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We apply current-algebra techniques to study neutrino-proton elastic scattering and neutral-current —induced

soft-pion production in the case of second-class vector and axial-vector currents. (Such currents are CP-
violating if the final and incident neutrinos are identical, but can be CP-conserving if the final and incident

neutrinos are different particles. ) The second-class currents are constructed phenomenologically from meson

fields and the usual first-class V, A quark currents. The matrix elements of the second-class currents between

one-nucleon states are estimated by inserting a complete set of intermediate states and saturating the sum with

one-nucleon states. In this way the second-class matrix elements are expressed in terms of the experimentally

measured renormalization constants of the first-class V, A currents and the pion-nucleon coupling constant.
Using standard soft-pion techniques, we analyze recently reported Brookhaven National Laboratory results for
neutral-current-induced soft-pion production under the simplifying assumption of a purely isoscalar second-

class V, A neutral current. We find in this case that a second-class V —A current is consistent with the

reported results. Some qualitative features of second-class neutral currents are {i)equal cross sections for vp
and vp elastic scattering, with only the axial-vector current contributing, and (ii) very small vp and vp elastic
cross sections at energies of order 50 MeV, which are relevant for possible neutrino experiments of the Los
Alamos Meson Physics Facility.

I. INTRODUCTION

Now that experiments have conclusively shown
the existence of weak neutral currents, ' neutral-
current experiments are entering a new phase of
sophistication which will eventually enable the de-
termination of the phenomenology of the weak neu-
tral interaction. This determination will largely
follow from the analysis of the three most exten-
sively studied semileptonic reactions: deep- in-
elastic neutrino- nucleon scattering, neutrino-pro-
ton elastic scattering, and neutral- current- induced
weak-pion production.

This is the third in a series of three papers
which develop the necessary apparatus to analyze
and correlate data from these inclusive and ex-
clusive neutral-current-induced semileptonic pro-
cesses. In the first paper, these three processes
are analyzed using standard current-algebra. tech-
niques in the framework of the conventionally as-
sumed Weinberg-Salam model and more generally
for neutral currents formed solely from members
of the usual vector and axial-vector (V,A) nonets. '
The remaining papers in this series explore the
possibility of unconventional current structure. In
the second paper, a similar apparatus is set up
for correlating data from inclusive and exclusive
semileptonic processes in the case of neutral cur-
rents with scalar, pseudoscalar, and tensor
(S,P, T) Lorentz structure. ' Since (V,A)-induced
reactions leave the helicity of the neutrino un-
changed while (S, P, T)-induced reactions flip neu-
trino helicity, the cases of V, A and S,P, T neutral

currents do not interfere and may be studied inde-
pendently.

In the present yaper we calculate the cross sec-
tions for neutrino-proton elastic scattering and
neutrino-induced pion production in the case of
V, A neutral currents with abnormal G-parity.
Since the existence of weak second-class cha~ged
currents is still an open question and the phenom-
enology of the weak neutral currents is as yet un-
determined, we think it important to consider sec-
ond-class V, A currents as possible candidates for
the semileptonic currents participating in the weak
neutral interaction.

The paper is organized as follows. In Sec. II
we discuss our choice of phenomenological current
and review other possible second-class currents
discussed in the literature. We also set up the
necessary apparatus for using current-algebra
methods to obtain the cross sections. We derive
the commutation relations, needed for the pion-
production calculation, of our second-class cur-
rent with the usual axial-vector current in the
framework of the SU(2) &&SU(2) a model. We also
estimate the necessary matrix elements of the
second-class current between one-nucleon states.
In Sec, III we calculate the elastic and pion-pro-
duction cross sections. The quark-parton-model
methods used in the previous papers of this series
to calculate deep-inelastic cross sections cannot
be applied here because of the phenomenological
nature of the current. " In Sec. IV we analyze low
invariant mass [W=M(mN) «1.4 GeV] pion produc-
tion for the Brookhaven National Laboratory (BNL)
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flux spectrum under the simplifying assumption of
a pure isoscalar neutral current, describe some
general features of second- class- current-induced
reactions and compare results obtained here with
those obtained from the usual V, A currents or
from the 8, T, I' currents discussed in the previous
two papers. The formulas for the pion-production
amplitude are given in an appendix. Our metric
and y- matrix conventions follow those of Bjorken
and Drell.

II. PHENOMENOLOGICAL SECOND-CLASS CURRENT

In this section, we discuss our choice of second-
class current and lay some of the foundations for
the cross-section calculations in Sec. III which
employ current-algebra techniques. In Sec. IIA
we review some of the possible second-class-cur-
rent structures suggested in the literature and
discuss why we settle on a phenomenological
choice. In Sec. IB we calculate the commutation
relations of the second-class currents with the
usual axial-vector charge, which we will need when
we apply PCAC (partial conservation of axial-vec-
tor current) to calculate pion production. In Sec.
IIC we estimate the one-nucleon matrix elements
of the second-class vector and axial-vector cur-
rents. These renormalization constants are neces-
sary for both the elastic and pion-production
cross- section calculations.

A. Choice of current

The classification of strangeness- conserving
weak currents into two classes according to their
6-parity was first introduced by steinberg. ' First-
class vector currents are defined to have the same
G-parity as the electromagnetic current [G = (-)~",
I =isospinj and first-class axial-vector currents
are defined to have opposite G-parity [G = (-)'].
These are in fact the C-parities of currents formed
out of the usual guarkfields, Q„—,'X'Pand Q„y,~X'g,
where 8 are the relevant SU(3) matrices and (
are the quark fields. Second-class currents have
opposite G-parity to first-class currents.

As it is not possible to build second-class cur-
rents in the usual way out of nonstrange quarks,
wemust try other constructions. Since we are
interested in using these currents to calculate neu-
trino-proton scattering and pion production, the
current we construct must have certain properties.
It must have nonzero (and computable) matrix ele-
ments between one-nucleon states because these
are ingredients in the elastic calculation and in the
Born and PCAC-consistency-condition terms of the
pion-production amplitude. Our experience in the
previous two papers of this series indicates as
well that the commutator of the current with the
axial-vector charge should be nonzero, and should

have a nonvanishing one-nucleon matrix element.
This is because experimentally the pion-production
cross section is large relative to the elastic cross
section; in the isoscalar neutral-current theories
we have previously considered, ' it is difficult to
achieve a sufficiently large pion-production cross
section while at the same time satisfying the ex-
perimental upper bounds on the elastic and deep-
inelastic cross section, without a sizable commu-
tator- term contribution.

Although second-class currents cannot be built in
the usual manner from nonstrange quarks, Okubo'

suggested that a second- class axial-vector current
could be constructed as the total derivative of the
pseudotensor current built out of the usual quarks

—
2( )(~A.~ +A~ v),

(2)

=1=
2& )

(v ~i+ &~ v)

=9 "(go ~y, X'g) .

However, this choice is not appropriate for our
purpose since it has zero commutator with the
axial charge. Similarly, Maiani suggested build-
ing second-class currents out of two types of
quarks —the usual one plus their parity doublets.
This model has the problem that the one-nucleon
matrix elements of the current vanish in first
approximation since the nucleon does not seem to
contain these peculiar quarks.

Since no second-class current built out of quarks
seems to work, we turn to the suggestion of Lipkin
and others' that the second-class current be com-
posed purely of meson fields. For example, the
isovector second- class axial-vector current could
be given by Pr~&~, the isoscalar axial-vector cur-
rent given by T7 p„etc. %e will follow Lipkin's
lead and construct our second-class currents (de-
noted by a bar) in a phenomenological manner as
follows:
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Because of vector-meson dominance, our choice
is essentially equivalent to Lipkin s, but is some-
what easier to use in calculating. The choice of
(o), the vacuum expectation value of the g field in
the SU(2) x SU(2) a model, ' is a convenient normal-
ization of the currents, as will become clear in
Sec. IIB, where we will also eliminate it in terms
of physically measurable quantities. In the re-
maining parts of this paper we restrict our atten-
tion to isoscalar currents only. The generalization
to isovector currents is straightforward.

Using this relation, (o) will be eliminated in the
calculation of renormalization constants in Sec.
II C.

Finally, using the fact that the axial-vector
charge is the generator of the transformation of
EQ. (4) and using the relation

for any field P, we find

B. Commutation relations

To calculate the commutation relations of the
second-class currents with the usua& axial-vector
current, we will work in the framework of the
SU(2) x SU(2) a model. We expect that our relations
are more generally valid in any theory with the
same underlying symmetry. We begin by writing
down the 0-model Lagrangian':

(8)

C. Estimation of second-class-current renormalization constants

The usual axial-vector currents~~ is generated by
the field transformations

gfko go —vk gy ray g

Then the divergence of the axial-vector current
can be computed and used to relate the parameter
e to the pion decay const:ant f, via PCAC:

To estimate the one-nucleon matrix elements of
the second-class phenomenological current, we
will write each form factor as a sum over inter-
mediate states and truncate the sum at the one-
nucleon intermediate state. (This method is an-
alogous to that used to calculate nonleptonic hyper-
on decay induced by the weak current ~ current
Lagrangian. ' A sum over intermediate states is
inserted between the two currents in the effective
Lagrangian and the sum is truncated after the nuc-
leon and decuplet intermediate states. )

The second-class form factors for the isoscalar
currents of Eg. (2) will be defined as follows:

MNMt2gg
~k '

x ~ (-', )' g(p, ),
(9)

Similarly by requiring that the vacuum be a mini-
mum of the potential, and choosing a vacuum for
which (~) =0, we can relate the vacuum expectation
value of the o field, (o), to physically measurable
quantities, as follows: where p=p, -p, and

x@52 (3) g(pq) ~

0—

We proceed by writing each form factor as a sum
over intermediate states and saturating the sum
with one-nucleon states:
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+(p.) I
vl-'(0) l&(p» =, ,X(p.) I. A, (0)+A p(0) l&(pi)&

g [&pr(p, ) I
~'(0) Ix(u)&&x(u) Iw,'(0) Ix(p, )&

&g& states

+ &N(p. ) I&i«) I&(»&&&(» I
"(» II&(p.)&]

g(p, )lx,'='(0) lx(p, )&=2 &v(p, ) l~ v, (0) +v;~(0) l~(p, )&

(10)

P [pr(p, ) I
~'(0) Ix(»&&+(a)

I v,'(o) Ix(p, )&
states

+ w(p. ) I v,'(o) I&(&)&&&(&) I
~'(0) l&(p )&].

The quantities on the right-hand side of Eqs. (10) and (11)are experimentally known. The pion matrix
element between nucleon states is given by

w(p, ) I
"(0)I&(&)& = ",",g„((p.—&)')-(p, ) r, ' (&),

p20 0 ~r p2
(12)

where the momentum dependence of the form factor g„ is taken to be monopole (which together with the ex-
plicit pion pole gives a total dipole falloff):

Z„(4') =g„/(I —e'/M') .
We will leave the mass M as a parameter which we will vary to get an idea of the sensitivity of our calcula-
tion .o this assumption. Quark-model considerations suggest the value M=0.9 GeV." The usual axial-
vector current matrix element is

W(» I&,*(0) l&(p, )&
= ' " ~(»ls. ((p. —»2)y,r, +I.((pi-~)')(I - p, ),~512 M(pi)

0 Plo

We use PCAC to express h~ in terms of g~;

2) Ng A(V )

(14)

and assume a dipole falloff, consistent with experiment, "for the momentum behavior of g„:
ga

Z~(e ) =
(1 ./M2)a

The vector-current matrix element is well known experimentally:

7'

%(~) I
V'(o) l&(p )&= "

I
~(&) & ((p —&)')7,+i&,((p, —&)')o,„2M

' 2'&(p )

The experimental behavior of the vector form factors may be parameterized as"

(18)

with E, and I', being constants.
To find the second-class matrix elements at zero momentum transfer, we will work in the brick-wall

frame, p, +p, =0, and keep only leading powers of Ip I

= Ip, —p, I. Inserting Eqs. (12)—(18) into Eq. (11), we
find for the zero component of the second-class axial-vector current matrix element

1 1 1
(27/)& jp

~r I 2 (p y)& 1 (p y)2/M 2 [I (p y)2/M2]2

iE2 a-p ~ 7x Q u(p, )iy, r,u(k)u(k) Il,y, +
@

'),/, (r„' —'u(p, ) .
spin

isosyin
(19)
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In the brick-wall frame in the static limit, Eq, (9) for the isoscalar second-class axial-vector form factor
becomes

(N(p, ) ~AI='~N(P, ))= —
(—')»' E~{0'(0)y2~o p g+0(~p~') corrections.

After some algebra and dropping nonleading terms in ~p ~

from E@. (19), we find

(20)

3g„(3)'~' 3 g,(.M)'

dy(1 —y')'f' 1. —y' 1 1 y(1 —y) (1 —y') 1 1 1

{3+f3){logy)' ' 3 1+gy {~fy ' 1+y 3y 1+y 1+gy 1+fy) I '

(21)

where

—2MN M —2M

N N

A similar calculation for the second-class vector current, performed for the z component, gives

gg, (3)'1' gg g„(M
)
' dy(1 —y~)' f' 1 —y~ 1 1 1 —y' (1 —y') 11+ -' — +-

{1+fy){1+gy)' 3 3+gy 1+fy 1+f3 3 1+gy I
(22)

TABLE I. Henormalization-constant values for differ-
ent choices of the dipole mass M.

m (GeV) -7&0~(o) -F'P (0)

0.8
0.9
M~
1.0

5.1
6.4
7.0
8.0

8.2
10.0
10.7
11.9

The integrals were done numerically for different
values of the dipole mass M, using the experimen-
tal values g„=13.44, g„=1.24, E, =1, E,=3.71.
The numerical results are given in Table I. There
is approximately a 50% variation of the renormali-
zation constants over the dipole-mass range of
0.8-1.0 GeV. A more serious uncertainty in our
calculation arises from the neglect of higher-mass
states in the sum over intermediate states. In
attempting to include the decuplet we found that its
contribution was highly sensitive to the momentum
dependence of the form factors of the V,A currents
sandwiched between nucleon and decuplet states.
Different experimentally acceptable momentum
falloffs" gave contributions which varied from
finite to infinite. Therefore, we neglect the decup-
let-and-higher-state contributions and expect that
our calculation is good only up to order of magni-
tude, at best."

III. CROSS-SECTION CALCULATIONS

In this section we set up the cross-section form-
ulas needed for correlating neutrino-proton elastic
scattering (Sec. IIIA) and neutral-current-induced
pion production (Sec. III 8) in the case of second-
class V, A currents.

We specialize to the case of pure isoscalar cur-
rents. The salient new feature of the isovector
ca,se is the possibility of exciting the (3,3) reso-
nance. The effects of (3, 3) excitation can readily
be calculated using the methods of Appendix 8 of
Ref. 3. In the static limit, only the second-class
axial-vector current excites the (3, 3) resonance.
If experimental results indicate the need for iso-
vector neutral currents, our methods can easily be
extended to include isovector second-class cur-
rents as well.

In principle, there may be interference with
first-class V,A neutral currents if they are also
present. Explicit calculation indicates that there
is no interference for neutrino-proton elastic scat-
tering, although there may be interference in the
pion-production calculation between first- and
second-class V, A currents. For the present we do
not consider first- and second-class mixtures,
although our calculation in the first-class V, A
case in Ref. 2 can easily be combined w'ith the re-
sults of Sec. III B to consider mixtures if more
detailed experimental information than is now
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available warrants it. Of course, there is no inter-
ference with S,P, T currents in any exclusive (or
inclusive} channels.

A. Elastic neutrino-nucleon scattering

We consider a general mixture of the isoscalar
second-class V,A currents. We begin with the
neutral-current effective Lagrangian

(k, vy~vV~'='+g, vy~y, vA~~='), (23)N

9R" =
eff v y'(1 —y, )v(k, V, —g,A, ) . (24)

To calculate vN elastic scattering, we evaluate
this amplitude between one-nucleon states using
the current matrix elements given by Eq. (9}.
Squaring to get the differential cross section, we
find

with V~ and A~ being the hadronic second-class
vector and axial-vector currents of Eq. (2). The
parameters gp and Ap set the strength of the vector
and axial-vector contributions to the neutral cur-
rent. As written, the interaction of Eq. (23) is
parity-conserving but CP-violating; Eq.- (23) can
be made CP-conserving if the outgoing "neutrino"
is not the same species as the incident neutrino. "
Since experimentally the incident neutrino is left-
handed, the effective matrix element for acceler-
ator neutrino reactions is obtained from Eq. (23)
by substituting v--,'(1 —y, )v to give

X [-4M~ E + tMN (2E +M ~)],
(25)

where t = -0' and E is the incident neutrino energy.
The second- class vector current does not con-
tribute because the one-nucleon matrix element
of the second-class vector current is proportional
to k)t ky)t k2)t which is annihilated by the leptonic
amplitude P(k, )y~(1 —y, )v(k, ) for massless neutri-
nos. Since there is no V,A interference in the
elastic channel, the neutrino and antineutrino
elastic cross sections are identical.

B. Neutral-current pion production

We now turn to the main focus of this paper, the
calculation of weak-pion production induced by
second-class V,A currents. As in the two previ-
ous papers in this series, we use a pion-production
model which includes without kinematic approxi-
mation the pseudoscalar coupling nucleon Born
terms and pion-pole terms. To these are added the
PCAC consistency-condition terms and current-
algebra equal-time commutator terms so as to
guarantee that the pion-production amplitude has
the correct soft-pion limit. This model when ap-
plied to the vector current in pion photoproduction
and electroproduction and to pion production in-
duced by the charged weak V-A current" is in
good agreement with experiment in the low-invari-
ant-mass (W~1.4 GeV) region.

We begin with the standard soft-pion formula for
the process g+N- g'+N, with g being a general
external current and N being a nucleon:

m, =&+(p,)v~(q) lu(0) lx(p, ))

=-X„,u(p, )
"

Z,'.(k-q)+ g" {y,7„J(k)],+ g"
y, 7;~' ~ "Z(k) J(k)~'

N+A B' N

+possible additional pion-pole "seagull" contributions u(p, )g&*+O(q),

with

v=(P, +P,) k/(2M ), v =-q'k/(2M„), K,=X„(2q ) '~

&ZV(p2} l&(0} l&(pi» =&.u(p2)&(p2 —pi)u(pi» &&(p2) I [&,', s(o)] l&(pi)) = &N u(p2)&,
' (p. -p.)u(pi)

(26)

(27)

In these equations, k =p, =q —p, denotes the four-momentum carried by the external current, g„=13.5 is the
pion-nucleon coupling constant, and (J is the isospin wave function of the emitted pion. On the right-hand
side of Eq. (26} the first term is the current-algebra equal-time commutator, the second term js the
PCAC consistency-condition contribution, and the the third and fourth terms are the usual pseudoscalar coupling
nucleon Born terms. The additional pion-pole terms are needed only when the first four terms do not con-
tain all the possible pion-pole contributions expected for the reaction. In the case at hand, parity consid-
erations rule out pion-pole contributions from the axial-vector current. Bose symmetry for the pion to-
gether with the masslessness of the neutrino rule out a pion-pole contribution for the isoscalar vector cur-
rent.
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In our case the external current is given by

8"(0) = vy'(I y-.)v(Il. l"=' Z-oA'=') . (28)

Using the o-model result of Eq. (8), the relevant commutator is

( (P.) I[F;,J(0)"] l~(P, »

yy () —y, )y(N(D ) c (-iy(,. +ic, , '( )' )
—g (. i y+-i

c, , '( '

) yc(C ) . (29)

The one-nucleon matrix elements of the usual vector and axial-vector currents V~ and A~ are defined in
Eqs. (14)-(18). The matrix elements of a', »v, V11 and e/»1/„A", are related by simple isospin considerations
to the second-class matrix elements computed in Sec. II C,

~kyl + pl~A
+(P2) +(Pl) +//5 (5) ~A((P2 —P)') ll( P2) 2

'"
y5~/21(P, )2 0'

N

(30)

~/2$ &(P2) &(Pl) =- &5(5 (5) ~v((P2 —Pl) )&(P2) 2~ r'&(Pl) .
2 o'

N

Substituting Eqs. (28)-(30) into Eq. (26) and neglecting 0(q) pion recoil corrections, we arrive at the
following expression for the pion-production amplitude:

—yl(1 y )
—

(P )(3)IcoM+IIPOAc+IIBQBN) l
M(P )yw

where c ", ", and~ "",the commutator, consistency-condition, and nucleon Born terms, re-
spectively, are given by

x, = Il,g„(/2) y,y, —, , +I, (-, )' ' F„(n),„COM lg(y 2 2M2(q ly5 + 2 / 2 (}2 (I)
ÃgA m, —q-k'

N

-g E A' y +iE k' " k-q" +g —,
' '~'E (32)

c)IIPCAC —gy (2)1/2 ~ (/22)
N N

(33)

IIBQRN — gy (2)l /2 g~ (y2) ~
& / y)+ & /

y)

(2M'() V —VB V+ VB
(34)

Note that the vector current contributes only through the commutator term for massless neutrinos.
To calculate the pion-production cross section we express the matrix element in terms of a convenient

set of nine invariants defined by

II, = -K„,~ vy'(I —y, )v u(P2) (Ay, —2BP„+FP,+ Cy,y5+ Dply, + 2EPly5+ Go„„q"+H/fig+ 2J'P, //) u(P, ), (36)

der 1 )q I
6' 1

(36)

with Z, given by

5( 2)2)y

syin
aver aae

(37)

Z, was calculated from Sg, using standard trace

where Pl= —2'(P»+P»). Expressions for A, B, . . . ,J are given in the Appendix. The pion-production
differential cross section is then computed to give

techniques. The result, which is complicated, was
checked by independently calculating the amplitude
acting on nucleon Pauli spinors, assembling it
using the complex arithmetic feature of Fo~t~a~ 4,
and then checking this program against the pro-
gram for the covariant cross-section evaluation.
In Eq. (36), W is the invariant mass of the out-
going pion-nucleon isobar, and lql and dQ,
= sing d(P d6 are the pion momentum and solid angle
in the isobaric rest frame.

Finally, we note that all formulas in this section
are for incident neutrinos. For incident antineu-
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trinos, all axial-vector amplitudes are reversed in
sign. 2Ro =-—

o ""{v+n - v+ n+ m ') + g " (v+ p - v+ p+ m ')
g ""(v+n- p, +p+ m')

IV. NUMERICAL RESULTS

In this section we give sample numerical results
obtained from the formulas developed in Sec. III,
as applied to the analysis of low-invariant-mass
(W~1.4 GeV) pion production in the BNL neutrino
flux. In particular, we study three choices of sec-
ond-class isoscalar currents: pure V, pure A,
and the combination V-A.

Recently, the Columbia-Illinois-Hockefeller
collaboration at BNL reported a measurement of
the ratio

=2go x1.4
= 0.48 y 0.1'7,

with the superscript BNL denoting averaging over
the BNL neutrino flux. Using the theoretical es-
timate for the usual V-A charged-current-induced
reaction'

o ""(v+n- p +p+m', W~1.4 Gev)

= 0.14 x 10 "cm', (41)

(gv+T v+ll '+'' ~ }Ro=
2g(v+ T- p. +m + ~ ~ ~ )

T = «[6C"]+ «(g3A1"]

(38)

we get from Eq. (40) the cross section for neutral-
current g ' production

gs""(v+n.- v+n+m', W~1.4 GeV)

+ gs""(v+p - v+ p+ g ', W~ 1.4 GeV}

=(68+24) x 10 «' cm'. (42)

with the preliminary result'

B,' = 0.17 ~ 0.06. (39)

This is one of the basic numbers which must be
approximated by an acceptable model.

We will simultaneously take into account the
available data on neutrino-proton elastic scatter-
ing":

This measured value is consistent with the value
expected" in the Weinberg-Salam model when

sin'8~ is in the currently favored range of 0.3-0.4.
Hence if (3, 3)-resonance excitation is observed,
which is expected in the Weinberg-Salam model,
then this measurement would support the standard
gauge-theory interpretation of neutral currents.
However, preliminary BNL invariant-mass spectra
for w' production show a clear (3,3) excitation
peak for charged-current-induced pion production,
but no comparable excitation in the neutral-cur-
rent case. Our discussion focuses on issues which
will be raised if this preliminary result is con-
firmed by a more detailed analysis of the BNL
data.

The simplest interpretation of nonexcitation of
the (3, 3) resonance by the neutral current is that
the neutral current is pure isoscalar. However,
as mentioned earlier, the presence of a sizable
second-class isovector vector-current piece need
not lead to a sizable (3, 3) peak in the neutral-cur-
rent sector, since the second-class vector current
does not excite the (3,3) resonance in the static
limit. Nonetheless, all of our numerical work is
done with pure isoscalar currents.

Applying nuclear final-state corrections as de-
scribed in Appendix C of Ref. 2, we find that the
nuclear-target ratio given in Eq. (39} implies a
nucleon-target ratio

gca""(v+ p- v+p, Cundy cuts)

~0.24g ""{v+n-p, +p, Cundy cuts}

at 95% confidence level; Cundy cuts are

1-Z-4 GeV, 0.3=- ~u'~ -«1 (GeV/c}'. (43)

Z(u') =Z(0)(1- rP/I') (45)

with dipole mass M =0.9 GeV, a value suggested by
experimental and quark- model considerations. "
The second-class form factors, 7~(0) and E„(0),
are given the values calculated in Sec. II C for the
same value of M. Although we expect that our cal-
culation is only good up to order of magnitude,
varying these form factors is not likely to change
dramatically the shape of the experimental dis-
tributions. The over-all strength of the current

Neglecting possible distorting effects of the cuts
and using the fact that the CERN and BNL neutrino
flux shapes are similar, "Eg. (43) gives an ap-
proximate upper bound on the BNL neutrino-pro-
ton elastic cross section

g ""(v+p- v+p) ~0.24ga""(v+n- p, +p)

=0.21 x 10 "cm' (44)

at 95% confidence level.
In our numerical work, all form factors are

chosen to be dipoles:
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APPENDIX

V-A

In this appendix we give the expressions for the
amplitudes A, . .. ,Jwhich parameterize the pion-
production amplitude [Eq. (35)].

The amplitudes are as follow:

a=kg, a&'& g" [Z,(em}+Z,(P)],
N+A

Z 2

N+A

&090 I170 1250

W (MeV)
)350

I

)AIO

FIG. 5. Differential cross section do/dW for the re-
action v+ p v +p + x, averaged over the BNL neutrino
flux for three current choices. NBA

(Al)

(E - 50 MeV) are very small, being roughly two to
three orders of magnitude smaller than the corre-
sponding cross sections expected for first class
V,A or S,P, T neutral couplings. "

As in the case of the first-class V,A and S,P, T
phenomenologies discussed in the earlier two

papers of this series, we have written general
computer programs embodying the calculations of
the present paper. These programs will be applied
to try to make more definite statements about the
structure of the weak neutral interaction when im-
proved experimental data become available.

ga&o)(3)„, gr 7 (~2)

N ~+ ~~

J= igaf ' '&H, ', v„(k'~( + ),1 1

TABLE II. Values of experimentally measurable quantities for three choices of neutral
current.

Expt.

Choice of current

0 "(vp) in 10 cm

(&p) in 10 cm

0 " (vnwo+ vpmo,

W —1.4 GeV)
in1P 4' cm'

(P N( w~' v+pwo,

& —1.4 GeV)
in 1P 4i cm2

0(&P) at &=50 MeV
in1P 4' cm'

—0.21

68+ 24
(preliminary)

0.0

0.0

34.2

31.5

0.0

0.099

0.092

36.8

34.2

2.2

0.099

0.092

83.3

53.1

2.2

The parameter values go, ho used in these examples are given in Eq. (46) of the text.
b The small differences between the flux-averaged &- and &-induced cross sections calcu-

lated in the pure-V and pure-A cases arise from differences in the shapes of the BNL &- and
v-flux distributions.
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where a~ ' is the isospin wave function

~"'= x*4*—'x (A2)

with y, , being the initial and final nucleon isospin-
ors and PJ being the final pion isospin wave func-
tion.
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