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We develop the cross-section formulas needed to correlate information on neutral currents obtained from deep-
inelastic neutrino scattering, neutrino-proton elastic scattering, and neutral-current-induced soft-pion
production, in the case of neutral currents with S, P, T spatial structure. (The necessary S, P, T current
renormalization constants were estimated by us in a previous paper. ) The pion-emission amplitude is obtained

by current-algebra soft-pion techniques, with the effects of (3, 3)-resonance excitation taken into account to
leading nonvanishing order in the static approximation. We analyze recently reported Brookhaven National
Laboratory results for neutral-current —induced soft-pion production under the simplifying assumption of a
purely isoscalar S, P, T neutral current, while simultaneously imposing existing bounds on neutrino-proton
elastic scattering and fitting existing data on neutral-current-induced deep-inelastic scattering. If all S P, T
renormalization constants are given their central quark-model values, the elastic-scattering and deep-inelastic
restrictions constrain the pion-production cross section to be too low compared with experiment; if appareritly
reasonable deviations of the parameters from the quark-model values are permitted, satisfactory fits to all data
are obtained with S, T, with P, T or with S, P, T mixtures. An isovector tensor or pseudoscalar neutral
current is found to lead to a strong (3,3) peak in m N invariant-mass plots, but an isovector scalar neutral
current can be present without producing a visible (3,3) peak, even when ratios of the various m N charge
states produced by the neutral current are appreciably changed from the values which they have in the
isoscalar-current case. Two other interesting qualitative features of CP-conserving S, P, T structures are the
following: (1) constructive T interference with S (or S and P) in v+ N~v+ N+ m can accompany
destructive interference in v+ p ~v+ p, and vice versa, and (ii) observation of unequal neutrino- and
antineutrino-induced neutral-current cross sections would not be accompanied by neutral-current-induced
parity-violating effects in the pp, ep, and p,p interactions.

I ~ INTRODUCTION

Weak neutral-current experiments are now

entering a new phase, in which substantial detail-
ed information on the structure of the weak neutral
interaction will be obtained in both inclusive and
exclusive reactions. Ultimately, this should permit
a determination of the phenomenological structure
of the weak neutral interaction —either in favor
of the conventionally assumed Weinberg-Salam
phenomenology, ' or some other combination of
vector and axial-vector currents, or possibly in
favor of an unconventional alternative. ' In making
this determination, it will be most imyortant to
correlate information about the three semileytonic
reactions which will be studied in the greatest
detail in the near future: deep-inelastic neutrino-
nucleon scattering (in which the existence of neu-
tral currents was first established' ), neutrino-
yroton elastic scattering, and neutral-current-in-
duced weak-pion production. The necessary
apparatus for doing this in the case of the Wein-
berg-Salam model, and more generally for weak
neutral currents formed solely from members of
the usual vector and axial-vector (V, &) nonets,
has already been developed. 4 This payer is the
second of two devoted to setting up a similar

apparatus for correlating inclusive and exclusive
semileytonic neutral-current reactions in the case
of neutral currents with scalar, pseudoscalar, and
tensor (S,P, T) spatial structure. In the first
paper, ' the necessary renormalization constants
describing nucleon and pion matrix elements of
S,P, T current densities were estimated, using
SU„chiral SU(3) x SU(3), and quark-model methods.
In the yresent paper, we develop the necessary
cross-section formulas for calculating neutrino-
proton elastic scattering and esyecially neutrino-
induced weak-pion production, and apply them to
give sample fits to existing neutral-current data.
In a subsequent yaper' we will discuss in a simi-
lar fashion yet another alternative neutral-current
structure, involving second-class V, A weak neu-
tral currents.

The paper is organized as follows. In Sec. II
we review the formulas for deep-inelastic inclu-
sive neutrino-nucleon scattering in the S,P, T case,
evaluate the cross section for neutrino-proton
scattering, and finally apply current-algebra and
static-model methods to calculate the pion-produc-
tion cross section in the (3,3)-resonance region.
In Sec. III we analyze low-invariant-mass
[W=M(wN) (1.4 GeV] pion production for the
Brookhaven National Laboratory (BNL) flux spec-
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trum, under the simplifying assumption of a pure
isoscalar neutral current, and discuss some of
the qualitative features of the sample S,P,T fits
which are obtained. In Appendix A, we give the
lengthy formulas for the pion-production ampli-
tude and cross section, while in Appendix B we
give details of the calculation of (3,3)-resonance
excitation in the S,P, T case.

II. CROSS-SECTION FORMULAS

In this section we set up the cross-section
formulas needed for correlating deep-inelastic
inclusive and exclusive neutral-current-induced

f
reactions in the S,P, T case. In Sec. IIA we give
the necessary vertex structure and cross-section
formulas needed to describe neutrino-nucleon
elastic scattering. In Sec. IIB we give the formu-
las describing deep-inelastic scattering in the
quark-parton picture. Finally, in Sec. II& we
develop the formulas needed to calculate pion
production in the (3,3)-resonance region. Al-
though the most general neutral-current phenom-
enology motivated by the quark model can contain
both V,A and S,P, T couplings simultaneously, the
fact that V,A, couplings leave neutrino helicity un-
changed while S,P,T couplings flip the neutrino
helicity implies that amplitudes of the two classes
cannot interfere (provided, as we shall assume
throughout, that the neutrino mass is negligible
relative to the initial and final neutrino energies).
Hence differential cross sections are additive for
each exclusive (or inclusive) channel,

dgV A8S,P,T d~VA+ AS, ,T

and so the formulas obtained below with only
S,P, T couplings present, together with the V, &
calculations of Ref. 4, suffice to describe the
general case.

S„f=
3 (vv& vy-vs + vg),„vF 8),v 2G

with 5, F', and P~~ being the hadronic scalar,
pseudoscalar, and tensor currents. We assume
Eq. (2) to be CP-conserving, which implies' that
it is parity-conserving as well. Since experimen-
tally the incoming neutrino is left-handed, the
effective matrix element for accelerator neutrino
reactions is obtained from Eq. (3) by making the
substitution v- —,'(1- y, )v, giving

SR"„, = ~2(v(& —y, )v(%+6")+va),„(&—y, )vS""j.

The most general quark-model structure for the
scalar, pseudoscalar, and tensor currents is

~-8S0+0 ~S3+3 i-8S 8+8 &

gpO+0++P3+3 +gP8+8 t

~T 0+0 ~T3+3 ~T 8 8

(4)

with 5&, P&, p~'t being first-class nonet currents
represented in the quark model (with quark field
y) by

6'y' = Sy8 2);4~

6:k8 y
k2 &)„y

The parameters gs~ g»,g», j =0,3,8 are real
numbers (complex if CP is not conserved) We.
express the nucleon matrix elements of the neu-
tral members of these current nonets in the form'

A. Elastic neutrino nucleon scattering

We shall consider in what follows the most
general S,P, T neutral current which can be form-
ed from members of the usual quark-model scalar,
pseudoscalar, and tensor nonets. We start from
the neutral-current effective Lagrangian'

(Ji(p, )lr, le�(p,)) = & u(p, jr,")(k')t, u(p, ),

5'(P2) I &ilN(p, )) = Qu (P2)E~~')(k2)y 8t)u (p, ),

&(P2)I6'p"IN(p, )) =&~(P2) &,' (k')o "+i ' (y k"-y"k )+i 2 (P k"-P~k") f&u(p )
y~) (k2) yg)(k2)

S J

j())(k2) Z (j)(k2)
=OZ~(P, ) 6))(k2)g)8+i 2 (y)k&-y&k1)+ ' ' )'k k& 8 k„k),) i „(p ) (6)

P~)(k )= P&)(k2)+ PZ&&)(k2)

P2 Pl& P P2 P1t +E P f8 2~81 i0 2 (8) t 4 2
~20 P10

with 7, being the nucleon Pauli isospin matrix and with the spinors u (p, ), u (p, ) understood to include
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nucleon isospinors. (Second-class currents would imply one extra tensor form factor. )
Defining total form factors Esr(k ), ETP(k ), T1T23(k ) by

FT (k2} L(2)1/2g g(o)(k2) + 1 eg F(3)(k2) ~ 1 (1 )1/2g g(8)(k 2)

FT (k2) 1 (2)1/2g F(O)(k2) ~ 1 ~g F(3)(k2) + 1 (1 )1/2g F(8)(k2)

TT(k2) 1 (2)1/2g I(0)(k2) + 1 ~g ti(3)(k2) + 1 (1 )1/2g T(8)(k2)

with q =1 for p +p - p+p and q = —1 for p+n- p+g, the differential cross section for neutrino-nucleon
scattering takes the form

dg(v+N- v +N) G'

Z = 't -(,t+t—',ttt, ')It)'+ttlt pl-', +4)t*t(F/'t', ")(4ttz —tt) + ~', [(limped t)'-P)
-I

N

(8)

—Re[(Fs Ep) T, *-] t(4M»E t) 4Re-(T-2TTT1*)t'+ 2~T, ~2[(4M E- t) 2M»—t],

with 8 being the initial lab neutrino energy.
For incident antineutrinos, the sign of the ten-

sor amplitudes TT in Eq. (8) is reversed.

B. Deep inelastic inclusive neutrino nucleon scattering

We turn next to the formulas describing deep-
inelastic neutrino-nucleon scattering. Ne use
the standard spin- —,

' quark-parton model, 'with
the additional assumptions that the strange-parton,
antiparton, and possible charmed-parton content
of the nucleon may be neglected. " The quark-
parton model in this form is expected to be good
to an accuracy of order 20% for the quantities in
which we are interested, and has the great virtue
that all x dependence" (for an average nucleon
target) appears in a single universal over-all
factor which drops out in cross-section ratios.
For the standard deep-inelastic neutrino-nucleon
scattering ratios

&x( Nv-+v+I')
g(v+N- t/, + I')'

o'(v+N- v+I")
o(v+N- )/,++I )

'

we find

12SI 3S2 + 3 S3P
1 2 14

Z-„= —,'S, +2S, +14S„
S 1

= [2 (S)'"gSO+ 2 (3)"'ZSj'+ (~Zg S3)'

+[2 (3) gPO+ 2 (3 ) kP8] + (2gP3)

S2 [2 (3) ISO+ 2 (3) tS8 2 (3) gPO 2 (3) ~P8]

[2(.) aTO+ 2 (3 ) g T8] + (2g»3 2gP3) 2%'3 t (10)

3 [2 (3) tfTO 2 (3) 4'8] (2tgT3) t

while for the normalized y distributions" for
p+N- v+F and v +N- v+F we find respectively

1 dg„y2S, —8y(1- —,'y)S, + 32(1——,'y)'S,
(rP dy 3S,——S2+-$3

1 do-„y'S, +8y(1 ——,'y)S, +32(1—2y)'S,

C. Neutral-current pion production

We turn finally to the central subject of this
yaper, the calculation of yion production by the
weak neutral interaction in the S,P,T couyling
case. We employ the same basic pion-production
model used to treat the P& case in Ref. 4, where
an assessment of the region of validity of the
model is given. In this model, the yseudoscalar-
couyling nucleon Born terms and pion-pole terms
are included without kinematic approximations,
with the dominant (3,3) multipoles unitarized so
as to correctly describe (3,3)-resonance excita-
tion. In addition, so-called "PCAC (partial con-
servation of axial-vector current) consistency
condition" terms (the residual terms obtained
after rearranging the nucleon Born terms from
pseudovector to pseudoscalar form) and the cur-
rent-algebra equal-time commutator term are
added to the Born ayyroximation and resonant
terms, yielding a pion-production amplitude which
has the correct soft-yion limit. When applied to
the vector current in pion photoyroduction and
electroproduction, the model just described yields
the basic CGLN-FNW (Chew-Goldberger-Low-
Nambu- Fubini-Nambu-Wataghin) model12 with
soft pion corrections, and is in good"'4 agree-
ment with experiment in the low invariant mass
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(&~1.4 GeV) region. Similarly, when applied to
the V, A current case, the model gives a satis-
factory account of low-invariant-mass pion produc-
tion by the charged weak current. '4

The formal starting point for our pion-production

calculation is the standard soft-pion formula" for
pion emission in the process J+N-g'+N, with
g being a general external current and cV being a
nucleon. This reads [with KN, = KN(2qo) '~']

X(p.)v(q)14( )IIV(p, )&=-st„.u(p. ) " ~,'(k- q) +~ (y,~,J(k)),
N~A N

P3 4 ™Ng(k) g(k) (Pl 0 N) gr
V + Va

1
+ possible additional pion-pole "seagull" contribution u(p, )$,*+0(q),

(12)

with

v = (p, + p, ) ~ k/(2M„), vs= —q k/(2M„),

(iv(p. )l~(0)l~(p, )& =~~(p.P(p. p, ) (p, )-, (»)
&&(p,)l[&,', &(0)]l~(p )&

= 5INu(p )J; (p, -p, )u(p, ).

In Eqs. (12) and (13), k=p, +q-p, denotes the
four-momentum carried by the external current,
g„=13.5 is the pion-nucleon coupling constant, and

g,. is the isospin wave function of the emitted pion.
The first term on the right-hand side of Eq. (12)
is evidently the current-algebra equal-time com-
mutator term, the second term (involving a y and-
y -matrix anticommutator) is the "PCAC consis-
tency condition" term, while the third and fourth
terms are the usual pseudoscalar-coupling nucleon
Born terms. The additional pion-pole "seagull"
piece" is necessary only when the pion-pole con-
tributions of the first four terms do not add up to
give the full pion-pole contribution expected for
the reaction 8+N-n' +N; we will see below that
such a contribution is present in the isovector

a(0) =~(0)' +&(0)',

0) ' = ~p(l. —y )N(g3 6' +g3 6: +g

gPO +0 gP3+3 +gP8+8~&

(14)

J(0) = ~2vol, „(1 y, )v(gr, 6:,-+gr, 6,"+gr,r, ")

and, in the tensor case, making repeated use of
the identity

Pv +5~/ v p
(15)

we find for the commutators

f

tensor amplitude.
As the first step in applying the recipe of Eq.

(12) we calculate the needed equal-time commuta-
tors. Writing [cf. Eqs. (2) and (4)]

F", ,&(0)"]= — ~(1 y, )N([(l)'-"g,.+ (l)"'g, 8&],' +g, &3; [3l(')" 6l +(l)"'6."8]

[~, , g(0);,=, „„(1 y,) ([('.-)"' „+-(l)'"g-„]Z,' +g„5„[(-;)'"6:; + (-'.)"'6:;]] .
(16)

In evaluating the nucleon matrix elements of the tensor terms in Eqs. (15) and (16) an ambiguity occurs,
since there is no a priori rule to tell us which of the two forms of the tensor vertex in Eq. (6) should be
used. Although equivalent between on-shell nucleon spinors, the two vertex forms give different pion-
production matrix elements when substituted into Eq. (12). Explicit calculation shows that the difference
between the two matrix elements is

&x(p, )&(q)lg(0)lu(p, )&l „,-&~(p, )&(q)lz(0)IN(p )&I = —st u(p )aslr. u(p, )yg,
tensor vertex in tensor vertex
EQ. (6) in Eq. (6)

~2 ~al'0( 8)l'
2M 2M y8~), ~ gz,;t, M (y k " y "k )-

I

4/j(2MN) relative to the leading T3 contribution, which in turn is down by a factor k/M
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relative to the leading tensor contribution coming from the intrinsic tensor term T, . Hence the numerical
effect of the ambiguity should be very small. In evaluating Eq. (12) we consistently use the second form
of the tensor vertex given in Eq. (6), in which the dependence on the external nucleon four-momenta p,
and p2 occurs only through the neutrino four-momentum transfer k = k, —k, .

Substitut'ing Eqs. (6), (14), and (16) into Eq. (12) and neglecting O(q) pion recoil corrections except
where they occur in pion-pole terms, we get the following expression for the pion-production matrix
element:

&i'�(P2 )ll ((I)I 8(0)IN(P1)& = X-~22l(P2) (~j'~+ m,'+Itj"4(P, )qP,

II,' = ~-(l-y, )
~

{[(-.')"'g.. ()'"g.J~P'."((k-~)')y. g,.6,.[(-.')"'tP'."(k')y. (-')"'tP (k')y1

+ [(2)1/2g + (1)1/2g J t P(3)(k2) +g 6 [(2)1/2tP (0)(k2) + (1)1/2t F(8)(k2)]]

Q l[g3g'2'( ')+ga)F'~ (k')y]
N ( +

+ ~ y,r, ~ t,[gs,E3 (k )+g~, E~(k )y,]
(P2 0 MN) ~ {1) 2 {l) 2

N &a r

6
6il/ =

~& )/a), „(i-y3))/ ~" [(3)'"g»+(3)"'gr3]t/ Tp(k')o "+i '
(y k"-y"k )+ ', (o "k„k" o0"k„k )-

~z4~ N J

0) /k2) 0)/k»
+ () (2)1/2t T (0)(k2) 10+ 2 ( )

( 1k0 0k).) 3 ( )
( gvkP0 0vk k1.)

N N

83)(k2), Z«)(k')
+gz 6. (—')' 't T (k')o 0+i '

(y k0-y"k~)+ 2 (o~'k„k0-o0"k„k")
N

+ " y~ gg t T")(k')o'0+i ' (y'»- y0k')+ ' (o'"k k0-o0"k k~)
iPl)(k2) ili(l)(k2)

N +

+ gv y+ s 2 4 2I gg t pl)(k2) )i0+i 2 ( (y)k0 yllkl)
g (/( +A+M ) Pl)(k2)

1)/k2)

—g grl tl T{1' (k )o ~0+i (y~k"-y"k~) + (o~"k k"- o0"k,k )
2""(k') 8' (k')

N N

„()((1-4+Mv)
V+ il

E 2 (If k3 If
Z, II G

1
1 /, 3 TII (k')

(19b)

(19c)

The term 3gz~' is a pion-pole seagull term describ-
ing the tensor-current pion-pole diagram illus-
trated in Fig. 1(a). Since, as may be seen from
Eq. (19c), this term makes a contribution of order
q, it is not contained in the basic soft-pion matrix
element of Eqs. (19a) and (19b) and so must be
added in as a separate contribution. The pion
form factor I{3)(k2) appearing in Eq. (19c) is de-
fined by'

&v'(p, )16,"0I~'(p, )& =St. " ~"'(P'k0-Z»"),T«)(k')

P1 P2y k P2 Plt

1 123 i
(2p 2p )1/2 '

(20)
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In addition to the tensor contribution of Fig. 1(a),
there is also a scalar-current pion-pole diagram,
as illustrated in Fig. 1(b). However, a simple
calculation shows that the contribution of this
diagram is entirely contained in the commutator
term

~ i() r, )v -(I ))l)"'*z,.+ (l)'"z,.]M„g„

use the lepton equations of motion to reduce all
induced tensor contributions to an effective scalar-
coupling form, via the identity

v(u, )o~„(1—y, )v(k, )ik&=v(k, )(1—y, )v(k, )(k, +k, )~,

(22)

and we use Eq. (15) to eliminate factors of y, in
the intrinsic tensor contribution via the further
identity

x t~FIg~((k- q)') y, (21)
[~~„(1-y, )).~[~'"y.].u = —k„(1-ys)]..[~'"l.u (23)

appearing in Eq. (21), and so no additional seagull
contribution is present in this case.

The procedure for calculating the pion-produc-
tion cross section is now as follows. First, we

This allows us to write the production matrix ele-
ment of Eqs. (18)—(19) in terms of a convenient
set of 1f basic covariants defined as follows:

51I,=u(p, )(3|I,' +51I,'+5tf,") (p, )y,*

2
v(1 —y )v u(p, )jA, +A,y, +A,$+Q %g +Pm)+Cp[kx $2] +~3[~i ~21'y5+&zPO'g +&82ys fu(pi)

6
(24)

+ ~ va),„(l-y,)vu(p )(B,a""+a,g(r~" +a o ~"g)u(p, ).

Explicit expressions for the amplitudes A. ~& ~ ~ ~ &&~

are given in Appendix A. From Eq. (24) the pion-
production differential cross section may be com-
puted by standard trace techniques, giving the
result

2

k g ~gSO'0 gS8 8

)i q
I

I

Pa P

lql
16g3 g' 8~ ' 4p

(25)

with Z, being the lengthy expression given in
Appendix A. In Eq. (25), W' is the invariant mass
of the outgoing pion and nucleon, and lql and
dQ, =sin)pd)pd6 are the pion momentum and solid
angle in the frame in which the outgoing pion-
nucleon isobar is at rest (the isobaric frame).
The pion angles p, 6 are defined in Ref. 18 and in
Fig. 10 below.

Up to this point we have ignored (3,3)-resonance
excitation, which can be an important feature of
weak-pion production in the S,P, T case if isovec-
tor S,P, T couplings are present. A complete
treatment of (3,3) excitation requires projecting
out the (3,3) multipoles appropriate to the S,P, T
case, and then solving the corresponding Omnes
equations with the (3,3) projections of Eq. (19) as
driving terms. As argued in Sec. IVD of Ref. 18,
in cases where the kinematic-singularity-free
driving term nP [obtained by dividing the (3,3)
projection of E q. (19) by the appropriate powers
of the isobaric-frame current and pion momenta
lkJ, lqf] behaves as

(b)
const

CV
(26)

FIG. 1. (a) Tensor-current pion-pole diagram; g)
scalar-current pion-pol. e diagram. The dashed line de-
notes the pion, the solid line denotes the nucleon, and
the wavy line denotes the external current.

for small u =5 -hf~, a suitable approximate solu-
tion of the Omnes equation for the corresponding
kinematic-singularity-f ree multipole m is
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m=nPr. (27)

Here r = f/+~/f, '+' s is the ratio of the resonant
pion-nucleon yartial-wave amplitude to the corres-
ponding Born approximation, which (using the
static limit to evaluate f~,',"p is given by"

exp(i6~, )sin5„
isst

lql —:f„-'/e: )

f'= —
(

' )' =o.oso (28)

l
exp (is,„)sin6„=

~0 Vor +~&~

q =1.921M„

r = (1 262 lql'/~. )

x[(q +q „)(1+0.504lql /M )] '.

On the other hand, when the kinematic-singular-
ity-free driving term behaves as

const
GO

(29)

m =nPexp[i 6„]cos6„, (30)

which vanishes at resonance, although some treat-
ments of pion yhotoyroduction and electroyroduc-
tion use the resonant solution given in Eq. (27) in

the solution to the Omnes equation is approximately

this case also.
Application of the above recipe is evidently

straightforward, but the work required to do a
full multiyole analysis in the tensor-couyling case
is very considerable. Therefore, as a simple
means of sting a preliminary estimate of
(3,3)-resonance excitation effects, we have adop-
ted the following procedure. First we evaluate
(3,3)-resonance excitation using the static model
for pion production, "which should give results
equivalent to those obtained in leading static
approximation by applying the recipe of Eq. (2V)
to the nucleon-pole-diagram" driving terms. In
this approximation the scalar amplitude contribu-
tion vanishes. To get the leading nonvanishing
scalar contribution (and also to get a check on
the pure yseudoscalar terms in the static model
formula) we treat the scalar and pseuloscalar
cases by the multiyole expansion method outlined
above. The yseudoscalar driving term behaves
as in Eq. (26) and, as expected, application of
Eq. (27) reproduces the static model result. The
scalar driving term behaves as in Eq. (29) and so
should presumably be unitarized according to Eq.
(30), although we will give numerical results cor-
responding to the use of Eq. (27) as well. Both
the static model and multipole analysis calcula-
tions are sketched in Apyendix B. Combining the
static model and multiyole analysis formulas gives
an approximate matrix element for resonant-, pion
production in the S,P,T case, which after a
straightforward trace calculation and integration
over pion angular variables yields the following
cross-section formula:

dO' dQ' g
d d „q(25) dtdW

2 g„'lql'
l

(. .)l. (l l, 1)dtdS' 2g E 9P MN u

(31)

+i[i+sos'( —'s](g s(s(s )] sssis'( —'s) ' ' )Rs[g s( (s )"gssgsR')]k +k
N

'= *' sio'S Rs[lg I' s(s()t)st'(a)']
I

k

N

zt lql
l

(Rn)la(l lR I) sm'(. 8) I ql I"I
l &(R&q,.)l.E' 9~ M '~' ~ 4M' s s

In this equation one has s = cos5» if Eq. (30) is
used to unitarize the scalar amplitude, while
s =x if the Omnes equation for the scalar case is
solved as in Eq. (2V). The quantities k», PRO, and
8 are respectively the isobaric-frame incident

neutrino energy, the final neutrino energy, and
the neutrino scattering angle, as defined in Sec. II
of Ref. 18, where full kinematic details of weak-
pion production are given (see also Fig. 10 below).
The isospin coefficients g&3 ' are tabulated in Table
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I. The cross-section addition n(do/dtdW) contains
the unitarizaiion factor r in the combination
[x['—1 so as to cancel away the nonunitarized
(3,3) multipole contributions coming from the
cross section do/dtdW computed in Eq. (25).

Finally, we note that all formulas given in this
section have been written assuming incident neu-
trinos. For incident antineutrinos, all tensor
amplitudes are reversed in sign, and in addition
the over-all sign of the parity-violating term in
Z [the term in Eq. (A5) proportional to
e„8,p,"p,Sf', ] is reversed. "

Reaction (-)aE g(0)E g(f/2)
E

v+p ~ v+p + 7I'

(v+p- v+p+n')

v+n- v+n+x'
(v+n v+n +71 )

1
2

I
6

v+8 ~ v+p+7l
(v+n v+p+7t. )

1 13'

TABLE I. Isospin coefficients appearing in Eq. (31)
and in the formulas of Appendixes A and B. The coeffi-
cients a~E) for definite isospin I are related to aE) by

(1/2) 1(,(+) (-)
)

(3/2) L(2 (+) (-)
)+E 3 E E ~ E 3 E E

III. NUMERICAL RESULTS v+p~ v+0 +x
(v+p v+ n + m+)

1 13' 3v 2
%e give in this section sample numerical re-

sults obtained from the formulas developed above,
as applied to an analysis of low-invariant-mass
(W~ 1.4 GeV) pion production in the BNL neutrino

flux. Recently, the Columbia-Illinois -Rockef eller
collaboration at BNL has reported a measurement
of the ratio

o(v+ T- v+m'+ ~ ~ ~ )R'=
2o(v+T- p +m'+ ~ ~ ~ ) '

pure isoscalar in structure, and we begin our
numerical analysis by making this assumption.
Applying nuclear charge-exchange corrections as
described in Appendix C of Ref. 4, we find that the
nuclear target ratio quoted in Eq. (33) implies the
free nucleon target ratio

T=4(8C 1+~[lsA1 ]

with the preliminary result"

(32)
2AO —=

o»~(v+n- v+n+m')+o " (v+p- v+p+m')
o»L (v+n- g +p+wo)

= 2A,' && 1.4 = 0.48+ 0.1V,

RD= 0.17 + 0.06.

This measured value of R,' is in accord with the
value expected" j.n the steinberg-Salam model
when sin'8~ is in the currently favored range of
0.3 —0.4. Hence if (3, 3)-resonance excitation,
which is expected in the Weinberg-Salam model,
is observed in the BNL experiment, the presump-
tion would be strongly in favor of the standard
gauge-theory interpretation of neutral currents.
However, preliminary BNL invariant-mass spectra
for m' production in the charged- and neutral-cur-
rent cases show a clear (3, 3) peak in the charged-
current case, but indicate no comparable peaking
in the neutral-current reaction. In what follows
we analyze the implications for neutral-current
structure, in the S, P, T coupling case, if this
indication is confi. rmed both by a more detailed
analysis of the BNL data and by other'experiments.
A similar analysis in the V, A coupling case has
been given in Ref. 4.

The simplest (but as we will see below, not the

only) interpretation of nonexcitation of the (3, 3)
resonance would be that the neutral current is

with the superscript BNL denoting averaging of
the cross sections over the BNL neutrino flux.
Using the theoretical estimate '

o»"(v+n- g +p+wo, W ~ 1.4 GeV)

= 0.14&&10 "cm', (35)

we get from Eq. (34) the cross section for neutral-
current 7t' production:

o ""(v+n- v+n+w', W ~1.4 GeV)

+o»'(v+P- v+P+m', W ~1.4 Gev)

=(68+24)&& 10 "cm', (36)

giving one of the basic experimental numbers
which must be approximated by the S,P, T fits
which we describe below. As we have emphasized
in Sec. I, in discussing weak-pion production we
will simultaneously take into account the informa-
tion furnished by experiments studying deep-in-
elastic neutrino scattering and neutrino-proton
elastic scattering. The specific results for these
two classes of experiments which we use are the
following:

deep-inelastic neutrino scattering:

(a) R„=0.22 s 0.03, B, = 0.43 + 0.12 (CERN—Gargamelle'~),

8, =O. lie 0.05, R—„=0.32+0.09 [Fermilab Expt. 1A (Ref. 27)j,
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R, = 0.22, R—„=0.33 (Caltech-Fermilab raw data"),

~3R„+R—„&1.5 at 95% confidence level,

(b) y distribution inconsistent with y, consistent with somewhere between V-A and V+A, with T or
with T, 8, P mixtures (Caltech-Fermilab");

neutrino-proton elastic scattering:

OcE~(v+p- v+p, Cundy cuts) &0. 24 ocE""( v+n P-+p, Cundy cuts)

at 95% confidence level; Cundy'0 cuts are

1 &«4 GeV, 0.3 & ]k'[ & 1 (GeV/c)'.

(3'I)

(38)

Neglecting possible distorting effects of the cuts,
and using the fact that the CERN and BNL neutri-
no fluxes are similar" in shape, K&I. (38}gives an
approximate bound for the BNL flux-averaged neu-
trino-proton elastic cross section,

g'"'(v+p - v+p) ~0 24g'.N'(v+n- p +p)

=0.21&&10 "cm'
at 95% confidence level. (39)

As is evident from the formulas of Sec. II, the

S,P, T cross sections involve many coupling con-
stants and form factors (the pion-production cross
sections depend on 21 independent form factor
combinations in all) and so adoption of a fairly
systematic procedure for searching for fits is
essential. The procedure which we have used
is as follows":

(1) In studying the isoscalar case we make the
further simplifying restriction to purely unitary
singlet weak neutral couplings. Hence we take

g$3 gS8 0 gP3 +P8' P gT3 gTS (4o)

so that the quark structure of the weak neutral
interaction is completely specified by the three
coupling parameters I 8p ppo& g pp.

(2) We follow the conventional practice of pa-
rameterizing nucleon form factors in dipole form
and meson form factors in monopole form. Hence
for all S,P, T form factors not connected with pion
exchange we use the parameterization

F(k') = F(0}(1—k2/M2)-2, (41a)

while the form factors T,"'(k') and EP"(k') are
parameter ized as

T &»(k2} —T &»(0}(1 k2/~2}
(41b}

F"'(k') =F"'(0)(1—k'/M '} '(1 —k'/I') '

For the form-factor mass M we take the valueI=0.9 GeV (41c)
suggested by quark-model"" considerations.

(3}For the form-factor values at k' =0 (i.e., for

TABLE III. Parameter values for fits Nos. 1—5.

Fit No. 1 Fit No. 2 Fit No. 3 Fit No. 4 Fit No. 5

gSO

ggo

f
~',"(0)
+fINN

&I" (&)

v (,'~ (o)

&y (o)

i(,') (o)

T)0) (oi

T ~» (o)

1xf

-0.4xf

3.72

45 MeV

0.62

2.1

-0.75

1o3

-0.72

p.2

1xf
p.4xf

1.10

3.72

0.7

0.62

2.1
—0.75

10 3

—0.72

0.2

0.5 xf
—Q.5 xf
-0.25xf

1.92

3.72

45 MeV.

0.7
0.62

2.1

-0.75

-1.3
—0.72

p.2

1xf

-p.4 xf
1.17

1.86

45 MeV

0.62

2.1

-0.75

-1.3
—0.72

0.2

1xf

-0.25xf
1.47

3.72

28 MeV

Q.62

2.1

1.9
—1.9

o.66

—0.3
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the S,I', T renormalization parameters analogous
to the V, A renormalization constants g„, p.", etc. )
we start from central values suggested by the
analysis of Ref. 5, which we have tabulated on the
first line of Table H. A numerical survey (using an
interactive time-sharing facility) indicates that
these parameter values do not give satisfactory
fits for the various coupling patterns of interest,
such as a pure tensor weak neutral interaction or
scalar-tensor or pseudosc alar-tensor mixtures.
Instead, we find with the central parameter values
that when the deep-inelastic and elastic scattering
constraints of Eqs. (37) and (39}are imposed, the
resulting bound" on the pion-production cross
section o'~N"{vnwo+vp vo, IV=1.4 GeV) ls typically
a factor of 3 or more smaller than the experi-
mental value of Eq. (36).

(4}We next permit reasonable variations of the

parameters from the central values, as shown in
the second line of Table II, making possible in-
creases in the bound on the pion-production cross
section imposed by Eqs. (37) and (39). The sensi-
tivity of the pion production bound to parameter
changes (for a scalar-tensor mixture) is indicated
in the bottom two lines of Table II. Evidently, the
bound is most sensitive to changes in T,"'(0},
T,"'(0}and o,„„,and relatively less sensitive to
variations in the other parameters. If the param-
eter T,"'(0) is increased without limit, the cross-
section bound approaches infinity, as a result of
the fact that the pion-production cross section re-
ceives a contribution from T,"'(0) via the equal-
time commutator term in Eq. {12), whereas (in the
SU(3)-singlet current case) the elastic neutrino-
proton cross section is independent of T,'"(0). This
is of course a consequence of the SU(3) D-type

TABLE IV. Values of physical quantities in fits Nos. 1—5.

Fit No. 1 Fit No. 2 Fit No. 3 Fit No. 4 Fit No. 5

Limiting
inequality ~

6 (vp) ~

in10 3 cm
0.18 0.058 0.18 0.094 0.027

Elastic scattering Deep inelastic E lastic scattering Deep inelastic Deep inelastic
Eq. (39) Kq. (37) Eq. (39) Kq. (37) Eq. (37)

BNL
(
—
p)

in10 "cm'

0 (vg 7p + vp7t, ~~ 1.4 GeV)
in10 4' cm'

a '(vn7t +vp7t, gi(1.4 GeV)
in10 4i cm~

g2"i;„| (vpvt )
in 10 cm

0 (vp7t', TV~1.4 GeV)
in10 4' cm'

a 0

g NL (vp)
in10 "cm'

g(vp) at E=50 MeV
in10 "cm'

0.080

0.23

0.35

62

2.7

22

0.34

0.37

0.032

0.22

0.34

1.8

25

0.057

0.0082

0.058

0.31

0.31

3.0

16

0.30

0.28

0.032

0.25

0.38

2.3

28

0.13

0.11

0.19

0.20

0.23

68

3.6

40

10

0.079

0.16

By limiting inequality we mean which of the two inequalities, Eq. (37) or Eq. (39), is saturated first when the over-
all strength of the weak neutral interaction is scaled up.

~ The superscripts BNL, ANL denote cross sections averaged over the Brookhaven National Laboratory and the
Argonne National Laboratory neutrino flux distributions, respectively. The quantity 0,"~;„ is defined in Ref. 4.

The coherent neutrino scattering parameter ap was introduced by Freedman [D. Z. Freedman, Phys. Rev. D 9,
1389 (1974)] by writing the neutrino-nucleus coherent cross section, in the vector case, in the form da ~' "/dz
= [E G2A /(27t)]ap2(1+z), with A being the atomic weight and z being the cosine of the neutrino scattering angle. In the
scalar case we define ap by writing do ""/dz =[E G A /(2')]2ap (1 —z), with the additional factor of ~ reflecting the
fact that a (1 —z) angular distribution produces twice the radiation pressure of a (1+z) angular distribution [see S. L.
Adler, Phys. Rev. D 11, 1155 (1975)]. From the formulas of Sec. II2A, we thus find in the scalar case that
a 2=2E~g(0)
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p ) versus incident neutrino energy E
for fits Nos. 1-5. ).0 2.0

E (GeV)

3.0

commutator structure in the S,P, T case, which
permits [E~, j(0)j to lie in a different isospin multi-
plet from the current 8(0) itself. Hence, in the
S,P, T isoscalar case there is no analog to the
parameter-independent bounds on the pion-pro-
duction cross section which are found4 in the V, A.

isoscalar case.
Allowing the renormalization parameters to vary

within the ranges indicated in Table II, we have
constructed a series of fits to the experimental
data summarized in Eqs. (36)-(39) above. The
features of five representative fits, with rather
different characteristics, are given in Tables III
and IV and Figs. 2-7. The parameters of the fits
are summarized in Table III; fit No. 1 is a scalar-
tensor fit with large scalar renormalization pa-
rameters; fit No. 2 is a pseudoscalar-tensor fit.
fit No. 3 ls a scalar-pseudoscalar-tensor mixture
which, like the combination V-A, is a formal
Fierz transformation" invariant; fit No. 4 is a
scalar-tensor mixture with reduced scalar re-
normalization parameters while fit N 5

'

scalar-tensor fit with T' ' reversed 'verse ln sign from
its central value. Some physical quantites of in-
terest in the various fits are tabulated in Table IV.
InFi s. 2and3g . 3 we give neutrino- and antineutrino-
induced pion-production cross sections for the

FIG. 4. versus inci entCross section 0'(v+p v+p) ver
neutrino energy 8 for fits Nos. 1-5.

various fits; the curves are evidently all qualita-
tively quite similar. On the other hand, the neu-
trino-proton and antineutrino-proton elastic cross
sections illustrated in Figs. 4 and 5 differ widely
between the fits. One interesting feature of fit
No. 5 is that although the scalar-tensor inter-
ference is constructive in neutrino pion production,
giving o(vnmo+vpm')&o'(vnn +vpm ) 't 's strongly
destructive in neutrino-proton elastic scattering,
so that v(vP)«v(vP). This sign reversal in the
interference terms is absent in fits Nos. 1-4,
where both the neutrino-induced pion production
and elastic cross sections are larger than their
antineutrino-induced counterparts. In Figs. 6 and
7 we have plotted the deep-inelastic y distributions
for the various fits, together, for comparison,
with the y distribution expected'0 in the Weinberg-
Salam model for sin'8~ =0.35. , The close similar-
ity of the various curves, in both the incident neu-
trino and the incident antineutrino case
dent. One obvious qualitative feature of all of the
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0.&
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FIG. 3. Cross section 0(v + n v+n +m )
+0'(v +p ~ v +p +go)p ) versus incident antineutrino energy

~ ~

E for fits Nos. 1-5.
versus inca entFIG. 5. Cross section 0 (v +p v +p ) r

antineutrino energy E for fits Nos. 1-5.
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2.0

5.0

I

0.2
I

0.4
I

0.6
I

0.8

FIG. 6. Unit-normalized deep-ineI. astic y distributions
for incident neutrinos. Curve a: fits Nos. 1, 2, and 4;
curve b: fit No. 3, curve c: fit No. 5. The y distribution
for the Weinherg-sal. am model with sin2+ =0.35 is
shown in curve d.

fits is that since both even (S and/or P) and odd

(T}charge conjugation pieces are present in the
weak neutral interaction, neutrino and antineutrino
cross sections differ. However, since a GP-con-
serving S,P, T Lagrangian is still parity-conserv-
ing, the presence of (S,P) Tmixtu-res does not
imply parity-violating effects in processes in which
neutrinos are not involved, such as the PP, eP,
and pp interactions. " By contrast, in the V, A
coupling case4 the presence of neutrino-antineu-
tr ino cros s-section differences is in gener al ac-
companied by parity-violating neutral-current ef-
fects in non-neutrino-induced reactions.

Up to this point we have restricted the discus-
sion to purely isoscalar (in fact, purely SU, sing-
let} S,P, T neutral couplings. In order to study the
effect of isovector admixtures, we have considered
modifications of fits Nos. 1 or 2 obtained by al-
lowing either g~3 gp3 or ggl3 to be nonzero, as de-
tailed in Table V. The resulting dos"L/dW distri-

butions are graphed in Fig. 8. The qualitative con-
clusion which emerges from this study is that iso-
vector tensor or pseudoscalar couplings lead to
strong (3,3) peaking in invariant-mass plots, but
an isovector scalar component can be present with-
out producing a visible (3,3) peak, even when it
produces strong deviations of the final nN charge-
state ratios from the values which they have in the
isoscalar case." Hence a nonresonant invariant-
mass plot does not in itself imply an isoscalar neu-
tral interaction in the S,P, T case; branching-ratio
information is also needed to exclude an isovector
scalar component.

As we have already emphasized, the S,P, T
cross sections involve a large number of param-
eters and this fact, together with the scanty ex-
perimental information presently available, does
not permit any definite conclusions about the pres-
ence or absence of S,P, T neutral interactions to be
made at this time. Looking ahead, we have written
general and flexible computer programs embodying
the calculations of this paper, along with corre-
sponding programs for the general V, A. neutral-
current case."As improved experimental data
becomes available, these programs will be used
to give updated, and hopefully more restrictive,
analyses of the phenomenological form of the weak
neutr al coupling.

f3—
l2-

v) IO-
C g

8-
h 7-
~ 6—
N 5—

2.0

6'

bled

f.0

0.4 0.6 0.8 i.o

FIG. 7. Unit-normalized deep-inelastic y distributions
for incident antineutrinos. Curve a: fits Nos. 1, 2, and 4;
curve b: fit No. 3; curve c: fit No. 5. The y distribu-
tion for the Weinberg-Salam model with sin26& = 0.35 is
shown in curve d.

1.08 j.)2 (.)6 (,20 t.24 3.28 3.32 j.56 3.40
(Gev)

FIG. 8. Curves giving do'/dW for the reaction v+ p
&+P +m, averaged over the BNL neutrino flux. Curve

a: fit No. 1; curve b: fit No. 1 withg~3=6 f.the two
methods of treating the resonant scalar multipole des-
cribed following Eq. (31) give virtually the same curve];
curve c: fit No. 1 with g~= —0.4x6; curve d: fit No.
2 with gp3= 6 . The four curves have been normalized
to equal area. Curve a is typical of the normalized
de N" /dW distribution for all of the isoscalar fits con-
sidered, and in effect represents BNL phase space for
the pion-production process.
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TABLE V. Relative isoscalar cross sections together with cross sections for three modified fits with isovectoradditions to the S, T, and P parts, respectively.

Parameters ' V+P ~ V+P +7l' v+n —v+ n+7t' v+n ~ v+P + 7t' V+p ~ v+ n + 7t'

Isoscalar case
cross sections
(arbitrary units)

Fit No. 1 with g =6

Fit No. 1 with g~ ———0.4x6~

Fzt No. 2 wzth g~ =6

78

29

71

20

61

19

70

77

' The isovector additions used would make the scalar, pseudoscalar, and tensor currents, respectively, U-spin
singlets in the limit in which F'& ——5'&, Ez~ ——I' &~, and T, =T( j=1, 2, 3. For the actual renormalization-constant
values used in fits Nos. 1 and 2, the isovector tensor case given in the table corresponds to a tensor U-spin singletstructure, the isovector pseudoscalar addition is smaller (by a factor of r =0.7) than is required to make a pseudo-scalar U-spin singlet, while the isovector scalar addition is larger (by a factor of 1.9) than is required to make ascalar U -spin singlet." The cross sections in this case are virtually independent of whether the scalar enhancement factor s of Eq. (31) is
taken as cosh@3) or as r.
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APPENDIX A: FORMULAS FOR PION-PRODUCTION
AMPLITUDES AND CROSS SECTION

In this appendix we give the expressions for the
11 amplitudes A„.. . , B4 which parameterize the

=X OJ* ~;X, ,
(0) f g 1

(Al)

where yz, are the initial and final nucleon iso-
spinors and g,. is the final pion isospin wave func-
tion. Their numerical values for different chan-
nels are given in Table I.

We write the matrix element in the form

pion-production amplitude [Eq. (24)] and for the re-
sulting matrix element squared ~, which occurs in
the cross section [E(l. (25)]. The expressions which
follow involve the isospin matrix elements

K =
~2

v(l —y )vu(p )(/i +A y +A g+ A gy + C (jV + p ) + C [p, p ]+C [tf, tf ] y + E If y +E g y fu(p )

+ ~ vo), „(l —y, )vu(p, )(B,o""+B,o~ "y, +a,y, go~" +B,o~ "gy, )u(p, ) .
The amplitudes in this expression are related to the amplitudes defined in E(l. (24) by

A2 =&2 —2'~&4,
Ez =Ez+A4,

E2 =E2-A4,

z -&z

(A2)

(A3)

([( )(/mt + (()1/2g ]o(o) Z(o) (p2) + g &(+)[2Z(o)(po)+ (~(8) ($2)])EgA

+ 2~ [2of'[(-')'"gr. &7'(~')+ (l )' ~~ &~ '(+')]+2os" a~. +p" (f ')k,
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gr ([(2)l/2g + (Ll)1/2 g ]a(0) F(3) ((k ~)2)+g a(+)[2F(0)(k2) + 1F(8)(k2)]}
N gA

r&» u~
(2aE&0&[(—',)'/'g80F80'(k')+( 3)'kg88FE& '(k')]+2aE &g83FE& &(k2)}pg„( )2, gT, 2aE ' "

4q K

SIN V- VB N MN Ivy N

-2P, «E"' (3)"gT, ' +(3) gT8 +(aE"-aE ')g»
2MN N MN V+VB MN

/I, = — gr (a& '[(—', )~2g F' '(k')+ (—')'+g F"'(k )]+ (a'+'+a' ')g, F"'(k')}
N B

1fa(0)[(2)l/3 g F(0) (k2) ~ (1 )lh g F(8) (k2)] ~ (a(+ ) a(-) )g F(3& (k2)}

(a&0&[(2)1/2g F&o&(k2) y (1)1/2g F(8&(k2)] /
(a&+& pa& &) g F(3&(k2)}

+ (a(0&[(2)1/3g F(0&(k2) + (1 )1/2g F&8) (k2)] + (a(+) a(-&)g F(3) (k2)} gr

B N

2r&»&u'&
C = ' a' '[(—,)~g +(—') g ] ' ' ' + g a'+'[ f' '(k)+ —'r' —'(k )]INgA N

(» 2

N N N N

gr 1
(o& 2 1/2 2T,"'(k') 1 ih 2T2 (k ) (+) ( ) 2T,' '(k')

N V —V N N N

(()) 2,/2 2T,' '(k ) 1,/2 2T,' '(k ) &+) ( ) 2T,' '(k ) 1
(-.) g,. +(-.) gT. +(aE -aE )g»

N N N V+VB N

(A4)

+
2M aE (3) gTO I 2 (3) gT8 I 2 +(aE +aE )gT3 M 2 ( 1 2 ~1 2)

(o& ~ 1/2 2T3"(k') ~ e 2Tl" (k') (+. . . 2Tl"(k')
N V —VB N - N

+(-, .+ P. .) a (3) gTo M +(3) gT M +(aE aE )gT ~24 k ((&) Z &/2 2T,' '(k )»/3 2T,"'(k') (+) ( &
273 (k ) 1 g„

N N N V+VB Ng„() 2T,'"(k')
2M gz.3 2a

+ "
aE (—,) gT, , + (-, ) g» ', + (aE +aE )gT, , (-2k, ~ k2+4p, ~ k, )

gr 1 (0) 2 &/2 2T3 (k ), 1/3 2T3 '(k') (,) ( ) 2Tp'(k')
2M„V —v MN MN N

+(-kk, ~ k, —kk, ~ k,}Iaa" ( )kg +(—)ag +(at ~ at ))g
2T &o& (k2) 2T &8& /k2~

—
2T (3) /k2&

N V+VB

B, = " (a"'[(-')' g + (-')'kg ] T&'&(k') ~a&'&g» [', T &0&(k2) ~-'T-&8& (k2)]}
NgA

(2a(0)[( )1/2g T(0) (k2) ~ (1 )I/2g T(8) (k2)] ~ 2 (+)g T(3)(k2)}
N

(a(o)[(—) /2g T(o) (k2) ~ ( )1/2g T(8&(k2)] ~ (a&+& ~a(-))g T(3) (k2)}
1

&.= (aE"[(—:)'gT0T1"(k')+ (-')' g T.T"'(k')]+ (aE" —aE ') gT. T,"'(k')}
B N
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Taking the traces, we find

(~gg„~ 2}

=k, k. (4IA, I'(P, P. +My')+41lA, I'(P, P. - M, ')+41A, I'[2P, qP. q-q'(P, P, -M„')].4IC, I'[2P, Kp. K K'(-p, p. M'-)]

+1&~C,~'[ —(k, ~ k,)'(p, ~ p, +M„')+2k, k, k, p, k, p, +2k, ' kak, ' gk, ' p, ]

+1&IC I [—(ki' k2) (pi '
pa Mz )+2k' ' k2ki ' pik2 ' P2+2kx km' pakm' px]

+&IE,I'p, k p, &. +&IE.I'p, k.p, k, +&M,Re(A,"A,)q' (p, + p)+&M„Re(A,*C,}K ~ (p, + p)
+ 1&Re(A,*C2)(p, ' k2P, ' k, —p, k,p2

' k, ) + 16

He�(A2¹C,

)( p, ' k2p2 ' k, —p, ' k,p, ' k2)

—8 Re(A¹E,)M„k, (P, —P, ) —8 Re(A¹E,)M„k, ~ (P, —P, )

+ &Re(A,*C,)[Pi
'

qP2
' K + Pi

' KP2 ' q —q ' K (Pi '
P2 ™~')]

+16He(A,*C,)M„[q k, k, (p, —p, ) -q k,k, (p, —p, )]+16Re(C¹C2)M&k, ' k, (p, —p, ) ~ (k, —k, )

—16Re(C~¹E,)M„k, ~ k,k, ~ (p, +p, )+16Re(CS¹E,}M„k, k,k, ' (P, +P, )

+&Re(E¹E)[p ' k p ' k +p ' k p ' k —k ' k (p ' p +M 2}]].

+32(~B,~ (2p, k,p, k, +2p, k,p2 k, —k, kp, p )

+IB.I'[-q'(2P, V. k, +26'k2P2'k. -k. 'kaA' P2)

+2p2 q(2p, kq k2+2p, kq ' k, —k, k2P, q)]

+ ~B~~ [—q (2p, ' k,p, ' k~+ 2p, '
k2pn

' k~ —k, ' k,p, ' p~)+ 2p, ' q (2p2' k, q ' k, + 2p2' k~q 'k, —k, '
k2p2

' q)]
+2M~Re�(B¹B~)(2k~

' qk2 ' P~+ 2k2 ' qk~ '
P~ -P~ ' qk~ ' k2)

+2M+Re(B¹B4)(2k,' qk2 ' p2+2k2 ' qk, ' p, —p2' qk, k, )+2M„2Re(B,*B4)(4q k, q k2 —k, k2q2))

+16(-Re(A,*B,)(k, p, k2 '
p2

—k, P2k2
' p, )+Mme[A,*(B,—B4)](k, ' qk 'I' —k, Pk2 ' q)

+Re(A,*B,)(k, P,k~ g —k, P,k, P, )+Re[A,*(B,+B4)]M„k, k,K q —Re(A B,3¹)M„k, k, q K

+Re(AfB,)[q'(k, ' p, k2 '
p2 —k, ' p2k2 p, ) —2p2 q(k~ p, k~ q —k, qp, k2)]

+Re(A, B,)[q'(k, P, k, P, —k, P,k, P, )+2P, q(k, P k, q —k, '
qp, k, )]

-Re(C,*B,)M„k, ' k,k ' (q —k)

+ Re(C~ B3)[M~2k~ ' k2q ' k+k~ ' k2( p~
'

qp2
' k —p2

'
qp~

' k —p~
' Q q

—2p, K(q k,k, p, —p, k,k, q)]

He(C, B)[M mk, k q'k —k, 'k(P, 'qP 'k —P 'qp, 'k+P, 'P, q'k)
—2P~ K(q '

kmk, p, —p, k2k, q)]

+Re(C,*B,)4k, k [p, k,p~ k, + p, k2+ k, -2(p, p2+M„)k, k, ]
+2Re(C B,)Mp, ~ k [~ ~ k, q k +~ k q k, + q k, k '(p, —p2}+ q ~ k, k, ~ (p, —p, }-P ~ qk, ka]

+2Re(C, B )M„k, k,[P kzq k, +P ' k2q ' k, q ~ gk, ~ (p, —p2) —q k, k, (p, -g) Pqk, kz]-
+ 2 Re(C, B,)k, k,[k, k2( p, ~

p2 -M„)—2(p, k,pa k, + p, ~ k,ps k, )]

+2Re(C3¹B~)M&k~ km[k~ kaq ' (p~ -p2) —2(p~ ' k~q ' k2+P~ ' k2q ' k~)]

+2Re(C, B,)M~k, k, [ —k, k, q (p, —p2) —2(p, k, q ' k, +p~ ' knq ' k, )]

+R (E~eB~)¹M~k~
' knk~ I —Re(E,"B,)M„k, ' k,k, ' &

+Re(E B)[M k, 'kk ~
q —P, k(2p, .kk, q —2k ~ pk q —p, qk, 'k)

—k, k2(k, pp, q —p, p2q'k)]
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+ Re(E2 B,)[-M„'k, k,k, q +p, k2(2k, pk, q —2p2 kmk, q —p, qk, k, )

+ k, km(ka p p, q —p p q k~)]

+ Re(E,*B4)[M„~k, ' kmk, ' q —
pn

' k, (2p, ' k2k, ' q —2k, ' p, km
' q —p, ' qk, k )

+Re(E,*B,)[-M„k, k,k, ' q+ p, k, (2k, p,k, q —2p, k,k, q —p, qk, k2)

+k~ k2(k2 p, p2 q —p, p2q k )]}
+Be„s&zp,p~ k~&k2( —2Im(A. ,*C,)k, '

k2 —2Im(A2C2)k, ' k2+Im[A)(E, +E2)]k, ' k2

—Im[C,*(E,—E,)]k, k2+2Im(A,*B,) -4M„Im[A,*(B,-B4)] —2lm(A~B, )

—2(q'+ 2P, q)im(A)B, ) —4P, ' K Im(C,*B,) + 4P, ' E Im(C,*B,)

+2k, ' ( p, + p2+q) Im(E,*B3)+2k2 ' ( p, +p2 + q) Im(E28, ) +2k, ( p, +p2 —q) Im(E,*B4)

+2k2 (P, +P~ —q) Im(E2B4) —2(q2 —2P, q)im(AfB4)},

where P =p, + p„k = k, —k„and E = k, + k,.
(A5)

APPENDIX B: APPROXIMATE CALCULATION

OF (3,3)-RESONANCE EXCITATION
II,'~'&=-,'{~„~,}, gT„&,],
f~ ~=—e' s~sin5~, /(q~,

(Bl)

To calculate the effect of (3, 3)-resonance ex-
citation in weak-pion production induced by S,
P, T isovector currents, we use two methods.
As a first approximation, we evaluate the (3, 3)
excitation matrix element in the static limit using
a variant of the method first developed for photo-
production by Chew and Low. ' In this limit, the
scalar current does not contribute. A more ac-
curate treatment of (3, 3) excitation requires pro-
jecting out the (3, 3) multipoles appropriate to
S, I', T currents. %hi1.e the work involved in a
complete projection for the tensor current is
prohibitive, the scalar and pseudoscalar calcula-
tion is easily done. Therefore we use the multi-
pole projection method to evaluate the (3, 3) ex-
citation matrix elements induced by the scalar
current and the pseudoscalar current, using the
latter as a check against the static-model cal-
culation. Combining this result with that obtained
from the static model gives the leading nonvan-
ishing approximation to the (3, 3)-resonance ex-
citation matrix element in the S, P, T case.

The basic idea of the static model may be de-
scribed succinctly as follows. We start by con-
sidering the pion-nucleon scattering process
v'(k)+N(p, )-v(q)+N(p, ), for which the resonant
matrix element in the center-of-mass frame may
be written as

&s/a&

3R=4vx~»(3q —a" qo) kX„-",a'~",

a(A) =Xtg*[lis/3] X 0;

with g„, g„being the final and initial nucleon
spinors, X„X,being the final and initial nucleon
isospinors, and ( and (, being the final and in-
itial pion isospin wave functions. This scattering
amplitude may be thought of as arising from res-
onant rescaitering of the outgoing pion coming
from the crossed nucleon Born diagram, as il-
lustrated in Fig. 9(a). What we want to evaluate
is the corresponding pion-production diagram
with an S, I', T neutral-current incident instead
of a pion, as illustrated in Fig. 9(b). (The s-
channel Born diagrams contribute only to I =

&

amplitudes, and so make no contribution to res-
onant pion production in either ease. ) The static
model relates the two processes of Fig. 9(a) and
Fig. 9(b) by regarding them as resulting from
the action of the same linear operator acting,
respectively, on the static-nucleon limit of the
pion-nucleon or current-nucleon vertex. A sim-
ple calculation shows that the static-nucleon l.imit
of the pion-nucleon vertex appearing in Fig. 9(a)
is

t -.- ta(p.)r.a, ~&a(p, )4&i „„,,—2M X» c kX»X, ~iX, tj&»
limit

(B2)

permitting us to identify the linear operator by
comparison with Eq. (Bl). Taking then the static-
nucleon limit" of the current-nucleon vertex ap-
pearing in Fig. 9(b),
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ykI ((-y, ) (k.)lk.k'"'(k*)+Z.k'™(k'),)l, (k)

(~)
+uk& (1-y )yy(k )g~ T (k )y "+ (y ky-yyk~)y (P~ky Pyk~) —'yz(k )I

N N

„,„;Xkma
'

vX&~X2 ~~X~(25k, ) +terms proportional to X„X„[which do not excite the (3, 3) resonance],
limit

(as)

we can immediately identify the pion-production
matrix element as

a = v(1 —y, )v
6

8w M))(
(s/s)

JR"'"'=- " "
X (3q-o. qa) vX a'~"g„(q~' sl E

G
4 sin(-,' 8),

2 mv (ae)

a(s/s) X&~q[z(s/2)] (a4)

v= -ag~ E (k ) -2iag ' (k, xk )
N N

with a+ "being the isospin matrix element tabu-
lated in the final column of Table I, and with v
given by

b= ~ vo(1-y, )v

G (k,ekmo)~2 2
(, g) (k, —k, —ik, && 5,).

As we have already noted, Eq. (a5) contains
no scalar contribution. To get the leading non-
vanishing scalar contribution to the matrix ele-
ment we use the multipole expansion method,

+ 2bgr Tki"(k'). (a5)
ISOBAR1C FRAME

The quantities a and b appearing in Eq. (a5) are
leptonic matrix elements, which may be written
in terms of the isobaric-frame kinematic quan-
tities defined in Fig. 10 as

k)

q

P2
"' '

Pt

(0)

A h
(kt xk2) x k

sin 8

A A

k)xkp
sin 8

FIG. 9. Diagrams describing the contribution of the
crossed nucleon Born diagram, with resonant final. -state
rescattering, to (a) pion-nucleon scattering and (b)
current-induced pion production. The wavy line denotes
the incident current.

(b)
FIG. 10. (a) Isobaric frame angle between the initial

and final, neutrino directions. g)) Axes and angles
which specify the final pion direction g in the isobaric
frame, withe being the direction of the momentum
transfer between the neutrinos.
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carrying along the pseudoscalar (but not the ten-
sor) term as a check. We begin by isolating the
I= —', parts of the scalar- and pseudoscalar-inter-
action pion-production matrix elements, and by
writing for them a general. invariant decomposition
between nucleon spinors,

S +(+2)g(h2) + &(3t2)g(3/2)r E E

ygP a(1/2)P(1/2) ~a(3/2)P(3/2)
(B7)

s(~2) = a u(p2) [Ayo+ B(g+ l[I)yo]u(p, ),
P(~2) =au(p2)[c+D(g+ h')]u(p, ),

with a~ ' 2) as tabulated in Table I and with a
being the lepton matrix element of Eq. (B6). The
Born-approximation contributions to A, . . . , D
may be read off from Eq. (19a) of the text,

S(42) )(t Q (2l y 1) (Ils h($2) ylls h(3/2))
l=p

x P((cos(p))(»,

P'~' =)(, g(2l+1}(li„g,~' +ll, g,~ ')
l=o

(B9)

x P, (cos(p))(»,

with (P the pion-current angle defined in Fig. 10
and with the scalar-current transition operators
II „related to the angular momentum projection
operators II» by a Minami transformation,

We introduce muI. tipole expansions for 8 +', P +'
by writing

AB F(3)(k2)S3 S V+ VB

BB = gS, FS("(k') (" ),
(B8)

l+1+g L / -o'' L
(BIO)

C =0,

D = —gP, EP(3)(k 2) ("
)
.

Carrying out the differentiations implicit in the
angular momentum operator L acting on the Le-
gendre polynomials, Eq. (B9) gives

=)(t2 g[[(i+1)h,~+2 +lh ~ ]o q P( cso()p+(v k —cos(po q)(h ~' —h ~')P', (cos(())])(»,
1=p

(B11)P(~" = )(„gg(l + 1)g(', "+Ig'~" ]P,(cos(p)+ i o' (qx k)(g', "-g', ")PI(cos((())})(„.
l=p

Using standard Legendre polynomial identities to invert Eq. (B10), the multipole amplitudes can be ex-
pressed in terms of the invariant amplitudes:

+1
h(~2)= "a-' dB (~-2') P" " P, (s)-g+2Wa) P'"

p2p+ MN P„+MN
(B12)

0 l12„= " z-', dz [C+2(tr —Zd„)D]D, ( ) [ —Czz2z(trzzd„)D] " " '"
( D)I, z

N P].p+ N P2p+ N

O„=[(p„+m„)(p„+kf„)]~2.

Substituting the Born approximation of Eq. (B8}into Eq. (B12)we find

h( /) 32= B1+ a gs3 s (' ) gr (~ W)
P2o- N q (P) (M W)

Plo™N q (P

-M -M(3/2)B 1+ a gP3 P ( )gr
(W ~ )q (P) (W ~ )

Pla™N P2O™N q (P)

P =(-2P..k.+ k')l(2i ql I kl) (R.f. »).

(BI2)

h(3/2)B a y'(3)(k2) q(]2[ k[
1+ - SS S g'r 32M 2~

N

(~2)B, P(3)(„.)1+ P3 P gr 3 M 2

(B14)

Taking the static limit, in which P- —~, Eq.
(B12) then yields

Finally, using the unitarization procedure de-
scribed in the text we get for the resonant seal.ar
and pseudoscalar pion-production multipol. es

g(3[)2) g(F2)B (3[t2) ( 3/2)B (B15)

with r defined in Eq. (28) of the text, and with
s=r or s=cos63 3 depending on whether the scalar
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amplitude is unitarized according to the procedures
of Eq. (27) or Eq. (30), respectively.

Combining Etls. (814)-(815)with Eqs. (811)
and (87) we find the resonant pion-production
matrix element:

o' qk+2iqxk
ws =ag's3 s 2Mg(d

Using the identity

2 g„8@M„f~i+2i
(817)

we immediately see that OR, of Eil. (816) is iden-
tical to the pseudoscalar term in the static ex-
pression of Eqs. (84)-(85), as expected. Hence
we identify

(818)

as the leading approximation to the complete
resonant pion-production matrix element.
Squaring, spin-averaging, and integrating over
pion angular variables yields in a straightforward
manner Eq. (31) of the text. 'o
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