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Relativistic treatment of the quark-confinement potential
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We discuss the spectrum resulting from a relativistic treatment of a linear confinement potential. We employ
Klein-Gordon and Dirac wave equations regarding the linear potential as a Lorentz scalar.

With the recent discovery of several new parti-
cles' interest in hadron spectroscopy has been re-
vived. Several attempts have been made to study
the hadron spectrum using the nonrelativistic
Schrodinger equation with a linear potential. " A
linear potential is suggested by the gauge theory
of quark confinement4 and by exactly soluble
2-dimensional QED.' The resulting spectroscopy
seems to be quite satisfactory and even has
significant advantages over earlier schemes, in
the case of ordinary mesons and baryons. ' Be-
cause of this success it is important to go beyond
the nonrelativistic approach, which must be re-
garded as a first approximation for a complicated
hadronic system.

A complete treatment should incorporate both
relativistic and quantum effects, and in addition,
requires a full understanding of the underlying
dynamics of the quarks. The well-known com-
plexity encountered in bound-state problems in
relativistic field theory suggests that the com-
plete solution of this problem is rather remote at
the present time. Nevertheless one might hope to
gain some insight by examining crude approxi-
mations which include some of the above effects.

In this paper we will investigate the relativistic
effects for a linear potential model leaving aside
the more difficult question of quantum effects. We
will work within the framework of relativistic,
Dirac-type or Klein-Gordon-type wave equations
to determine the hadron spectrum. The approach
is similar in spirit to the relativistic treatment
of the hydrogen atom. ' However, if we just re-
place the Coulomb potential, o. /r, the time com-
ponent of a 4-vector, by the quark-confining
linear potential, ' the qq system will not have any
bound states. This is because the time component
of a 4-vector changes sign in going from the posi-
tive-energy components to the negative-energy
components. Thus, the linear potential, which
grows with distance, will give strong attraction
for the positive energy, i.e., particle, component
but repulse the antiparticle component leading to

a finite amplitude at infinity. Another way of
viewing this is that in a relativistic equation the
"effective" potential rises initially as r grows,
reaches a maximum, and eventually goes to
-~ at r =~. Thus instead of bound states one has
"resonances" with a finite transition amplitude
into a quark-antiquark continuum. One might
interpret this as the presence of decay channels
but then an additional mechanism, such as auto-
matic pair creation, would be needed in order to
prevent quark escape. This is contrary to the
original motivation for a linear potential.

This type of difficulty is easily avoided by treat-
ing the linear potential as a I orentz scalar which
has the same sign for both particle and antiparti-
cle components of a given field. ' Another slightly
more complicated possibility which would also
yield bound states for a linear potential is to use
a 3-vector potential A = kr with a minimal coupling.
Current theoretical approaches to the linear po-
tential are too crude to single out any one of these
various possibilities. Thus we treat the Lorentz
scalar case in this paper leaving the others for
later investigation.

When we compare the resulting excitation
spectrum with that of the nonrelativistic case we
find that the first several levels are very similar,
but that significant changes occur in higher levels
and in the interpretation of the parameters. We
should remark that in the usual nonrelativistic re-
duction of the Dirac or Klein-Gordon equation,
the crucial assumption is that the field energy is
much smaller than the rest mass. This is not
generally satisfied for the linear potential which is
strong for large distances. Our results show that
only for the first few low-lying levels is the ex-
pectation value of the potential small compared to
the rest mass. This contrasts with the case of the
hydrogen atom where the expectation value of the
Coulomb potential is small compared to the electron
rest mass for all levels. ' From this latter ex-
ample we also learn that certain features of the
wave function are very sensitive to whether or not
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a relativistic treatment is employed. Regardless
of the large-distance form of the potential, if, at
small distances, there is a component which takes
a Coulomb-type form, n/r, the exact relativistic
wave function will have a mild singularity
~ (I/r) ~' at r = 0.' This prevents a smooth con-
nection to the nonrelativistic wave function in this
region. Thus physical calculations which are
sensitive to the exact small x behavior, such as
various decays, will be strongly affected by
relativistic considerations.

Without a detailed calculation it is hard to do
more than speculate concerning the quantum ef-
fects we neglect. At one extreme, we can appeal
to 2-dimensional QED, which is exactly soluble, '
to make some useful guesses. In that theory the
particle spectrum of the qq system consists of a
single massive vector boson, even though the inter-
action between quarks is precisely the linear po-
tential. The physical origin of the absence of
higher excited states is that the vacuum polari-
zation and shielding are complete in the sense
that as soon as energy is available an additional
qq boson bound state of the given mass is produced;
the original quarks are then completely shielded
from one another.

This phenomenon could persist in three dimen-
sions. Vacuum polarization may again be associa-
ted with a linear potential. For instance, the
familiar argument" using the cluster decompo-
sition theorem to suggest a linear potential re-
quires that all communicating gluons between
quarks separated at large distances be massive
(otherwise there is a long-range interaction which
violates the form of cluster decomposition used. )
One possible mechanism for generating gluon mass
in non-Abelian gauge theories is via vacuum polari-
zation as suggested by Schwinger. ' Polarization
and shielding could again be suf ficiently complete
that only a very few particles actually appear in
the resonance spectrum.

Qn the other hand, in strong coupling analogs
of atomic physics and in dual resonance models
(such as the Veneziano model in which quark
containment is abs olute —ther e being no threshold
for quark production) an infinite sequence of
resonance levels persists "; the higher resonances
acquire increasingly large widths eventually
merging into the continuum but the process is
gradual rather than sudden. Memory of the linear
potential could possibly be retained even for very
large separation despite the increasing probability
of decay to continuum states (of perhaps a linearly
increasing number of particles). Further investi-
gation is needed to decide which approach is the
more viable theoretically. Phenomenologically a
dual type approach has strong support.

%'e now turn to a presentation of our relativistic
wave equation calculations. We set up a frame-
work for both Kleln-Qol don-type and Dirac-type
equations and compare these results with one
another and with the nonrelativistic calculation.

Consider for the moment the two-spinless-quark
(i.e., quark-antiquark) wave function component
of a meson bound state defined as"

where A, x are defined as the usual center-of-.
mass and relative coordinates,

and P is the cm momentum. Suppose that one
quark field feels only an effective potential due to
the other quark (the potential may, of course, be
influenced by higher pair states in ~M&) and that
this potential depends on the relative coordinate x.
If we take this potential V to be a Lorentz scalar,
either of the quark fields will satisfy a Klein-
Gordon equation of the form

m, here, is the "renormalized" quark mass i.e.,
it includes any possible constant term in the po-
tential P'. If we operate with „on Eq. (I), and
neglect the equal-time commutator, we obtain

(4)

We assume that V(r) may be effectively treated as
an equal-time potential depending only on the
spatial part of x,

(P K)

In this case g can also be taken as a function of r,
P„(e/ar„)j(r) =0, and we have

2

—,M'+ — m+V ' r =0.

This equation can be interpreted as the Klein-
Gordon equation for a particle with energy M/2,
mass rn, moving in a central scalar potential.

A similar procedure in the case of a spin- —,
'

quark feeling a spin-independent potential due to
the presence of the second spin- quark leads to
a Dirac-type equation,
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where g~z is defined by

&0]T(q8(x')q~(x)} ~M& =gqz(r)e (6)

In this approximation the Dirac equation involves
only one of the spinor indices of ( and thus a very
specific form of spin-orbit coupling involving the
spin of only one quark. Nonetheless it should allow
some estimate of the magnitude of such effects.
Note that the spin of the meson states is obtained
by coupling the —,

' unit of spin to the total angular
momentum, j =— I a —,

' (this coupling does not affect
the energy levels and thus is omitted in the no-
tation of the relevant tables). This is clearly not
a realistic model of a meson (unless, perhaps, one
quark is very much heavier than the other) but

should, at least, indicate the general magnitude of
spin-orbit effects due to our purely linear potential.

We use Eqs. (4) and (7}with V =k~ r
~
to calculate

the several spectra of interest:
(i) that appropriate to the $(3.1) and g(3.7) being

the ground state and first excited state of the
I =0 spectrum. Here we ignore the effects of the
short-range potential (e.g. , the Coulomb-type I/~ r~

term), which are expected to be small in the
heavy-charm-quark system. (Of course, for a
scalar potential constant terms in the potential
can be absorbed in the definition of the mass. ) We
find that k = 0.13V GeV' and m =1.12 GeV fit the

P and g' masses. Results are summarized in
Table I.

(ii) that appropriate to p(0.77} and p(1.25} being
the first two levels. )We recalls that spectro-
scopy using the p'(1.25) as the first excited state
I, =O p meson has some possible advantage over
that using the p'(1. 6) as first excited state ]Here.
the short-range forces are not likely to be small

due to the light quark mass. Thus we give spectra
for a typical light quark mass, m =0.15 QeV, and
choose k to give the right spacing (0.48 GeV). The
required k value 0.07 GeV' is essentially inde-
pendent of quark mass for moderate masses. As
is apparent from Table II, which summarizes the
results, one requires short-range attractive ef-
fects of the order of 0.3 GeV in order to obtain
the observed p mass. This is consistent with the
considerations of Ref. 3. A more detailed dis-
cussion of the short-range effects will be given
shortly.

(iii) that appropriate to the p(0 77).and p(1.6)
being the first two L, =0 resonances. Again using
a quark mass m = 0.15, we find that k = 0.20 GeV'
gives the right spacing between the first two
levels(Table II). However, we need a rather
strong short-range attraction, of order of 1 GeV,
to obtain the relatively small p mass. Without
such attraction the first level would lie at -1.8
GeV. The spectrum levels for I.&1 in cases (ii)
and (iii) are not given but may fairly precisely be
reconstructed by using the approximate degener-
acy discussed in (b) below.

The solutions presented for cases (i) and (ii)
above must be regarded as no more than typical
due to the uncertain value of the "renormalized"
quark mass m [ see (f) below for further dis-
cussion]. The short-range attractive energy shift
must be large, however, so long as positive m

values are employed. Negative m values tend to
yield peculiar spectrum spacings.

The method we use to solve the Dirac-type or
Klein-Gordon-type equations [Eqs. (4) and (7}] is
the standard numerical method of solving differ-
ential equations with appropriate boundary condi-
tions for the bound-state wave function. The Dirac
results for cases (i), (ii), and (iii) appear in

TABLE I. Klein-Gordon results for the energy levels
(in GeV) of the $, $' system, k= 0.137 GeV; m =1.12
GeV.

TABLE II. Klein-Gordon results for the energy levels
(in GeV) of the p system, using (a) p'(1.25) and (b) p'(1.6)
as a first excitation.

1
2
3
4.

5
6
7
8
9

10
11
12
13

3.1
3.71
4.17

4.89
5.19
5.48
5.75
6.0
6.24
6.45
6.68
6.88

L=1

3.47
3.95
4.38
4.72
5.04
5.34
5.62
5.87
6.11
6.35
6.56
6.78

L=2

3.73
4.17
4.56
4.90
5.2
5.49
5.76
6.0
6.23
6.46
6.67
6.88

3.98
4.39
4.73
5.05
5.35
5.62
5.88
6.12
6.35
6.57
6.78

1.13
1.61
l.96
2.25
2.52
2.74
2.95
3.15
3.34

1.4
l.79
2.12
2.39
2.63
2.84
3.05
3.24
3.43

(a) k=0.07 GeV2
m=0. 15 GeV

L=O L=l

1.81
2.64
3.27
3.78

2.28
2.98
3.54
4.0

(b) k=0.21 OeV'
m=0. 15 GeV
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Tables III, IV, and V. The following features of
these results are noteworthy:

(a) For a given choice of parameters and a given
I, value, the Klein-Gordon and Dirac equations
yield essentially identical spectra. The L S
splitting coming from the linear scalar potential
is negligible. L 8 splitting, if significant, must
arise from short-range potential effects not in-
cluded here.

(b) There seems to be approximate degeneracy,
analogous to that for the 3-dimensional harmonic
oscillator; the degeneracy becomes more exact
for the higher levels. This is due to the fact that
both Dirac and Klein-Gordon equations iEqs. (4)
and (7)] have the same form as the nonrelativistic
Schrodinger equation for a 3-dimensional harmonic
oscillator, apart from some constant and linear
terms in (r i, which are not important for large dis-
tance.

(c) The L =1 states are above the midway points
between the I = 0 states, though not quite as much
as in the nonrelativistic calculation.

(d) For the first few levels, there is no signifi-
cant difference between the relativistic and non-
relativistic calculations ok the spectra —even for
the p spectra involving light quarks. After the
first few levels, the relativistic spectra slowly

become denser than those of the nonrelativistic
system. For example, by the 6th level the non-
relativistic result is about 200 MeV above the
relativistic result. In terms of the phenomenology
of Ref. 3 this would imply a missing state in the
4=0 p-like spectrum at about 1.89 QeV. The next
states at 2.17 and 2.27 GeV (we use an attractive
shift of all I.=0 masses in Table II of 0.36 GeV)
would. appear to be identifiable with the p(2. 1) and

p(2. 3).

TABLE IV. Dirac results (co=i,j=l —u/2) for the
energy levels of the g, g' system, &=0.137 GeV2;
m=1.12 GeV.

& (GeU)

l=l j=—1
2

l=2 j=—3
2

l=3 j=-5
2

l=4 j=' —7
2

3.47
3.965
4.874
4.731
5.053
5.347
5.621
5.878
6.12
6.35
6.57
6.781

3.757
4.194
4.56
4.95
5.21
5.493
5.756
6.005
6.24
6.465
6.679
6,886

4.006
4.403
4.753
5.07
5.861
5.638
5.883
6.128
6.358
6.577
6.787

4.23
4.597
4.926
5.507
5.768
6.015
6.249
6.473
6.687
6.892

(e) The L = 0 wave function at the origin upwith the
relativistic normalization fP+(r)P(r) dr = 2''EJ is
constant independent of the levels, just like the
nonrelativistic case. Regardless of the normali-
zation, the short-range attractive energy shift
(calculated in the perturbation approximation of
Ref. 3) may be expected to increase (by =40%) in

going from the 1st to the 5th level instead of being
completely level independent.

%e reemphasize that the short-range potential
form will also have a substantial effect upon the
exact form of the wave function at the origin which
in the nonrelativistic approximation controls the
leptonic widths. However, in the relativistic case,
a Coulomb-type potential introduces a mild singu-
larity (i r i

") at small i r (. There is then no simple
relation between the leptonic decay widths and the
wave function a,t the origin.

(f) If we ignore momentarily the ambiguity of a

TABLE III. Dirac results (~=-1,j =l —cu/2) for the
energy levels of the |I),Q' system, & = 0.137 GeV;
m=1, 12 GeU.

E (CeU)

TABLE V. Dirac results for the energy levels of the
I =0 p system, using (a) p' (1.25) and (b) p' (1.6) as first
excitation.

3.108
3.7
4, 158
4.545
4.886
5.196
5.48

5.747
5.997
6.233
6.459
6.674
6.881

l=l j=—3
2

8.442
3,946
4.36
4.72
5.043
5.339
5.614

5.871
6.114
6.845
6.566
6.777

l=2 j =-5
2

3.725
4.170
4.551
4.89
5.198
5.481
5.747

5.996
6.232
6.457
6.673
6.879

l=3 j=-7
2

3.973
4.377
4.732
5.053
5.346
5.619
5.876

6.118
6.348
6.568
6.778

(a) k=0.07 GeV2
m = 0.15 GeU

E (GeV)

1.09
l.59
1.95
2.25
2.5
2.74
2.95
3.15

(b) k = 0.21 GeV2.

m = 0.15 GeV

E (GeV)

1.725
2.61
3.24
3.76
4.21
4.61
4.96
5.825
5.65
5.95
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constant term in the potential, we may compare
the parameters appropriate to the relativistic
equations with the corresponding quantities in the
nonrelativistic case, where the wave equation is
given by

(9)

with resonance mass given by

M= 2m+E„„.

For the first few levels, where presumably the
V~(t) term in the relativistic equation, Eq. (6),
is not important, we should compare k'/2 of Eq.
(9) with k of Eq. (6). The results are shown in
Table VI. It shows that for the p spectra the
parameters are quite sensitive to the relativistic
effect, whereas for the more massive charm
quarks there is little change in the parameters as
well as in the resulting spectrum. %e again re-
mind the reader that in the relativistic case it
turns out that the level sPacing is quite insensitive
to the mass value used and depends only on k.

We now discuss the effect of a possible constant
term in the potential. In the relativistic equation
with scalar potential, the constant term is in-
distinguishable from the mass term. Hence the
energy levels will be unchanged if we redefine the
quark mass without changing k. In contrast a con-
stant potential term in the nonrelativistic equation
can be reabsorbed only by changing both the mass
and the potential strength k.

(g) It is interesting to note that in the nonrelati-
vistic treatment of the p(0.77), p(1.25) spectrum, s

the choice of the parameters was suspicious be-
cause of the large difference in the k value re-
quired for it as compared to the $(3.1), $(2.7)
system. The difference is much reduced in the
relativistic case. This seems to make the in-
terpretation that the linear potential originates

j.M
(k~y~ P

(&+ )
4 )~l (10)

The quantum condition

where r, and r, are the roots of p„=0, implies in
the limit / large and m small

~ - 16k(n + ~ $ ) .
This means the leading trajectory is linear
asymptotically. In the corresponding nonrelati-
vistic case one obtains

M — 4~3

Similar nonlinear asymptotic trajectories result
from a WEB treatment for both the relativistic
and nonrelativistic treatments of a k~ f

~
potential.

Only the relativistically treated linear potential
yields a linear trajectory, with the class of po-
tentials of the form k~'P ~&.

In conclusion a study of the quark-confinement
problem using a linear potential, within the
framework of relativistic Dirac and Klein-Gordon
equations, indicates that the resulting spectrum
does not differ very much from that of the non-

from the effect of color gluons, which are SU(4)
singlets, more plausible.

One may gain some feeling for these parameters
by examining the large-quantum-number limit of
the energy levels, for both IQein-Gordon and

Dirac equations, using the WKB approximation.
Since in this semiclassical limit there should not
be any difference between Dirac and IQein-Gordon
equations, we work with the Klein-Gordon equation
for simplicity. Here the effective radial momen-
tum is given by

TABLE VI. comparison of parameters appropriate to the relativistic equations with the
corresponding quantities in the nonrelativistic case.

m (GeV)
k'/2 (GeV2)

m (Gev)
k (GeV2)

1.12
0.137

p(0.77)-p(1.25)

Nonrelativistic'

=0.163
0..029

Relativistic

(0.15)
0.07

p(0.77)-p(1.63)

=0.163
0.065

(0.15)
0.213

~ Taken from Ref. 3.
Parenthesis indicates that quark mass is relatively arbitrary.
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relativistic treatment for the first few low-lying
states. Substantial differences do appear for high-
lying levels. Moreover, the relativistically
treated linear potential yields an asymptotically
linear Regge trajectory whereas the nonrelati-
vistic treatment does not. We also find that the
Dirac equation spectrum levels depend essentially
only on the orbital angular momentum, indicating
that spin-orbit coupling arising from a purely
linear potential is negligible. The above is i.n
contrast with the sensitivity of the local properties
of the wave function to relativistic effects,
especially at small distances. Thus one would

expect important alterations in the calculations of
various decay rates for the bound states. A full
consideration of decay processes requires com-

piete knowledge of the potential at short distances.
A linear potential is expected to be a good approxi-
mation when the distance between quarks is large.
However, at small distances asymptotic freedom
suggests that the interaction could well be quite
different —most probably a Coulomb-type 1/)f j

potential. As in the hydrogen atom case, this has
a drastic effect on short-distance properties of
the relativistic wave function and hence can po-
tentially alter substantially decay rates calculated
using a nonrelativistic treatment. " These con-
siderations we leave to a future publication.
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