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It is shown that analyticity properties of scattering amplitudes as expressed by the derivative analyticity
relations can be combined with measured cross-section and polarization data to extract the full scattering
amplitudes in a simple and practical way. The method should be particularly useful in problems involving a
coupled amplitude analysis. The measurement of a complete set of spin parameters, or a phase-shift analysis at
only one energy, is sufficient to eliminate ambiguities in the extraction at all other energies. Our procedure is
illustrated by considering both simple mathematical examples and real data.

I. INTRODUCTION =rReM, —=—s
d
—(ImM, /s),

(2)
If only experimental information is used, it is

widely known that a complete set of 2N -1 mea-
surements are needed in order to determine N
complex scattering amplitudes at each value of the
kinematic variables (e.g. , s, t) up to an over-all
phase. However, if scattering amplitudes satisfy
dispersion relations, then their real and imaginary
parts are related, and in principle only half as
many measurements are required (but over a range
of energies), and the s-dependent phase ambiguity
is not present. Considerable effort has been ex-
pended by many people in applying this method to
data. It is quite difficult to apply in practice be-
cause one needs to know or to make assumptions
about the imaginary parts of the amplitude at all
energies above the threshold for each value of t.
It is, at best, only feasible to apply this method
near the forward direction in a few reactions. A
quick and flexible method to extract physics under
more general conditions would be very useful. It
has recently been shown" that the analyticity prop-
erties of amplitudes which are embodied in (global)
dispersion relations can be equally well imple-
mented by writing derivative analyticity relations
(DAR). These relations for even and odd signature
amplitudes typically' read

)ttn)S, (s, t ) = stan( —S— irtniis, (s, t)/s],
2

ReM (s, t) = tan —
d
—[ImM (s, t],7T d

where y = lns. At energies above the resonance
region, where the amplitudes vary adiabatically
with energy, it is an adequate and controllable
approximation to retain only one derivative. Then
local relations

=mdReM = ——(ImM )2 dg

should hold approximately. Modifications of the
analysis useful when there are rapid variations
will be discussed below. If do/dt is measured for
a spinless reaction in a region of energy such that
the derivatives with respect to Y = lns can be com-
puted (at a given t value), the phase of the amp-
litude can be computed by solving Eq. (2) together
with

s —= (ReM P+ (ImM P.

In the following, we shall demonstrate that it is
feasible to extend this approach, for example, to
to reactions involving spin at any momentum trans-
fer. After a short discussion of the formalism,
the practicality of the approach is illustrated by
constructing several model amplitudes and their
resultant "data" and then retrieving the amplitudes
via the DAB. In addition to demonstrating the
validity of the method, these examples will help
develop our intuition, techniques for handling real
data, and illustrate possible difficulties and how
to avoid them. The method will finally be applied
to a brief discussion of the available data on the
reaction K~P-Esp, Compton scattering, and a
brief discussion of mP and pp scattering at the low-
er energies.

We are optimistic that this method will lead to
significant progress in the art of extracting physics
from data because of its simplicity.

II. FORMALISM

In Ref. 3 it was shown that for an even-signatured
amplitude the dispersion relation
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ReM, (s, t) = —s'P, „2Indlf+(s', t) (3)
2 ~

Qs'

can be written in the equivalent form

7jReM" (s, t) = s'tan —a —1+
d
— [s 'ImM, (s, t)l,

(4)

where a is an arbitrary number (0&a &2 in the
present case) which can be chosen to make the
derivative of the last factor as small as possible.
A similar result holds for odd-signatured amp-
litudes.

A. Phase-magnitude relations

For our present purposes it is somewhat more
convenient, although not necessary, to use an
equivalent result that connects the magnitude and

the phase of the amplitude. If the amplitude has no

zeroes, its phase and logarithm satisfy a simple
dispersion relation. ' The equivalent phase-mag-
nitude DAR is

7T 8
(s t) = —tan ——lnF+ 2 dy

where

M, (s, t)= F, (s, t)e"-"'
If lnF, varies slowly with energy, then

7I d
Q (s t) --—l-nF+92/@+

or equivalently

77 7T g———ln(s 'F, ).'2a 2 dy

For the case of odd signature, one finds

kinematic singularities. It will take some exper-
ience with the method to develop the most efficient
way to proceed, but there are no fundamental prob-
lems in this regard.

B. Single-amplitude case

In the single-amplitude case, in our normaliza-
tion, we have for positive signature

F, (s, t)/s = Z, = (da/dt )"
and

7T '1T Cf

(s t) = —————InR
2 2'

These simple equations have an important physical
consequence for elastic processes at sufficiently
high energy —one expects the differential cross
sections to increase in the forward direction and
the t slope to increase also. This means that there
is a finite value of t at which the function g, is
essentially constant. The "crossover" in the same
signatured amplitude at different energies signals
that the phase is zero at the crossover point or that
the real part of the amplitude has a zero at this
t value. '

C. Two-amplitude case

Let us now turn to the two-amplitude case, such
as meson-nucleon scattering, where both the dif-
ferential cross section and polarization are known.
It is always possible to combine the different phys-
ical quantities so that the amplitudes of interest
have a given signature. Therefore, consider two
even-. signatured amplitudes f„and f, , respective-
ly, the nonf lip and the flip amplitude, where
s 'f„.~= It „~exp(i@~ g, and the data are given as

(s t)- --—lnF-
2 24/
7I' IT 4 - b-—(1+ b) ———ln(s F ).
2 2 4y

(8) and

—Q2 g2 + g2 (10)

When zeros are present (for example, a complex
zero in s at a fixed), the phase gets an extra con-
tribution and this can be easily handled (an ex-
ample will be present later), but in general it is
always correct to use the amplitude written in
terms of its real and imaginary parts rather than
the phase and amplitude. These zeroes can be a
reflection of Castillejo-Dalitz-Dyson (CDD) zeros
in the amplitude and are interesting to study.

One complexity that is present (and will be ig-
nored after this remark) is that one should work
with analytic functions, e.g. , the invariant amp-
litudes, for each reaction rather than the conven-
ient and more physical functions, e.g. , the s-
channel helicity amplitudes, which may have extra

4'P= 2A,+, sin(Q, —P„).
Using the DAR for the phase, as given in Eq.

(7) or (8), the quantity A, can be eliminated, and
the result is a differential equation for g„, writ-
ten in the form

lnz = —(1 —z')sin '[-'P/z(1 —z') 'J
2 lg 2

where

z -=Z„/a .
Given the

data'�(s,

t) and P(s, t), this can be sol-
ved numerically at each t value and the amplitudes
constructed. Note that since this is a differential
equation, there is an arbitrary integration constant
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~d 0(—y, t) = —sip 20(y, t)] sin '[P/sin20(y, t)] .d

(11)

In general, one must solve this equation numerical-
ly. The phases of the amplitudes are given by

md
lnA —sin'0 sin '(P/sin20)

2 2dy

and

m rd= —————lnA + cos'8 sin '(P/sin20) .
2 2dy

If the polarization is small (one amplitude is
small or they both have the same energy depen-
dence) in the sense that sin '(P/sin20)-P/sin20,
then one immediately has the approximate solution

1
0(y, t) = 8 (t) —— dzP(z), (12)

where 80(t) is an energy-independent integration
constant. The phases of the amplitudes are then
given by

w A1+—--P tan0
2 A

w A= —— 1+—+ 'P cot8---2 A

where A' = dA/dy. These phases must be in-
creased by —,'w2 for odd signature. The arbitrary
integration constant 0,(t) must be determined at
y = y, (t} from additional input at each t value.

One interesting feature of these equations is that
while a knowledge of the energy derivative of the
differential cross section is required to evaluate
the phase, no such derivatives are required of the
polarization. Furthermore, Eq. (11) is in a con-

which depends only on t and must be determined at
one energy value from other information such as
spin-rotation parameter s. An alternative and
perhaps more attractive approach is to extend the
analysis down to energies where complete phase-
shift solutions exist and amplitudes can be fully
reconstructed. This boundary condition will then
determine the integration constant as well.

It is possible to rewrite this equation in an in-
tegral form which is very convenient for solving
by iteration and explicitly shows the nature of the
integration constant. One such form can be moti-
vated by defining

g„=A cos8,

g+ ——A sin8,

which automatically ensures the cross section
constraint, and then 0(y, t) must satisfy the equa-
tion

venient form for solution by iteration by starting
off with 8, = 0, and then simply integrating as in
Eq. (12). The data are required only between the
values of y, and y. The approximation leading to
Eq. (12) will be valid whenever P is small because
the amplitudes are approximately in phase or one
of them is small.

D. Line-reversal example

In this paragraph, we will consider a simplified
example of line-reversed reactions. Spin effects
will be neglected so that, for example, reactions
such as m'N-EY and KN-m Y are described by two
measured cross sections

—' (~N) = A' = IR e"+ R e"- P

00—(KN}= B' = (R,e' + —R .
e' —

(

where B,e '~' are the even- and odd-signatured
amplitudes. Introducing the parametrization

A, = Scose,
= Ssin0,

one finds

S' = z (A'+ B2)

and

(A' -B')/(A'+ B')—= T' = sin28 cos(Q —P, ).

Using the DAR relations

r 7td= -- ———lnR+ 2 2 Qy
+

7T d= ———lnR
2 dy

one finds the differential equation

w0' = sin20 sin '(T'/sin20), (14)

E. Including low energies

In this subsection we will discuss techniques that
allow the DAR's to be applied in the low-energy
region where resonances and inelastic thresholds
cause the amplitudes to vary quite rapidly. The

an equation that can be handled as in the case of
polarization.

It is also possible to treat the case of spin in
these coupled reactions where the input information
now contains the two measured polarizations. The
resulting coupled equations are not amenable to a
simple analytic treatment, but they can be directly
integrated numerically.
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procedure here is to rewrite the amplitudes so that
only first derivatives are required. Two different
procedures will be described below, a difference
method and a ratio method.

While it is obvious that one cannot apply the DAR
directly to reactions with a rapidly varying energy
dependence, the analyticity property of the amp-
litudes allows a perturbation theory to be developed
which permits such applications. It also shows the
proper relation between the DAR's and conventional
dispersion relations. Suppose that data on Im

M(s, t) indicate that it is rapidly varying in some
region of s. Define a new function M, (s, t) by

M, (s, t) =M(s, t) —sG(s, t),

where G is an explicit analytic function chosen so
that Im1VI, is not rapidly varying. Then (for positive
signature)

ReM(s, t) = sReG(s, t)+ —s—[s 'ImM, (s, t)],

where ReG(s, t) can be constructed explicitly. A
convenient choice for G in the low-energy region
is a sum of signatured Breit-Wigner forms

q, (s, t)-=I (I "G )= Iq. le'",
&=1

where the G; are chosen as before, and then use
the DAR phase-amplitude relation on the ratio
E(s, t)/Q, (s, t). The result for the phase is

r r"
Q, (s, t) = q, —————ln (M, /Q, (,

which can be quite accurate if the parameters in
the G& are chosen so that the higher derivatives of
the logarithmic ratio are small.

III. MATHEMATICAL EXAMPLES

In this section, the method will be illustrated by

applying it to several explicit examples.
Example 2. The simplest example is a simple

Regge pole with even signature,

M =Ps e '""'
The magnitude 8, = ps, when used in Eq. (5),
immediately gives the correct phase

7T d
Q, =--—lnR, = ——,mo. .

G(s, t)= Q G; (s, t),
&=1

G,. (s, t) = H; I;((s;—s —I', [(s —s)/s;] ' ') '

~(s--s) '),
where s is an assumed threshold value, and JJ;I';
and s; can depend on t. Numerically, the contri-
butions from the crossed terms are usually small.
The procedure is to choose these parameters by
inspection and to compute ReM by Eq. (15). The
accuracy of the method can be gauged by the de-
pendence of the predicted value of ReM on the
precise value of these parameters. Of course, if
one includes an arbitrarily large number of terms
and carefully fits all the parameters, M, can be
neglected. This is then mathematically equivalent
to an evaluation of the exact dispersion relations.
In fact, the optimum choice for G is the numerically
constructed analytic function given by the exact
dispersion relation. The use of the DAR approach
can allow a considerable simplification in this pro-
cedure, especially in the analysis of reactions in-
volving several amplitudes, such as a case with
polarization. Let us now turn to an alternative
expansion method which has some definite advan-
tages in practical applications.

In this ratio method, it is convenient to proceed
as follows. Define

Another example which illustrates how to handle
zeros is

M+ = a + —,"b[ln(s, —s) + ln(so+ s)J,
where a and b can be functions of t. The correct
phase ls

tang, = ——,'nb[a+ ,'61n(s+ s,)(s——s,)] ',
whereas the phase-magnitude DAR relation gives

n b[s'/(s' —s', )][a+ 25 ln(s'- s')J-
2 [a + ab ln(s' —s', )]'+ v'5'

These are obviously not the same —the reason is
that M, can have zeros when s is such that

ln(s' —s')'~' = -a/6 + ~ is,
and these singularities in lnR+ were not taken into
account in the derivation. For energies far away
from the zero, there is no problem. Near the zero,
the approximate phase varies rapidly in energy. In
the examples we have treated, a rapid variation in
the phase signals the possibility of this problem and
it can be checked. Note that the DAB between the
real and imaginary parts of M, does not suffer
from this problem and is quite accurate fax
from the threshold (s» so).

ExamPle 2. For our next spinless example, con-
sider the difference of two Regge poles

(17)

The analytic comparison is not very illuminating.
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FIG. 1. Comparison of exact {solid lines) with first derivative calculation {dashed lines) off for different $ va]ues.
{a) imaginary part, {b) real part. The parameters of the Regge poles are given in the text.

M =se A AB 0 /(A+ B)
A+6 (18}

where
B = a'(lns ——,'iv}

A numerical comparison of the exact phase with
the approximate one is shown in Fig. 1 for the
values P, = 1, P, = 0.5, a, = 0.9+ t, and a, = 0.5
+ 0.6t. The zeros of the amplitude are at

lns = (a, -a, ) 'in(p, /p, )+-,'is,
and one sees that the error in the phase increases
through —,'w2 near the position of the zeros as
might be expected. However, av)jay from the zeros,
the procedure is quite accurate.

Example 3. An interesting example is that pro-
vided by an absorbed Regge pole. In the case of
the Pomeron trajectory, a suitable form is

and we choose A = 4 and n = 1+ 0.5t. This ampli-
tude is predominantly imaginary and the differen-
tial cross section following from (18) provides
somewhat realistic "data." The simple phase met-
hod gives good results except where M, has zeros.
In Fig. 2 the result of a numerical analysis is pre-
sented. Since ReM, is quite small, it is sensitive
to details of the procedure and is reconstructed
quite well except for the point where IDSf+ and the
differential cross sections have a dip and vary
rapidly.

ExamPle 4. For the final mathematical model, a
case with spin will be considered. The flip and
nonf lip amplitudes will be introduced as

R, = e(t)e ' Q' =- a«&,
(19)
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Absorbed Regge Pole Amplitudes

a =I +0.5 t
A=0
8 = 0.5 ( trn s -i ~/2)
(n s=8

The flip amplitude is not given exactly because of
our original expansion of the tangent derivative
operator. lf b. is small, which this expansion
demands, then the error is small. Even if 6 -—,',
as expected from Pomeron-Regge interference,
for example, the reconstructed and input data
differ by only 10%%up. This expansion can clearly be
improved by various methods, such as keeping
higher-order terms.

The above examples have been discussed to show
that the method is workable, and particularly to
help develop an intuition about how to proceed with
cases of real data. Let us now finally turn to the
analysis of some physical examples involving real
data.

lo i

I I I10'
0.0 0.2 0.4 0.6 0.8 1.2

-t (GeV')
FIG. 2. Absorbed Regge pole amplitude compared

with the approximate values (dashed lines) given by the
DAR.

which lead to "data" of the form

A = e ' '" (1+ e'e'~ )'~'

P= 2esin( —,'vb)e "(1+e'e ' ') ',
where 6 = a, —n, . Applying the approximate re-
sult given by Eq. (12), one finds

8= 8O+H(y),

where

rb
H(y) = —sin —tan '(ee ')

rA 2

and 8, = 8 (y = ~). If one retains only linear powers
of H in the answer, the results for the reconstruc-
ted amplitudes R and R+ are

R„=A cos8, -A sin8, H(y),

R, =A sin8, +A cos8, H(y).

A comparison with the input amplitudes of Eq. (19)
clearly shows the significance of 0, as a phase
rotation in the amplitude. lf we choose 80 0 then
to order e

2 . rLh
R =, AH(y) = e e ~& ' ' —sin-+ 2

&(~0-zb

IV. APPLICATONS AND COMMENTS

The DAR method and its extensions discussed
here can be applied to determine applications in
many reactions. Below we briefly discuss KP
-E,p and Compton scattering. Other reactions
are hypercharge exchange, where the appropriate
line-reversed pairs generally exist to deal with
both signatures, rN elastic and charge-exchange
scattering; reactions such as mN-PN (and KN
-K*&V) where in special situations (assuming a.

good s-p wave separation) one has only one amp-
litude determining an observable such as P» do/dt
at t = 0, or P» do/dt to leading order in s; infor-
mation on PP amplitudes from PP data, etc. Suf-
ficient data may exist to determine the backward
&N amplitudes in a similar manner.

From a different point of view, it appears to us
that this method will be a powerful way to extend
phase-shift analysis from low to intermediate
energies. A determination of a set of amplitudes
directly by this method has two advantages: (a)
the amplitudes are analytic, and (b) many fewer
parameters are required than for a direct phase-
shift analysis. Having found amplitudes, one can
expand them in partial waves and determine a set
of phase shifts.

ln general there should be little difficulty in
applying this technique when the input data are
rapidly varying. Since we are dealing with analytic
functions, one simply chooses an analytic function
which varies like the data and divides it out as
described in the text so that the remainder is slow-
ly varying, applying the method to the remainder.
Since one has divided out an analytic function which
satisfies the dispersion relation, the full phase is
that of the known function plus that determined from
the remainder as explained in the text. Further,
one can always improve the results in a careful
application by retaining the third derivative in the
expansion of tan( —,'md/dy).
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FIG. 3. A comparison of the phase of the amplitude as
measured for K&P KsP and as predicted by the DAR
{shaded bands in the figure). The solid points are from
Ref. 6 and the open circles are from Ref. 7.
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FIG. 5. A comparison of the real. parts of the ampli-
tude as given by the DAR for 10 and 4 Gev. A systema-
tic and strong energy dependence is evident.

0.6

Compton Scattering

Amplitudes at 10GeV

A. KL p-+Kso

The amplitude for this process has odd signature
only, and therefore it is straightforward to use our
method. In general the amplitude will have helicity-
flip and helicity-nonf lip parts, respectively domin-
ated by p and u exchange, and, since no polariza-
tion data are available, one cannot perform a
general amplitude analysis. However, the helicity-

0.4

LLI
C)

I—

0.2

Irn F+

~ ~

TABLE I. The function G of Eq. (15) is a sum of
terms of the form of Eq. (16), with parameters as
shown here for 7r p. One term is added below thresh-
old (sp =0.9), because one needs a function well deter-
mined over 1—2 units of lns to obtain its derivative in
the middle of the range. Thus to calculate the real part
at a few hundred MeV/c one needs o r well described
down to threshold. In the actual calculations we set
s th =0, since we have not included threshold corrections
anywhere.

0 Sp
(GeV~)

r
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il I) II
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FIG. 4. The real. and imaginary parts of the ampl. itude
for Compton scattering at 10 Gev as given by the DAR.
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FIG. 6. The ratio of real to imaginary part of the am-
plitude for m+p elastic scattering as determined by the
DAR, dispersion relations, and experiment.

FIG. 8. Same as Fig. 6, but forPP elastic scattering.

flip contribution vanishes at t = 0 and presumably
at t= 0.5, and therefore we can hope to measure
the phase of the helicity nonf lip amplitude at these
t values.

At t = 0 there are actually two independent ways
of measuring the phase: (i) from the s dependence
of (dc/dt), „

0.6

04

0.2

—0.2

—0.4

7T p = 7T p

DAR

———Dispersion Relation
Ref. l2

~ Data Ref. I 5

or (ii) from the s dependence of the imaginary part
of the amplitude as given by the optical theorem

(8w/R) ImF' = or(K'n) —or(K e)&0.

It is remarkable that experimentally both (dc/dt), ,
and ImE' are power-behaved from a few GeV/c to
60 GeV/c, "and therefore the phase can be ob-
tained most easily. The results from methods (i)
and (ii) are shown in Fig. 3 and are in good agree-
ment wiih independent measurements using
E~ -K,' interference' or optical point extrapolations. '

At t 0 5 we have'

77 d dg
Q' = --—ln —= -'s(1.02 + 0.22)

4 dy dt

indicating a very small real part. From the trend
of (d/dy)(Inde/dt) around t = —0.5, it is quite prob-
able that ReI' has a zero in this neighborhood:
this is in qualitative agreement with the behavior
of ReE' in mN scattering (p exchange) at 6 GeV/c.

—0.6
0

I

4
s (GeV~)

FIG. 7. Same as Fig. 6, but for m' p elastic scattering,

Compton scattering is a nice example with an
even-signature amplitude. The helicity nonf lip
amplitude is large and dominated by P and f ex-
change, while the flip amplitudes are smaller. In
the forward direction I= 1 exchange (4„ therefore
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mostly flip) has been measured to be small by com-
paring yp and yd Compton scattering. There is no
direct experimental information on the helicity
structure of I= 0 exchange; however, we know
from nN scattering that it is helicity nonf lip to a
good approximation and we expect yP to exhibit the
same character. We therefore neglect helicity-flip
contributions, and assume that the phase we ob-
tain from do/dt is that of the dominant helicity
nonf lip amplitude using the data of Anderson et al. '
for 0.1& —t&0.8. The data obtained by Boyarski
et al. ' at smaller t (0.025 & —t & 0.17) have also
been analyzed, and they do not show a significant
deviation in phase from t = 0 determinations. Re-
sults shown that between t = 0 and t= —0.8 the
phase Q', does not vary very much, changing from
102' to 110; the separation into ReE and ImF is
shown in Fig. 4. We have performed the same
analysis on the data of Buschorn et al."between
2 and 7 QeV to extract the real part at 4 QeV, and
the results are shown in Fig. 5. There is a strong
energy dependence of the yP real part between 4
and 10 QeV, indicating the dominance of Regge
effects (f exchange) over Pomeron exchange in the
real part of the brompton amplitude in this region.

C. Real parts at low energy (t=0)

Following the method outlined in Sec. II E we have
computed the real parts of w'P, pP, and PP elastic
scattering in the resonance region from total cross
section data. We started by taking any adequate fit
to the high-energy data" and using it to obtain a
smooth curve through the low-energy data. Then
the difference between the data and the high-energy
extrapolation was approximated by a sum of Breit-
Wigner forms with positions, heights, signs, and
widths fixed by inspection rather than detailed fit-
ting. An example of the parametrization used is
presented in Table I for the m P reaction. The re-
sults of the calculations are shown in Figs. 6, 7,
and 8 for m'p and pp real parts. There is good
agreement with both the conventional integral dis-
persion realtions" and with data whenever avail-
able ' '

We have not explicitly included pole terms or
threshold effects in our calculations and we set
the lowest threshold to s = 0 in all applications.
The fact that the results are still good at very low
energies illustrates the power of using analytic
functions to construct an "effective" amplitude and
using the DAR's as a perturbation theory.

It should be emphasized that, although the pre-
sentation we are using is strictly local, its suc-
cessful implementation at low energy (when large
variations of the amplitude occur) requires input
data over a reasonably large range of energies.
Indeed, the use of a contribution extrapolated from
high energies was rather essential to get a reason-
able result. By using more local data (for example,
3 & s & 4 GeV') we were able to reproduce the rela-
tive variation of the real parts, but not its actual
values. In that sense our relations are not strictly
local in content, but they are certainly constitute a
much easier method to compute real parts than
conventional integral dispersion relations.

V. CONCLUSIONS

In this paper, we have investigated the usefulness
of the DAR's in both mathematical and physical ex-
amples involving experimental data. The new ex-
tensions to nonforward directions, lower energies,
coupled channels, and polarization problems was
discussed in some detail. Basically, instead of a
complete set of measurements at a particular en-
ergy, which may be hard, one needs about half as
many kinds of measurements but at several nearby
energies.

In conclusion, we would like to clarify" the use-
fulness of the derivative analyticity relation ap-
proach. In a strict sense, the DAR's are equiva-
lent to conventional dispersion relations, but they
can be used to simplify their evaluation by using
the difference or ratio perturbation theory describ-
ed in the text. The second and perhaps most im-
portant use of the derivative approach is in simp-
lifying the amplitude analysis in the case of spin
or coupled channels. The method described in the
text for such cases can also be extended down into
the low-energy or resonance region by using the
perturbation theory described in Sec. IIE. We are
not trying to replace standard dispersion relation
techniques when they can be easily used, but to
extend the region of applicability to new regions of
t 'and to new reactions, and to simplify the process
of combining analyticity and data to learn new phy-

sicss.

While it will take some experience with real data
to uncover the shortcomings of the DAR's and to
develop efficient methods to overcome them, it
does appear that this approach offers a simple,
quick, yet powerful way to extract amplitudes from
data.
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