dependence of the two-quark potential may
be more nearly of Coulomb type than of oscillator
type. This would cause the (1&)(ld) state to be
lower than the (1P)' state, where the two orbital
angular momenta refer to the p and ~ coordinates.
This could break the degeneracy of the color-sym-
metric model, since the ratio of these two states
is not the same for all ~=2 states. On the other
hand, it is reasonable to assume that the two-
quark radial dependence is the same as that be-
tween a quark and an antiquark in a meson. No
such deviation from oscillator dependence is
observable in the meson spectrum, since many
%=0, 1, and 2 states are nearly exchange degen-
erate, i.e. , lie close to a linear Regge trajectory,
Therefore, it is not reasonable to assume that
deviation from oscillator dependence makes a
large effect on the baryon spectrum either.

I would like to thank the Stanford Linear Accel-
erator Center for its hospitality.

APPENDIX

This Appendix contains a list of all the orbital
wave functions B for the harmonic-oscillator
levels up to and including A=3, and for the N= L
=4 states. The B are related to polynomials D of
order X in ~ and p by the equation

a = (q"~'"w') '~'D exp[-g (&'+ p')/q],

q = (&/M, ~).

Since ~'+ p' is invariant to all permutations of the
three quarks, the symmetry properties of D ar~
those of R The list is given in Table II; D„' ~
corresponds to the quark-model level X, orbital
angular momentum L, symmetry i, and maximum
value of the z component of L. If there are two
states of the same A, L, and symmetry, they
are distinguished by a third subscript, n or P.
The functions F, ' and ~, ' are defined by
Y,"= -(1/W2)(A. , +i%.„), Y,=&, , etc. The & and p
components of a function of mixed symmetry are
listed together, separated by a comma.

Polynomials of specific symmetries and the
appropriate orders in ~ and p are given in Table
III of Karl and Obryk. ' These polynomials are
not convenient for calculations, however, be-
cause some of them correspond to mixtures of
different energy levels, they are not all ortho-
gonal, and they are not normalized uniformly.
Each polynomial D of Table II corresponds to
only one energy level A', and the corresponding B
are all orthogonal and normalized by the condition
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