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Spin-2 quantum field theory in Schwarzschild space*

David G. Boulware
Physics Department, University of Washington, Seattle, Washington 98195

(Received 7 April 1975)

The theory of a quantized Dirac field in the maximal analytic extension of the Schwarzschild metric is

presented. The wave equation and its properties under the continuous and discrete symmetries are reviewed,

the Green's function is constructed, and the vacuum state so defined is shown to be stable. The excitations of
the system are exhibited and the reduction formulas for the states are given.

I. INTRODUCTION

In a recent publication, "the scalar field was
quantized in the maximal analytic extension of
Schwarzschild and Rindler spaces. The Rindler
space quantization yielded precisely the usual
quantization when expressed in terms of the Min-
kowski space to which the Rindler space is equi-
valent. The Schwarzschild space is more com-
plicated because the time dependence of the me-
tric within the past and future event horizons is
real; nevertheless, it was possible to find a quan-
tization condition that yielded a stable vacuum the
energy of which as measured from infinity is a
minimum. ' The purpose of this paper is to exhibit
a similar development for the spin-2 field. As ex-
pected, the development goes through just as be-
fore, with precisely the same conclusions: It is
possible to define a global stable vacuum despite
the time variation of the space-time in the inter-
ior region.

In Sec. II, the Dirac equation and parallel trans-
port in curvilinear spaces with a set of local
Lorentz frames is briefly reviewed, and the
stress-energy tensor for a Dirac field is derived,
while Sec. III is devoted to the specialization to the
Kruskal space-time and the derivation of the rad-
ial equation. These sections are, essentially, a
review of the existing literature and are included
for completeness and to establish notations, con-
ventions, etc. The angular and spin eigenfunctions
of the total angular momentum and parity are also
exhibited. The properties of the solutions to the
radial wave equation in the four space-time re-
gions and the continuity conditions across the
event horizons are discussed in Sec. IV. The
Green's function is constructed, its symmetries
exhibited, and the wave functions and reduction
formulas are exhibited in Sec. V. The stability
of the vacuum is briefly discussed in Sec. VI.

II. THE DIRAC EQUATION IN CURVED SPACE- TIME

The Dirac equation in curved space-time has
been extensively discussed; for a more complete

treatment the reader is referred to the articles
of Brill and Wheeler, ' and of Kibble' and the re-
ferences given there.

The Dirac equation is generally given in flat,
Minkowski space-time; it is a field equation for
a spinor field defined relative to Minkowski coor-
dinates. Locally, one may always introduce such
coordinates, and define the Dirac spinors or what-
ever other field components one has relative to
that basis. In general, it is convenient to intro-
duce a set of orthonormal basis vectors, e„at
every point of space-time, with inner product

e. eb=q„, (2.1)

where

b b'
Aa Aa' Obb' Oaa' '

(2.2)

The infinitesimal version of the Lorentz trans-
formation (discrete transformations are discussed
in Sec. III) is

A, (x) = 5, + 5&@, (x),

where

s~.,(x)+ O~,.(x) = O.

(2.2)

Under these transformations, the spinors (or
other fields} transform just as do the correspond-
ing fields in flat space-time:

y(x) -g'(x) = e'~aa *' 'q(x),

the infinitesimal version of which is

P'(x) = g(x) + i i5(u,~(x)S"y(x),

where S' is the generator of Lorentz transforma-
~ions on the spinor.

The orthonormal basis vectors may be expressed

where the sign conventions of Misner, Thorne,
and Wheeler' will be used, —q~=g»=1 and g,b=0,
aeb. The basis vectors may be chosen indepen-
dently at each point and, further, there must be
invariance under Lorentz transformations of the
choice at each point,

e,(x}= A,'(x) e,(x),
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in terms of the more usual coordinate basis vec-
tors' s/sx"

V„l(=Sag —2ig' ue„=g(- V„), (2.10)

e,(x) = e,"(x) (2.5)
and the covariant derivative of a bispinor I" is

&„(r')= s„r'+ ~',„r'+!i[S",r'] &„„, (2.11)
in terms of the vierbein components e,"(x). The
covariant derivative of e, is

Vvea=ea v p8X

p b=e, .„e &eb

b= —(d eb

which vanishes for F' = y'.
The commutator of the covariant derivatives

yields the curvature tensor in a coordinate basis;
here

([V V ]f) X ftx f a ftv f x

cd X+ g2$ Rcd„vfa

where

b= aveb ~ (2.6) where

R .„,=- r.„„-r.„„+r,„r.,—r„r.„ (2.12)

f v sf u+r-„ f
rXv =g 2(ZXa, v+gva, Z gXv, a) ~

pg 1

and the covariant derivative of a vector, A =A'e„
is

V, A =(A' „-A'&u, ', ) e, ,

that is,

(V„A)' = (Sv 5'v + &u'»)A

(2.7)

is the covariant derivative of a vector expressed
in terms of the components relative to the ortho-
normal basis, e,. A vector is, of course, just a
special case of a general spinor, and the covariant
derivative may be immediately generalized to

V„q =(s„+.'iS"~.,„)g, - (2.8)

which is covariant under local Lorentz transfor-
mations of the basis vectors e, with respect to
which the spinors g are defined. The matrix S"
is the generator of infinitesmal Lorentz trans-
formations for g.

In the Dirac theory it is desirable, if not essen-
tial, to employ both sets of basis vectors, the
usual coordinate basis and the local orthonormal
basis; hence the covariant derivative must be gen-
eralized to include the parallel transport of ordin-
ary vectors, Lorentz vectors (defined relative to
the local frames), and the Lorentz spinors. Con-
sider a spinor f'(; the covariant derivative is
then defined as

+(o'»f'(+ ~ is"~,u„f'( (2.9)

and transforms as f'(, under both coordinate trans-
formations and rotations of the local frames. Note
that under this definition, g&„e, , and any Dirac
matrix y' have vanishing covariant derivatives.
The latter property is somewhat complicated:
For Dirac spinors, $' = ~0', g=gtP, and Po' ~P

=0"; thus,

and

c c
Rba pv bav, p ba p, v bc p av+ bcv a p

0 X= eb)ea R opv &

with the latter equality following from the vanish-
ing of the covariant derivatives of e" and the pos-
sibility of converting the Lorentz index a to a ten-
sor index 7. It is now straightforward to write
the Dirac action in curved space; the Minkowski
action is

d gg —.y &, +m (2.13)

1
W= — d4g -g '/'

g —.yaV +m (2.14)

where &, -=e,~&„and the ordering of the factors is
immaterial because [~„,y']=0, with 0& now being
considered as an operator acting on everything to
its right (or left for V„). This action is unique
modulo curvature terms and the only possible term
linear in the curvature is Agg which must vanish
in the absence of other matter. (Possible Q y,V,P
and gy, g terms may be eliminated by standard
transformations of the field. '}

The field equation is then obtained by varying g,

, 1' —. V +m tl) =0
2

(2.15)

while the variations of the viexbein fields, which
are not dynamical, yield the stress-energy tensor

d'x ae'„&~.. (2.16)

where units in which I =c =1 are used; B,=-S/sx'
-e/sx' and this may be made covariant by convert-
ing the ordinary derivative to a covariant deriva-
tive and including a factor of (-g)' ' —= (-detg) '
to make the integrand a density,
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(2.17)

However, the action is identically invariant under
local Lorentz transformations, hence if 5e'„
= 5ro'b e'„ the variation must vanish, or

rlab cl'ba 0

(2.18)

In order to calculate the variation, the identities

(v.()g„+v, gg.„-v, gg,.
and invariance under coordinate transformations,

8'u =ox'e'„, +~x' „e

and

5(d b
= — (5e aeb —e 5ebc)

+ be'eb (Vc&gi. V~-~gcc)

(2.19)

implies are useful and lead to

5,Q'=+ d x 5e'&e, "8+58'&e, eb"g y 2. V&+ —.V&y g —&g y', S' ge, "Geo,~,2s 2z

d x5ea e'"2+ eb" 4y —.verge' 4 eb~vc g y', S' )+ y', S ' + y, ")g (2.20)

This form for &"' is manifestly symmetric with
the exception of the two terms in bold parentheses;
with the aid of the wave equation and the relation

cV Sab Va b Vb a+Sab cp
g

they combine to form a symmetric result. The
last two terms cancel identically, leaving

5, W'= d x5e, -g)'i'

equation is real and the fields may be chosen to
be Hermitian. If they are not already Hermitian,
let

0 =(0+0')1&2,

g, =(g —g )l~2i;
then

q y' —. V, y = —,(q, —b y, ) py' —. 0,(q, + by, )

4y" 2,
V'& .eb"V.[g-(-y', S"'f0]

1dax 5e, (-g)'/b g yb —.V'+y' —.Vb g4i 4i

+ total divergence,

and the action may be replaced by

d'x5e e' &""
ap v

where y"=-e "yaa
The symmetry, Eq. (2.1'I), is manifest in the

second form, while the confirmation of covariant
conservation requires the relations

d x -g)' q gP y' —,V, +m2i

and, likewise, the stress tensor acquires an addi-
tional factor of ~ and g

The only possible complication is with neutrinos
for which (1 —iyb)g =0; this implies that

and

a a cdy' —. V, Vb 0 = (- mVb+ y s Rccab)f

a b

= (m' - V, ~.—bS"S"R.„,)(c,

and only one field survives: If the neutrino has
only one helicity, a single Hermitian field de-
scribes both it and its antiparticle with the oppos-
ite helicity.

from which it is easy to show that V'"" is con-
served.

If a representation of the Dirac matrices such
that the y" are imaginary is chosen, the Dirac

III. THE DIRAC EQUATION IN SCHWARZSCHILD
COORDINATES

For the Schwarzschild space, the metric in
Schwarzschild coordinates is given by (units in
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which' =c =6 =1 are used)

ds = —(1 —2M/r)dt2+dr /(1 —2M/r)

+r (d8 +si n'8d$2) (3.1)

r* =r+2Mln([r —2M[/2M); (3.2)

for the entire space-time. There is a coordinate
singularity at r =2M and a real singularity at r =0.
The maximal analytic extension of the metric has
been given by Kruskal, ' and the full space-time is
shown in the Kruskal diagram of Fig. 1. Region I
is the ordinary exterior region, r&2M, while F
is the future interior region, r &2M, P is the past
interior region, and II is a second exterior region,
every point of which is spacelike with respect to
every point of I.

The metric has the same functional form in each
of the four regions and t runs from — to +~ in
each region. In region I (II), t is a timelike coor-
dinate and the direction of increasing t is towards
later (earlier) proper times. In regions F (P) r is
the timelike coordinate and decreasing r is the
direction of later (earlier) times; the t coordinate
is the spacelike coordinate. The coordinate singu-
larity at r =2M, t=t may be removed by choos-
ing coordinates v = t+ r *, where

FIG. 1. Maximal analytic extension of the Schwarz-
schild metric.

dinate basis, the nonvanishing elements of which
are

I'00 = (1 —24) I',o

= —(1 —24)'I'„'

= —P'(1 —24 ),

then physical continuity requirements must be im-
posed across the event horizon, r =2M. Alterna-
tively, both singularities may be removed by em-
ploying Kruskal coordinates

u=a 4Me' t'" cosh(t/4M),

v =+4Me' t'" sinh(t/4M),

for regions I and II, and

and

i =sin28I' i
33 22

rsin2-8(1 —24),
I' ,'=I' ' =1/r,13 12

' = —sin'8 I' '
33 23

= —sin8 cos8;

(3.4)

u =+4Me" t'"sinh(t/4M),

v =+4Me" t'"cosh(t/4M),

for regions F and P, and

ds' = —(2M/r)e ~"&'"'(dv2 —du')

+r (d8 +sin'8dg ).

(3 3)

the results are collected in Table III.
It is now straightforward to write down the Dirac

equation, [y'(I/i)V, +m]/=0, as

1 1 . ,!2 1 1
rsin 8 i rsin8 i

m+y' . ,&
—. Besin' '8+y . —. 8&

+e ——.8, +y —gg ' —. ~„se ' rr' 1 i1 i!21 i!2
QJ 2

The two obvious choices for the basis vectors
of the local frames' are unit vectors along the
coordinate basis vectors or along Cartesian vec-
tors oriented relative to fixed orthogonal direc-
tions (the spherical symmetry makes such a speci-
fication possible in the exterior regions). It is
more convenient to orient the local frames rela-
tive to the coordinate basis; the ~2erbein compo-
nents e," and e,„ in the Schwarzschild coordinates
are given in Table I with 4 =-M/r while those in
Kruskal coordinates are given in Table II.

The affine connections in the orthonormal basis,
v~ „=e,"e&z.„, may be calculated directly from
the affine connections of the Schwarzschild coor-

for r & 2M and e = 1 (- 1) in I (II), and (3.5)

1 1,2 1 1
m+ . » —. 88sin't28+ . —. 8@r in's~ 8 i rsin8 i

y —ze! —. B„zv!r ———. ] /=0,o1,21,2 y 1
r 2 W 2

au(r) -=[1—M (r)Pt'

for r &2M and e=1 (-1) in F (P). The appearance
of the e's reflects the differing directions assoc-
iated with increasing t.

Just as in flat space, the spherical symmetry
implies the existence of a conserved angular
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TABLE I. (a) Vierbein components e, ~ for Schwarzschild coordinates. The local frames
are oriented so that the axes are parallel to the coordinate axes. The upper signs refer to
regions I, F while the lower signs refer to regions II, P. (b) Vierbein components e, „ for
Schwarzschild coordinates. %he sign conventions are the same as for (a).

Lore
inde

hwarzschild
rdinate index

+1/(1 —24)1/2

r&2M

+1/(24 —1)
r &2M

(a)

+(2@ —1)'"
r &2M

*(1—24) i/2

r&2M

+(1 -24
r&2M

+(24? —1)
r&2M

(b)

+1/(24 —1)"2 0
r &2M

+1/(1 —24) '/' 0
r&2M

(1/r) sin0

r sin0

momentum in addition to the conserved energy
(momentum for r & 2M) associated with t transla-
tion invariance. Because of the latter, one may
obtain the Fourier transform of the equation with
respect to t, replacing (I/t)&, by —&u. In Cartesian
coordinates, the generators of rotations on g are
J =rx(1 /t)&+ ,5 which -only refer to the angular

variables, g and 8. However, to complete the
parallel, the spinors must be rotated so that

Rr yR '=y', R~'yR =y,
and

R g yR '=y',

TABLE II. (a) Vierbein components e, j' for Kruskal coordinates. The local frames are
oriented so that the axes are parallel to the coordinate axes. (b) Vierbein components e, &

for Kruskal coordinates.

Lore
inde

Kruskal
rdinate index

f-l
0
0
0

(a)

0

f -1

0
0

0
0

1/r
0

0
0
0

(1/r) sin0

f [e-r/2N(2 M/r)]1/2

-f
0
0
0

(b)

0

f
0

0
0
0

r sin0
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TABLE III. (a) Components of co~ for x&2M presented as an ab matrix, (a„) &. The
upper signs refer to regions I, F, while the lower signs refer to II, P. {b) Components of
co~„ for r &2M.

(a&

@Igt

+sin(9 {2C —1)'~'a ~

~pe(1 24 )
1/2

+6~@{1—24) ' sin 0

(b)

~e(l 24)in

6~ cosg

g {2@ 1) ']/2g e

cos06~

+6 ~(1 —24)'~2 sing

-6@cosy

+sino (24 —1)"~5@

-cosa b @

this is achieved by

e-fxo /4 &-&{r/2-e)a /2e& 4o /2

and the generators of rotations become

1J = —. 8~

J =e ~8 —cotg —.~ +-&i@ 1 1
* e 2 sine

(3.6)

(3.V)
P=P2, ~ =P„ ~1 3& + ~1 1 &

2= 3=

f'= —ipse„y = —~pP» y =~OP»3= 5

Dirac equation 5).
The matrices i Py'y' and i Py'y' anticommute

with each other and commute with P, e', and y',
it is therefore convenient to take the representa-
tion of the Dirac matrices to be, in terms of a
direct product p(so of two-dimensional matrices:

Note that the derivatives are not covariant deriva-
tives acting on the Dirac field, but are the general-
izations of the Lie derivatives for spinor fields.
It is then straightforward to verify that

[i,n]=o,
where S is the Dirac equation operator given in
Eqs. (3.5) and J represents the three operators
displayed in Eq. (3.V). The commuting operators
J, and J2 do not completely characterize the angu-
lar and spin dependence because the total angular
momentum includes both orbital and spin angular
momentum. However, the two possible states,
j = L + 2 are characterized by different parities,
hence they are not mixed by the free Dirac equa-
tion, nor are they by X). The operator k defined
by Dirac to designate the two states, '

k= p(1+8 L),
which in this representation becomes

& = ' Pv v* g. e
—898'»+ v'

e
—eo)

1 1 . ,/2 1 1
sin' '8 i sme

(3.8)

has eigenvalues + (j+ ~) and commutes with the

k'JJ, (8, Q) =k "JJ,(8, Q),

J,'JJ, ,'(8, y) =m "JJ„(8,y),
&"Ja (8, 0) = (k" - l)Jp '(8, P)

(3.9)

to form a complete orthonormal set in that sub-
space

rd8d8sin8['JJP (8, Q)] 'JJP (8, P) =6 ' 6~

(3.10)

g & '(8, $)['JJ '(8', 0')]'=6(e-0') „„8
k' m'

Explicit formulas for the harmonics JJk. are given

which is related to the usual representation by the
unitary transf ormation

vr e-frp3/4e-imp /4eimo3/4e4 (1-a2)(1-p2)/41

VpV' = p3 and Vo. 'V~ = p,o'.
Then, the Dirac equation is real, k operates in
the two-dimensional a subspace and the eigenvec-
tors of J, and k completely determine the angular
and (two-component) spin dependence,



356 DA VID G. BOULWARE 72

in Appendix A.
The field g is then expanded in 'JJ and e ' ',

~( ) g w wu-tom'(8 p)
4a'(r~ w)

for r & 2M with e = 1 (- 1) in I (II), and

(m —i a'(tt'/r)

(3.11)

—e[y'w(r)(- i)&„+y'&uw '(r)]) g, .(r, &u) =0,

for r&2M with a =1 (-1) in F (P).
The solutions to these equations are discussed

in Sec. IV. The only remaining task here is to
exhibit the transformation properties of the equa-
tions under the discrete invariances of the space-
time. These invariances are severalfoid. First,
consider the exterior region I. The usual parity
P, time reversal T, charge conjugation C, and
TCP (e) invariances hold. Because g is taken to
be Hermitian, charge conjugation is completely
disjoint from the space-time transformations and
will not be discussed here; also T and TCP are
not independent, hence only TCP will be discussed
with T to be composed from TCP, P, and C if
desired. There is an additional symmetry, that
of mapping I onto II: the two exterior regions are
isomorphic, hence the reflection of u into -u is
also an invariance. In the exterior regions, this
invariance is just the mapping of the functions of
one region into those of the other, but in the in-
terior regions the t reflection is a second parity
operation. The time-reversal operation maps the
interior regions into each other.

First, consider the parity operation in ordinary
Minkowski space-time. It is

(3.12)

but if the local basis oriented relative to (r, 5, Q)
is used, g-R '(r)g and

and g, (r, &u} is a two-component vector in the p
subspace which must satisfy

(m —i o.'(k'/r)

+a[-y'ww '(r)+y'w(r)( i)-S„])f,~(r, &o) =0,

IV. SOLUTIONS TO THE RADIAL WAVE EQUATION

It is straightforward to discuss the behavior of
the various solutions to the radial equations. In
terms of the representation given in Sec. III the
radial equation becomes, after multiplying by

k' d
mp +p —+e p w —. ———

gz (r, w) =0,2 1 W

for r & 2M with c = 1 (- 1) in I (II), and (4.1)

k' 1 d promp+p ——a w —. —+ '
g (r w)=0,2 1 id' w

and, because the transformation is antiunitary,

eg(t, r, 8, P)e ' =p,&r, g~(-t, r, v —8, w+Q)

(3.14)

in the regions I and II. In P and F, the same re-
sults hold except that the coordinate labels now
refer to the interchanged regions.

In order to obtain the transformation which inter-
changes I and II it is easiest to consider the parity
transformation in F. That transformation re-
verses t and may be chosen to leave P and 8 un-
changed. Then, the transformation may be taken
to be

Pry(t, r, 8, P)Pr '=p-, o,q( t, r-, 8, y), (3.15}

under which the action is invariant in both F and
P; in I and II, the action is also invariant if the
regions are also interchanged. The o2 factor
causes a change of the angular momentum-parity
eigenvalue k'; however, the large components of
the new wave function have the same orbital angu-
lar momentum as did the large components of the
old wave function. The change in k', for a parti-
cle at rest at infinity, reflects the change in the
intrinsic parity associated with the particle in
the two regions (I and II); this change is necessary
if the parity, P&, is to be continuously defined
over the entire space, specifically within the re-
gions F and P.

Thus, the parity operation is

Pz g(t, r, 8, P}Pz '=a, g(t, r, v —8, Q+w) (3.13)

and it is straightforward to verify that the action
is invariant under this transformation in each
region.

The TCP transformation may be similarly in-
ferred,

R~(r)y'R~( r) =iy o3'-=p, o3,

for r & 2M with e =1 (-1) in F (P). For large r,
r*-r and the two possible asymptotic behaviors
are

f [w+ q(w)]'t' )
a iq(td)r

(re[(u+q(w)]' ' f
'

hence the two independent solutions may be char-
acterized by their behavior at infinity,
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~+a '" . 2m2Mi;,(r, ~l
(

(

r»»p ~ ir r' ~ (rr ~ 0—
26 M —tg

) (~-q)" } [
(t((, (r, (d) ~ . ,/, l Sexp —iq r*+ lnr + 0

ie(()(+q)' ' j ( q (
r

(4.2)

(4.3)

where Im((d')' ' & 0 and Im[(») s ((») )'/']~' & 0. On the
first sheet, the functions g" and g

' ' are analytic
in the cut cu plane except that g has poles along
the imaginary (v axis. [As is familiar from
Bessel's equation, for (v =+ in/2M the two inde-
pendent solutions behave as (r —2M)" and (r —2M) "
+ + (r —2M)" ln(r —2M) rather than (r —2M)'".]
As there are only two independent solutions,

q,
' (r, (d) =u '((v)&(I)(r, (v)+P ((d)qf')(r, (e)

and

&~ (r, (0) =r' ((d)4'(r, (d)+()' ((d)4"(r, (d)

(4.4)

where q((d) = ((d' —m }'/' and the branch is chosen
so that Imq & 0 and the branch of (&() +q)'/' is chosen
so that Im((d +q)'/' & 0 with ((() +q)' '(&») —q}'/' =rn.

~] ~2 1/2yeNear r =2M, the solutions behave as e"
hence two other independent solutions may be
chosen:

)/ [ (+2)1/2]1/2)
q(i)(r )

l

pi((d )~ ~ri'
2 1/2 1/2

horizons. This was discussed in Ref. 1 for a
scalar wave, where it was shown that when a wave
packet was constructed using

-(~i ()(['(r» (»))

ru'/'(r) '

the wave propagated across the event horizon for
which ()t+»((d2)'/mr* remained finite, that is the
t =+~ horizons for ((()')'/' =+(d, and ()((' propagates
across the other horizons. Here the additional
factor of so

' ' intervenes and, although the wrong
wave vanishes across event horizon when used
to form a packet, the correct wave is still not
continuous. This is due to the misalignment of
the local frames with respect to which the spinors
are defined. Not only must continuous coordinates
be used but also the local frames on each side of
the event horizon must be aligned so that the unit
vectors are parallel.

In order to align the local frames, first express
their basis vectors e," in terms of continuous co-
ordinates u and v (the angular variables 8 and 4)

are already continuous as are the unit basis vec-
tors parallel to them). Then

The consequences of the various symmetries
are recorded in Appendix B.

In the interior regions only the behavior near
r =2M is of interest, and the forms are analogous
to those in the exterior regions:

g t 8IM re"=e —+e"—
&r

, Bv „ Bvu g r
r

(4.6)

(/ [(d p ((d2)~/2]&/2 )
~(s)( ) ~

l

v i( ()»»~ r/i
i[~+ (~2)i/2]l/2

(4.5)

The radial equation, Eq. (4.1), is invariant
under (1) complex conjugation and k'- —k', (v- —(()*, and (2) multiplication by p„(»)- —((), and
4"'- —O''. The first is the Hermiticity relation
while the second is a parity transformation, in-
volving reflection of the t coordinate; the full
transformations given in Appendix B are found

by combining these with the first and second trans-
formations of the spherical harmonics given in
Appendix A [Eq. (A15)].

The remaining task for this section is to dis-
cuss the boundary conditions across the event

and the vierbein components inside and out are
given by

( V

e,"= 0 u/v
1 I v l/w4M

on the outside (I or II) and (4.7)

(" "l
e," =

1
0 v/u lul/w4M

k./. 0)
on the inside (F or P). The discontinuity is here
in the vierbein components even when expressed
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in terms of continuous coordinates; the time axis
is rotating closer and closer to the light cone as
the event horizon is approached. This can be
avoided by reorienting the frames; a Lorentz
transf ormation,

,), (+)(
(t/kii)a v'k' (r &) iwie

( cosh(t/4M) —sinh(t/4M}
!

(2

(—sinh(t/4M) cosh(t/4M) j
(4.8) ~ ~

!u+ v! ' '" (r/2M)'/4
0

4M (!u+v!/4M) (i (2(u)' ')

produces

e-
a

fl 0
r/4Ne

0 1)
(4.9)

from either side which is continuous for the event
horizon u= v. Thus, similar arguments for the
other 3 cases imply that for cu just above the real
axis, co -u+ ic, $ " is "continuous" across the
t=a~ event horizon and just below, e + —ic,
g~' is "continuous" across the t =+ ~ event hori-
zon. No additional factors need be included.

on either side. The Lorentz transformation is a
boost —t/4M in the t -r plane, thus the spinors
must be transformed by e '~' '"~ ' =e ' '" ~

which in the representation used here is e '~'" I'~

and, when used to form a wave packet,

(i/8)()a, i, (k)i ) i(et/ I/2
ya& ir ~ e

should be continuous across the event horizons
at which it does not vanish. First, let ((L)')'/' =w,
then

V. THE GREEN'S FUNCT1ON

With the properties of the solutions to the wave
equation in the various sectors in hand, the pro-
cedure for constructing the Green's function fol-
lows exactly that given in Ref. 1a for the scalar
field, thus only those aspects which are different
will be discussed here.

As before, the Green's function is to be the
time-ordered product of the fields, but now the
fields are fermion rather than boson fields, hence

i(0[ () (x)p(x')! 0), xw J'(x')

S(x, x')= —i(0)y(x')()(x)!0), xaJ'(x)
i(0!g(x)() (x')!0)= —i(0) () (x')() (x)[0), (x, x') spacelike,

(5.1)

where g has been taken to be a Hermitian field.
As with the scalar field, S may be expanded in
spherical harmonics and Fourier transformed
with respect to the t coordinate: or

&&+ &~ S & &I g & &I &)&/2 (5.4)

&-iw(i 1')Sk'(r r~. )-
2m

(5.2)

and, owing to the anticommutation relations,

(5.3)

where n is a unit timelike vector lying in the for-
ward light cone,

w(r}(mp, p+, k' r/) +c p, —. —~ S (r, r'; ~)
1

' s dr*

= 5(r -r') w'(r),

(5.5)for r & 2M and E = 1 (- 1) for re I {II), and

w(r)(mpk+p, )i'/r)+e —. —wp, S (r, r';&a)
1 d

dr*

=5(r -r')w'(r),

for r & 2M and e =1 (-1) for r&F (P); in all cases
the 5 functions are taken to vanish if r and r' do
not lie in the same sector. Foi r, r'EI or II, the
Green's function must be well behaved as r —~ or
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and the application of the wave equation, Eq. (5.5)
yields

1 = ep»[0» (r, &u)II»"(r, &u*)'A» (&u)

or

and

+0"'(r, ~)Ol (r, ~')'&, .(~)]

III»&'I(r, &u*}tp,III» (r, tu)eA» =1

II», ,(r, &u») p, III»')(r, &u)eB». (&u) =1,
hence

Z

S (r r &u) =
2(»p/»

x [8(r r')III» —(r, tu}IiI»&'I(r', tu*)

+ 8(r' r)eq»&;I(r, -&u)y», (r', &u»)'].

(5.'7)

The antiunitary TCP transformation yields the

negatively time-ordered product rather than the pos-
itively time-ordered product considered here; how-

ever, since that propagator is obtained by integrating
the same S' (r, r', &u) from -~+i e to ~ —is rather
than — —ie to ~+ie as here it also yields an in-
variance. The choice of Hermitian fields implies
that

S'(r, r'; &u) =-S "'(r', r, —&u)

while TCP implies

(5.8}

p,S (r, r''; &u)»p =S (r, r'; &u*) (5.9)

and the P~ invariance which interchanges the I
and II sectors implies

p,S, (r, r';Iu)p, =S„'(r,r'; —&u), (5.10)

all of which are satisfied identically by the form
Eq. (5.7) with the aid of the transformation pro-
perties of Appendix B, Eqs. (B5}, (B6}, and (B'f).

The Green's function for x~F and x'KI, II may
now be obtained by taking the Fourier trans-
form with respect to cg and then letting x cross
into F. The continuity conditions from Sec. IV
yield the e '

'III»&".I(r, tu) term, and the arguments

2M, and as r- ~ the usual positive-frequency result
must obtain. From this, the usual form for the
Green's function in the exterior region follows,

s' (r, r'; &u) =i 8(r -r')III'»(r, &u}III»&')(r', &u*} A» (&u)

—i 8(r' r)IiI-»&'I(r, tu)III» (r', tu*) B»(&u),

(5.6) 0
S»
c&I

4
&I)

~~4
0
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~&
0
'a

&I)
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0
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Q
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4
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3
~ 4
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give~ in Ref. 1a indicate that there should be no
e 'g~ '(r, id) solution as that would correspond
to iIi(x) having annihilated a particle which emerged
from II rather than I; there are assumed to be no
particles preexisting in II.

Thus

S (r, r'; id}=», . & e(id)
2(d(X (d + S f

x i)ik+ (r, id + i e )4», (r ', id —i e )

(5.11)

for r&F, r'GI, while Hermiticity implies

q(- id)
S (r, r'; id) =+ 7,

x gk. (r, id —i e)iiik')(r', id + ie)
(5.12)

for r'E- F, rEI. Invariance under the various dis-
crete symmetries yields the Green's functions
for the points in all possible pairs of sectors of
which one is exterior and the other interior; the
results are recorded in Table IV, along with all
the other forms for the Green's function.

From these forms, all the states and the reduc-
tion formulas may be inferred. For t&t', and

x, x'~I, the Green's function becomes, assuming
that o.'(id) has no zeros in the complex plane,

i&ol o(x)o(x )lo)= i p0', m'

t&d td(d

0 4lTCO

,
)

i)ik (r, id + ie)$k)(r, id —ie) $» (r, id —I e)gt)(r, id + iE)

gk)(r, id + xe)liik, (r, id —ie) i)if+)(r, id —z e) i)ik, ( r', id + ie)

X i~i 'Sk (e' 4')
r'id'~'(r')

which may be rewritten, using

ilik ('r, id —ie) =[[idi)ik)(r, id + if)/q]+ p (id + ie)»' i)ik (r, id + ik)}/Q (id + 1 f )

and

(r, id —ie) = [gki(r, id + ie) —p (id + i e)$ k( rid + ie }]/iX (id + ik),

for cg&m as

&olp(x) t(x )Io)= Q&olp(x)la)&alt(x )Io)

'9k (q, 4) li'
d

e ' ' i)k(r, ~} 0k(r', ~)
r»ii'~'(r) ii, 4vcd a '( idi+e) a '(id+is)~ ~

(5.13)

~

~

~

~

"4 dq i &,&, i}i'»'(r, id+i ) eg»'(r', id+i@)
2id(q) ] (2v)'~'qa' (id + is) (2w)'~'qu' (id + i e}

i)i» (r, id+i@) & gk (r', id+i@)
(2w&dq)'~'a" '(&d + ie) (2xidq)'~»a'(id + i e)

+ i&a(q)~ »~k& (& & 4i )
m

Sk' (e~ 0) )(
)) d -iui

rur'~'(r) ~t

i) k (r, id) ilk (r', id)

(4wid) 5 (id + if ) (47lid) 5 (id + ie)
~

~

~

~

i~» l gk)(r, (d + if) $k)(r, id + ie)
2id(q) ] (2w}'~'q5'(id+ is) (2w)'~'q5'(id+ i e)

gk (r, id+ ie) gk (r', id ie)+
(2widq)'~ 5 '(id+i@) (2w&dq)'~'5 '(id+ ie) J

iQ/t' Jk~ (e j 4i ) (5 14}r ' kd'~'(r)



SPIN-g QUANTUM FIELD THEORY IN SCHWARZSCHILD SPACE 361

where &=-(q'+m')'t'=re(q) inside the q integral. The wave functions e ' '(' and e ' 'g~'~, respectively, de-
scribe waves which emerge from P and waves which come in from infinity, and each propagates to both F
and future infinity, while e ' 'g and e ' 'g are the time-reversed waves.

To show that n (ur') has no zeros in the complex plane, suppose that it did have a, zero at ~'; then g'

would be regular both at ~ and at r =2M, and

0 & , , qi, (r, ~') ' g', , (r, u '}=
2

. , „ , (~' —~' *)q'„(r, ~ ') ' q,', (r, ~')
2g K (r) 22Im&' g M} (r)

—1

2 Im(d 2g
dr ~ [qa, (r, ~')'n'q, ', (r, ~')]

There is a contradiction; hence n" (&u) has no zeros in the complex plane. Along the real axis, ~ n P

=(i}P+[q/(uP)' ']&0 for Re]&u(&m and n~~P for ]&a)&m, hence there can be no zeros along the real axis
either. In order for the Green's function to satisfy its equation along the event horizons, it must be true
that the "wrong" solutions (t-r* as the I, F border is approached) vanish. This is determined by the &u

-0 behavior of the Green's function, which in turn is fixed by the behavior of n (&u) for small &u. As ~
-0, g' remains finite but gt ' vanishes as v&u, hence n (&u) must diverge as I/W&u, when inserted into the
Green's function; this implies that the "wrong" solutions vanish as 1/(t er*) and the Green's function is
indeed a solution.

For co&m, the states may be labeled by k'', rn', and ~'; then

(0]g(x)ik', m', u&', out)=, i,',',i, , , , = g(x;k', m', ~', out)
'gP (8, q})g~ (r, u'+ ie)e '

='JJ, (8, P)e 'g(r;k', &u', out),

while the in state is given by

(Ol y(x)lk', m', &u', in)=, t, ', ,~,', =—g(x; k', m', &u', out)&~'{8 4)4 ~ (r ~'+i&}
47Bd Q QP + 'Lf

='JJP (8, P)e ' ' P(r; k', &u', in)

(5.15)

and only differs from the out state by a phase because the particle does not have enough energy to escape
to infinity. The scattering states &'&m are defined by

(0~ /(x}~k', m', q', 1, 1, out)= ',
&,
', , ',&». , -=g(x; k', m', q', 1, 1, out)

—= 'JJ~ (8, P)e ' 'g(r;k', q', 1, 1, out)

for the state which represents a particle emerging to infinity in I, and (5.16)

X/2

(0) (}(x)) k', m ', q ', 2, 1, out) = (Ol g{x)]k ', m ', u&', out)

rw'~ (r)(2m&v'q')'~ 5 '(&g'+ ie)

='QP (8, Q)e 'g(r;k', q', 2, 1, out)

for the state which represents a particle propagating into the future event horizon. In both equations, +'
=(q" +m'}'t and the common index 1 indicates that the states are localized in I rather than II. The states
are normalized so that

and

(" q"I" q')=2~'t}(q"-q')/q"
(5.17}
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and, from the anticommutation relations, the radial wave functions satisfy the completeness and orthonor-
mality relations

d(d)'[g(r; k', (d', out)())(r'; k', &u', out)t+())(r; —k', (1)', out)*)))(r'; —k', (d', out)r]

q/2@ I

, [)))(r; k', q', j, 1, out))()(r '; k', q', j, 1, out)

+g(r; —k', q', j, 1, out)*()(r)'; —k', q', j, 1, out)r] =5(r -r')w/r', (5.18)

where the Hermiticity property, Eq. (A15), has been used to write 'Q2 in terms of &J 2, and

g CtV
())(r; k', (d', out) g(r, k', (d)" out) = 5((d' —(d"),

" y'dr
g(r; k ', q ',j ', 1, out) t ())(r; k', q",j ",1, out) = [2(dl'5(q ' —q ")/q" ] 5/ &g W

while the corresponding integrals of (()r, t()), vanish, as do the integrals of ())(r; k', (1)', out)t
x y(r; k', q', j, 1, out). Similar arguments yield definitions for the wave functions in region II,

gzr(r, (d' —it)
0( r ! ! )

(4 [
()1/25l!'( I '

) 1/2( )!

5jg[,)(r, u' —if) 5&$2.(r, (1)' —ie)
r w' 2(r)(22[(d)'[q')1/'5'(w' —is) r w' '(r)(2w) w'j q')' '5'((d' —i e) '

(5.19)

which are exactly analogous to those in region I. Then, the reduction formulas are

w) (ql2 ~m2)1/2

(k', m', (d', out~ = lim
qde

where c =+1, c&'&0, and

'4 dQ(k', m ', q, j, e, out
~

= lim, g(x; k', m', q', j, e, out) (0[g(x),
2X

(5.20)

where the integrations are in region I (II) for e =1 (-1). For the outgoing waves at infinity, the reduction
formulas are correct as they stand even in an interacting theory. The reduction formulas for the waves
propagating into the event horizon are not valid in the presence of interactions because the particles do
not become asymptotically free; they continue to interact with other particles as they cross the horizon,
hence the propagation of particles in the interior region must be considered.

By taking one point in an exterior region and the other in an interior region, the matrix elements of the
field in the interior regions may be obtained. The results, for x in F, are

(5.21)

The reduction formula is then

(t', ', tr', o t)=t'm f dtdttr'tr(r)r'"'dt't(r, tr'()+it))r(0)d(r).
t'~0

Some modification of these formulas is required in the case of neutrinos; their mass is zero (if not, no
modification is required or allowed) and the neutrino states are eigenvalues of (1 —iy, ). The matrix —2y2
when applied to the zero-mass equation leaves it invariant with 4'- -k'; the resultant relations between
the wave functions and the field matrix elements and reduction formulas are given in Appendix B.
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VI. STABILITY OF THE VACUUM

363

Just as with the spin-zero field, it is now easy to discuss the stability of the vacuum,

ol (olo)= ' f d'eoe'„(e)(olde, (*lid)
all space- time

(6.1)

under a variation of M, in Schwarzschild coordinates,

6M [- 5',5„'E/w(r}+6;5„"c/w'(r)], xei (II)

6e'p =

[6', 5„"e/w'(r) —5;6„'e/w(r)], xd.=F (P),

(6.2)

hence

dt 6M I P 1 I 1
6 In(0[0)=i dQ, —(0[ a q((x) y' —.&, —y' —.&, &(x)I0)

g~g+p+F w (r} r 21 2i

dQ
" r'd 6M

dt(0) p (I)(x)(- c('i &, —m p+ iy'k/r)()i(x)[0)
gddW( }r

~ if do
F+P

" r'dr
w'(r } r dt (0[ 2 g(x) (- i &, + m p —Iy'k/r )()l(x)[ 0), (6.2)

which, when expressed in terms of the complete
sum over states, is manifestly imaginary, hence
61n(0[0) is imaginary and (0[0) remains of mag-
nitude 1.

An energy operator may be defined in terms of
the stress-energy tensor density &""=-r' sin8 T"'
and the timelike (in I and II) Killing vector field
6~&, however, the contribution from II is then neg-
ative. Instead, take the spacelike surface t =const
passing through I and II; the normal to the surface
is e," and the energy density in I and II may be
taken to be

e s "d -=e (u) f'", ,

which is not conserved,

a„(~s'", ) = s'", a„c(u)

= v6(u)[f"„(v, 0+ ) + s „(v, 0 -)], (6.4)

but which has vanishing divergence on any surface

do„eel',

y2dy g',

dy 1
(6.5)

If this quantity is evaluated between single-par-
ticle states,

passing through v =u=0. Thus, eV'", yields a "con-
served" quantity for any spacelike surface which
is restricted to the exterior regions. This oper-
ator measures the sum of the energies as seen by
observers in I and II.

If the surface is taken to be a t =constant sur-
face,

(k', ', Il ' )' k)o-(k', ', Ik', ', )(olk', lo)=f do "eo(,k', ', ) k. , k(*k', ,

I+K 2m W 22

(6 6)

but only positive (negative) frequencies appear in
I (II) where e is 1 (-1); hence this is positive-de-
finite and the energy as measured by P, is posi-
tive. That is, the vacuum is the lowest energy

state.
These results should not be at all surprising.

The vacuum states have been defined in terms of
what does (not) appear in the external regions;
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hence the initial and final vacua are just those
states which respectively develop into and from
the state with no particles in the exterior region;
the stability proof provides assurance that no sub-
tleties have intervened. In the exterior region, the
energy is well defined and positive; that energy is
being used to characterize the system.

APPENDIX A

hence

eif $
k'tfp =(j+2)(2 )~2sin' 8(tan~28) oq!!qAq,

(2w)

and y, . must be chosen to be an eigenvector of
EJ~ y

(A 9)

The operators which define the spherical har-
monies are, in the chosen representation of the
Dirac matrices,

1 1 a,8', =e"~ a~q -cot&-. ~@+-i ~ 2sin8 '

(A1)
g~ 1 ~ cr, 1

u= . ~ —. ~,sin~6+ . ' —.&,.single i 6 sine i

(A10)

and the normal. ization factor may be calculated
from

d(cos&) sin" &

lpylf(tan2 b) p~iAy~~A~I

The spherical harmonics Q, must satisfy

J,'g~, (r") = m "JJg. (r"), (A2)

J,'JJ," (r) =[j(j +1)-m'(m'+1)]~/, , "(r), (A3)

and

d(cos &) sin2' '&)A~. !'

(All)~ 2"Hj -k)l]'

k'!1 (r) = k"JJ ~ (r ), k' ="+
(j + —,'). (A4)

hence

The solution to the azimuthal equation (A2) is [(2j)!]'
2J( 1)[

'ba (&) =
(2 )~fa" (&)

The operators 4, may be written as

(tan-.' &)"&'
s ln

x (ade)sin 3&(tanq &)

Then

for a state of total angular momentum j (j +1),
hence

f~ (&) = sin' & (tan2 &) '2 y, A,

(A5)

(A6)

The result of repeated application of the lowering
operator J is then

ellll 4
(j+~ )! 132

(t n &)opl

(2w)' (j —m')! sin"'8

~ sin2'8(tan~ &) '2

acos 8 2'( j ——,')!

(A12)

The f actor upon which &/icos& acts is a poly-
nomial of order 2j in cos6!; hence Q, . vanishes
for m'& —j as it must. The harmonic for m' = —j
is then

where q, is a unit two-component spinor upon
which o, acts and A, is a normalization factor.
The spinor y, . is determined by applying the op-
erator 0,

e-s4 5
qJ '= (- l)t zk [(2 )']~

(2r)IA

sin'&(tan —,&) +
2J( 1)[ 214 (A13)

kN (f) = - f(i+-')o. cot& - .' 'JJg (f')
sin6

which may then be operated on with J, to obtain the
alternative form

= —i(j'+-,"),~ sin' &(tan-,'8) '2
(2 m)'

&o (tan-,'8) "(cot&— . ' ) y, A, .,sin 6)

(AB)

but the factor in square brackets is equal to —o„

(2m)' ( j+m')! sin 8

sin" &(tan& 8)"~

~ ~icos 6) 2 (g —2)t

From these forms the relations
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&; (»)*= -i(-1) 'k(k'/I k'15::(»), (I,)"(r,~)„~„., exp[st(u)'} r*]. (B4)
u.'(I; (») = —t(k'/I k'I)'(I .(»),

opg, , (- r) = i(k'/I k' ))(- I)' 'knJ, , (r)

= i-(- I)'JJ ~ (»),

(A15)

vrhere / is the orbital angular momentum of the
large components in a Cartesian basis, and

&,~J~ (-»)*=(k'/Ik'I)(-I)' 4 (»)

are readily derived; the first, third, and fourth
equations are respectively the transformations
under complex conjugation, parity, and TCP while
the second equation is the result of applying the
other three; it is also the transformation required
for the interchange of regions I and II.

[ ll((r, ~)l*= ie-'. (», — *),

[)t)', , (r, u))] + = +i4', (r, —u)+},

[4)(, )(r u))] s ~ i~( )(r ~ s)

for r in all regions.
TCP:

(B5}

e '~ i)~(')(r, ~) continues across an event horizon
with no factors if ~t + (u)2)~r* remains finite;
otherwise there is no continuity condition.

The symmetries of the wave functions are as
follows.

Her miticity:

APPENDIX B

The representation of the Dirac matrices is
P 0's

pal[4'(» u))] = —te())a (» ~ )

p, [O'. (», ~)]'= -t~(('. (r, ~*),

p, [f"'(r, ~}]'= ii")—(r, ~')
for ~BI, II and

(B6)

P=P2~ )' =&P1) ~ = -&P3 3~
1 2—

1 2 3a =P3, u =P, a'3y O =P,o'1,

y5 ~1~2~3

ippogy

(B1)

in I (II) with e =1 (-1), and

[(mp, +p, k'/r) —[ e/w(r}] (id/dr++cup, )] l()r), ~) =0,

in F (P) with &=1 (-1). The solutions have the
asymptotic behaviors, for complex ~,

f'(~)
ik ( I )F ~ 'ef ( )

2m I
xexp+iq(u)} r~+ +-—ln

(B2)f.(~)
(I'a'(r~ (L)) r-~ ef+ ( )

2m M"mv -e() ~'+, i )),q'

f.'( )-=w[~+q(~}]~=+if.'(-~*)'
=f'(u)~)*, Imf '(u)}', 0

q(~) =-(~'+m')~ = —q(~')+, Imq(~)& 0

and in each region

='~3 2~

and the radial equation is in Schwarzschild co-
ordinates,

((mp, +p, k'/r)

+ [ /we(r}] [(-ip,d/dr *}—(u]j(),.(r, &u) = 0,

p,[i."'(r, ~)] 'I F = - i0'."(r, ~')
I '

Parity Pr has no implications for the radial wave
functions. Parity I'F implies

p,4'. (», ~)l(= -iw-, (r, -~)I)(,
p,et (», ~)l) =+i(j', (», —w)l((,

p, ~("(», ~)l (=[i~/(~')'k]4(- )(r, —w)l »,
p i),' (r, }=i[ u)/((u )' ] (I)

' (r, - &u)

within each region for »& 2M(»E P, F). The four
solutions in the exterior regions are related:

4: (», ~) = ~' (~)& ~ '(». w) + &' (~}e."'(r, ~),

~', (», ~) =r' ((u)(t" '(», ~) + 6' (~)i)"(», w),

e' '(», ~) = [ &(&')' /q(w)] [()" (~)((: (», w) (B8}
—P '((u)q) .(r, u))],

~(')(r, )=[e(w')'klq( )][ '( }4l(», )

r' (w)0: (»,—w)l.

The Wronskian is g~.(r, u)*) psyP~. (r, u)) =constant,

&4 (" & ) p )t' (» &) = -i) (» u)*) p 0 (» u))

= 2q(u)),

i((~"(», ~')'p. e' (», w) = —(((~ '(», w')'P. O(~"(r, ~)
2(~2}lk

and

6' (~ ') '&' (&) r' (w*)*P'—(w) = q(w)/(w') ~

Owing to the various symmetries the coefficient
functions satisfy
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(n, 0)' (~)*= (&, 0) ' (- ~*),

(P, r)'(~)'= -(P, r) '(-~'),
(a, P, r, 0)' (~)*= e(~, P, r, f)' (~*),

(~, t))'(~)=&(~, 0) '(-~),
(P, r)' (~) = —e(P r). ' (- ~),

where & =1 (-1) in I (II) and

(n, P)ir' (- ~) = —[~/(~')'k](o', P)i (~),

(r, C)ri' (- ~) = [~/(~')'k](r, 0)I (~).

For real ~, -~~i&,

lJj2l2''(r, (uric}, uj&m

(810}
Q
8

~W

I

V
CII

3

I@J

Ol

M

3

+

3

3

~43+

3
Ag j-j

3

3

3

3

(B11}

=
I
0'(jd + 2 ~) I' —

I
r'(~+ i2) I'

Eq (&d 2 iE)
[(~p i 2)2 ] lj2

j}j2l'2 &(r, cd sic) = jlj&2; (r, jd vie), I ural& m

—Ijl22"'(r, ju v is}, jd & —m

jij,"l(r, susie) =(ju/I ~l}&y',. '(r, ~+i~),

(r, 0)'(jd ~ie) =(P, r)'(uj+i ~}, I jdl &m

and

(oj, 0)' (~ ~ i e) = (ju/I ~ l)(P, r)" (ju + 2~),

I
c' (~~i~)l' lP' (~-*i2)l'

CII

S

0
N

0
b0S
0

0
O
Cd0

3

0 O
4J

P.

3

3

~ega

3

'Q

3

~4f

3

3
I

3
eg M

3

3

3
M

Ag~

3
I

+

The states are

I
k', m', a', out (in}), I

k', m', q, 1, e, out (in})

and

I
k', m', q, 2, e, out (in))

-=I k', m', ~(q'+m2)~, out (in))

where —( cu' & ~, o q( ~, and & = + 1. The
I

uj' out (in)) states represents particles propa-
gating into P from (out of F into) an exterior re-
gion; if ju' &0 (uj' &0) the particle may be found in I (II}
but not II (I). The I. . . , q, 1, e, out (in)) state rep-
resents a particle which escapes to (comes from}
spatial infinity in I (II) for e = 1 (-1), while the
I. . . , q, 2, e, out (in)) states represent particles
which have enough energy to escape to infinity
but which to into F from (go from P into) I (II}
for &=1 (-1).

The matrix elements of Ij(2) between the vacuum
and these states are

cJJ
jjj (g qj)e j 4J

( 0I jjjj(x}l k, m, a) =
j2 I,

I

af (r)

0
8

40

U'

~'pf

4
C8S
C4
C4

C8

O

0
~W

0
0

~Pt
Ol

3

3

3

Cb
Cb +

0

3

3

+ 'E

3

25 Ag

3

3

4b Ag

3

3

3

3

3
I

3

~ eQ

3

3
I

Cb

3

I~AL

I ~

3

&b
Cb +

-=it (x; k', m ' a),

where f' is given in Table V. There,

(B12) M
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~' = e(q'3+m«) if it is not otherwise defined and
when it appears as the argument of an analytic
function (y, o.', P, y, or 5), the function is to be
evaluated at +'+i& for ~'& 0 and at ~' —i& for

cu'& 0. The wave functions of the states with neg-
ative (positive) tu' vanish in I (II).

The reduction formulas are then

&
k', m', q', 1, e, out (in) j = hm

g~k 6 eo
(x; k', m', q', 1, ~, out (in) ) ( 0( g(x),

where the integration is over I (II) for a =1(-1),and (813)

(k', m', &u', out (in)~ = Iim I dtdQr'w(r}y~(x, k', m', &u', out ( n)) &0(y(x),
g ~0 ~00

and the integration is in F (p} for the out (in} state. If the particles are not interacting, the ~ states
can be created in I or II; the reduction formula is

&k', m', e', out (in)~ = iim, g (x; k', m', &u', out (in))&0( p(x),
"r%frdQ

(814)

and the integration is over I (II}for ~' & 0 (&v'& 0).
In the case of zero mass, there is a further invariance,

p«4(r, u&) ,= + [a/(uP) ]y'«. (r, ru),

&,9«.(r, &u) = —[ur/(&a') ]y «,(r, u),

p.4" '(r, ~) = + [~ (/~')~']~' }(r«, ~). -
The states are now to be characterized by their helicity and total angular momentum,

(815)

& oI 0(x)I +,j,m', q', j ', e, out) = ~ ' g(x; j + —,', m', q', j', ~, out),

&0lg(x)l —,j,m', q' j' «, in& = p 'g(x; j +-,', m', q', j', &, in).

Also

(~, I))' (~) = (~, ~) ' (~), (P, r)'(~)= —(P, r) '(~).
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