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The reception of gravitational waves by an elastic self-gravitating spherical detector is studied in detail. The
equations of motion of a detector driven by a gravitational wave are presented in the intuitively convenient
coordinate system of Fermi. An exact analytic solution is given for the homogeneous isotropic sphere.
Nonlinear effects of a massive self-gravitating system are computed for a body of mass equal to that of the

earth, and are shown to be numerically important.

INTRODUCTION

The prospect of the unambiguous detection of
gravitational waves within the next decade appears
not unreasonable.!*?> One need not dwell upon the
immense significance of such a discovery both
as a check of the theory of gravitation and as a
wholly new experimental technique to probe galac-
tic and cosmic structure.

Most of the current experimental detection
schemes utilize laboratory-size detectors which
resonate at kilohertz frequencies which could be
produced only by conjectured sources of gravita-
tional waves. On the other hand, the strongest
sources of gravitational radiation® according to
standard theory are nearby double stars which
emit waves with periods comparable to the funda-
mental period of the spheroidal free oscillations
of the earth (54 min). Since the free spheroidal
oscillations of a sphere have the correct sym-
metry to be excited by plane gravitational waves,
it is of considerable interest to calculate the
elastic response of the earth to monochromatic
waves of frequencies in the range 107* Hz to 1 Hz.
Previous calculations* have made simplifying as-
sumptions in order to obtain an estimate of the
response. The present investigation has a three-
fold purpose. First, it is useful to discuss the
elastic response of an extended body to a gravita-
tional wave in a coordinate system which appears
as a local inertial frame at the detector’s center.
It is then fairly easy to relate the results to mea-
surements carried out with conventional instru-
ments such as gravimeters and seismometers.
Second, we present in detail analytic results for
the response of a uniform spherical detector
having properties (mass, elastic moduli) com-
parable to those of the real earth. Third, we
include the effects of self-stress generated by the
body’s own gravitational field, which are numer-
ically important for bodies as massive as the
earth or moon.

We shall not attempt to discuss the problems
of noise encountered when one attempts to mea-
sure wave-induced vibrations of the earth. The
ability to detect experimentally such vibrations
does not appear to be out of the question, although
it certainly entails improvements in present ex-
perimental techniques.

Section I is concerned with a discussion of the
coordinate system in which the equations of motion
and the gravitational field appear most readily
interpretable in the Newtonian sense. A gauge
transformation from comoving to Fermi coordin-
ates is obtained explicitly and all subsequent cal-
culations are carried out in this coordinate sys-
tem. The advantage of using Fermi coordinates
is that the gravitational wave field appears ob-
viously as a classical driving force.

In Sec. II, the equations of motion of an elastic
system are obtained by two independent methods—
from the action principle and from local energy-
momentum conservation laws. The equations of
motion of the elastic displacement field describe
the time dependence of those quantities convention-
ally measured in the laboratory.

The problem of the homogeneous and isotropic
elastic sphere without self-stress but driven by
a gravitational wave is solved analytically in Sec.
II. The technique uses the appropriate vector
spherical harmonics determined by symmetry
considerations.

Sections IV and V are concerned with the more
complicated problem of a self-stressed sphere.
The general considerations of Sec. IV show why
the self-stressing field of the earth must be taken
into account if a realistic response of the earth
to a gravitational wave is sought. Section V then
presents the numerical results obtained from the
model earth calculations. A discussion of the
relation between the calculated displacements and
observations carried out by gravimeters, seis-
mometers, and strainmeters is given in Sec. VI.

The notations employed throughout the paper
are summarized in the Appendix.
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I. WEAK GRAVITATIONAL WAVES

The gravitational waves expected to bathe the
earth are all weak in the precise sense that the
metric tensor g, is very nearly that of flat space-
time 7,,. If we write g, =n,,+ k,,, then the h,
are all small in magnitude compared to unity.

In the linearized theory of gravitational waves
with the choice of a comoving coordinate system
and the transverse traceless gauge, the metric
assumes the form®

ds® =g, dx* dx’

== (dx°) + (gun + hipy )dx™dx"
828 iy, =0,
=0, By p=0, hpp=hyn.

(1.1)

Since all gravitational waves broadcast by sources
of conceivably detectable intensity are far from
the solar system, the gravitational waves imping-
ing on the earth are plane waves to an extremely
good approximation. The metric therefore may

be assumed to have only the following nonvanishing
h

mn *

Bys=h,g (° = x°),
n,=0, (1.2)
(r, s)=(1, 2).

The wave thus propagates along the three-direc-
tion. For convenience, the indices labeled by the
letters » and s will from now on be understood to
assume only the values 1 and 2 so that the metric
tensor appears as

ds? = —(dx°) + (dx°) + (s + hyg Ja"dx® . (1.3)

To facilitate the physical interpretation of the
response of a material medium to a gravitational
wave, it proves useful to work in a Fermi co-
ordinate system,® which will reduce to a local
Lorentz coordinate system on a submanifold which
will be specified below. Such a coordinate system
is, in a sense, as “Newtonian” as possible. The
transition to such a system is effected by the ap-
propriate coordinate (gauge) transformation.

The transformation of coordinates will be carried
out in two steps. First, consider the following
transformation (here x, =7, x"):

x0=;0;
X3 =Xy, (1.4)
x, =%, +€,(x).

Here €,(x) is to be determined but, in any event,
is assumed small so that quadratic and higher
terms in € are discarded. (The € are of the same
order of smallness of k.) The metric appears in
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the transformed coordinate system as
ds® =0, dxt dx¥ + 2€, odx" dx° + (€, 4 + €, )AX" dx®
+ Ry X7 dX° + 2€, dX" dx®,
Rys ()= hyg() .

The bars on the new coordinates have been omitted
for notational convenience. Choose €, to satisfy

hys=—(€,,s+€,,). (1.8)

(1.5)

The obvious solution involving a choice of arbi-
trary constants such that €,=0 at x" =0 is

€r="%hrsxs ’ (17)
and the metric becomes

ds® =1y, dx* dx’ + 2€, odx" dx° + 2€, jdx" dx® .
(1.8)

The property to note is that in the new coordinate
system g,,=7,, on the submanifold x" =0.

A further coordinate transformation will serve
to make the coordinate system a local Lorentz
coordinate system on the submanifold x" =0. Co-
ordinates with this property are called Fermi
coordinates. Define new coordinates }“ by

Xo=X,+ €o(%),

x3=’_‘3+€3(§)’ (1.9)

xRi

Xy = Xy

and, with neglect again of quadratic terms in g,
the new form of the metric is

ds? = —(dx°)(1 - 2€,,0) + 2€,,, AX°dX" + 2€, ,dx"dx®
+ (PP (1 + 2€5,5) + 264, ,dx°dx° + 2€, , dx’dx”

+ (dx*)? + (dx®) + 2€,,,dx” dx° + 2€, 4dx" dx° .
(1.10)

Note that €,, = 9€,(x)/8x" in the approximation
used and that again the bars on the coordinates
have been dropped for notational convenience.
Now choose €, and €; to satisfy

60.r=—€r,09 63,r="€1,3 (111)
so that
€0=%hrs.o"rxs: €3=%h’rs,ax’xs' (1.12)

The resultant form of the metric for weak plane
waves is

ds® =—(dx°2(1=3 hyg,0ox" 2°)+(dx®)? (14 3 Byg 33X x°)

+ 2(3 hyg,03%” x° dx°dx®) + (dx')? + (dx*)? .
(1.13)

This form of the metric tensor has the properties
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Ew=Mw »

(1.14)
rt,=0

again on the submanifold x” =0. Furthermore,
along this line we find

92T,

PORCrSE =0, b+c=a. (1.15)

These are the properties of a Fermi coordinate
system. It shares many local properties with the
Lorentz coordinate systems used in flat space-
time physics.

The Riemann tensor assumes the particularly
simple expression on the submanifold x” =0:

Ryrrs=28inrs + (1.16)

It is clear that the only nonvanishing components
of Ry,\, are the following and those which are
obtained from these by using the symmetries of
the Riemann tensor:

Ropas =%hrs.oo;
Ror3s=é_hrs.os’ (1.17)
Rapss =%hfs.33 .

It is this Riemann tensor which a gravitational
antenna detects.

The earth while irradiated with gravitational

waves is also subject to its own gravitational field.

The self-gravitational field of the earth is also a
very weak field in the sense that
h= éz-<<1, (1.18)

Here V is the gravitational potential at a position
r from the earth’s center.

When in addition to the impinging gravitational
wave there is a massive gravitating body present,
the metric tensor can be written

ds? = =(dx°)?[1 =% g 00x” %° + h(X)]
+ (@R[ 1+ S hyg 508 2° - B(T)]

+hyg 05X &° Ax°d+[ (dx')+ (@x?)?)[1-R(r)] .
(1.19)

The center of mass of the earth has been chosen
to have the coordinates x” =0. The form of h(f', t)
in the presence of a gravitational wave will be
computed in Secs.IV and V.

If the response of a system of particles to the
gravitational wave is desired and the particles
move with nonrelativistic speeds, only the New-
tonian approximation to the metric is required.
In this approximation, the effective metric is
simply

ds? = - (dx°) [1 A By 0" 2+ hE)

(%) -(5) - (%))

We have written the metric in this form to empha-
size that in the nonrelativistic Newtonian limit,
only the coefficient of (dx°)> need be modified from
the flat space-time value since dx™/dx° will al-
ways be of order v/c when the metric is used to
calculate motion.

This effective metric cannot, of course, be used
in relativistic motion problems such as the inter-
action of light with a gravitational wave. In this
latter case, the full metric given by Eq. (1.19)
must be retained.

1. RESPONSE OF MATTER TO A GRAVITATIONAL WAVE

The first step in detecting gravitational waves
is to select a suitable antenna. Any physical ob-
ject, since it will have energy, can in principle
serve as a detector provided that it has an ex-
tended structure. The latter requirement follows
from the fundamental property of observable
gravitational waves appearing as “tidal” phenom-
ena.

The basic response of a system of particles
(each labeled by the index p) to a gravitational
wave is given by the equations of geodesic devi-
ation”;

D?bx,
myc? —& +m,R*

Do o \UVOxa U = 6FY . 2.1)

The coordinates of the particle labeled by p are
designated by 6x4 to remind one that such an equa-
tion is valid only if the particle is located “close”
to the fiducial geodesic traversed by the sequence
of events whose four-velocity is U* =cdx*/ds. We
shall assume that the fiducial world line is as-
sociated with the coordinates of the center of
mass of the system in Newtonian approximation.
The condition for closeness is that one requires
|6x%| /R< 1, where R is the radius of curvature
of various space-time sections prescribed by the
Riemann tensor. The force 6FY% is by definition
the differential nongravitational force on the par-
ticle p relative to the force on the center-of-mass
point. If the center of mass is in free fall, then
6F% can be taken to be the nongravitational force
F% which the particle p experiences from the rest
of the particles, and 6xp must then be taken as
the distance x4 from the center of mass.

In a normal Fermi coordinate system, in which



U*=(c, 0,0, 0), the equation of geodesic deviation
assumes the form

dazxy

m, _—Ldtz =—myc®R™ o3+ Fy , m=1,2,3.

(2.2)

Such an equation indicates that the presence of the
gravitational wave can be taken into account by
adding to the Newtonian equations of motion a
gravitational tidal force term, viz. —m,c2Rj,,x}.

The particular system of concern here is the
earth, which is assumed to be an elastic body of
spherical symmetry, stressed by its own gravita-
tional field. In this section, however, the self-
stressing will be temporarily neglected for sim-
plicity.

Two approaches are informative in deriving
the equations of motion of the earth under the in-
fluence of a gravitational wave. Both lead to the
equation of motion which perhaps is most easily
surmised from Eq. (2.2).

In the first approach, the action principle® is
used to derive the equations of motion. The action
can be written in the form

A=f Lydt + ledt. (2.3)

Here the L, term yields, with the use of the vari-
ational principle, the usual elastic-continuum
equations of motion without a driving term. It is
important to emphasize that the usual form of the
equations results only in a Fermi coordinate sys-
tem since only therein are the covariant deriva-
tives replaceable by ordinary derivatives.® The
interaction Lagrangian L, which describes the
matter-gravity interaction assumes the following
form in Newtonian gravitational approximation:

L=t [ 7% (g,-nu)a's, (2.4)

where T is the stress-energy tensor and 4, is
the gravitational wave potential; both are to be
evaluated throughout the region of space occupied
by the elastic body. Only T°° need be retained in
Newtonian approximation and, in the same approx-
imation,

T®=pc?, (2.5)

where p is the equilibrium proper mass density
of the elastic medium. The expression (gy, — )
is obtained from Eq. (1.20). An element of the
continuum is labeled by x™, the equilibrium co-
ordinates, and the position of this element is
prescribed by the positional field y™(x). The re-
lation between the positional field y" and the dis-
placement field «" is by definition
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Y™™ x0) = x™ + u™(x", x°) . (2.6)

The value of (gy,—1,,) is required at the position
of the element of the elastic body labeled by x™
and is explicitly

goo_noo=§ rs.oo(y3 - x%y"y° . (2.7)

It will now be assumed that the wavelength of
the incident gravitational radiation is large com-
pared to the size of the detector. Consequently,
the y® dependence of hys,00 is negligible. Variation
of the action then yields in the standard way the
gravitational force density

Js(x) =2 pc?hyg,00x" . (2.8)

In this expression, the equilibrium position x° of
the element of the elastic continuum has been
used since the amplitude of vibration of the elastic
body will be very small and the gravitational po-
tential %, is weak.

The second method of deriving the equations of
motion follows by using the exact equations

,,=0 (2.9)

which describe the movement of energy and mo-
mentum. The equation in more explicit form is

aTH

—ax—u=—r::pTup—Pﬁpry. (2-10)

The usual equations of motion are obtained from
the momentum density equation:
aTOn aT"lﬂ

220 +—ax—m=—I‘zPT“p—rhpTP". (2.11)

In Newtonian approximation, the T° and T™" on
the left-hand side of the equation are the nonrela-
tivistic momentum density and the negative of the
stress tensor, respectively.

To the same approximation, only T terms need
be retained on the right-hand side of the equation.
The conventional definition of the elastic stress
tensor is T™" =-¢™ and thus

aTo"  9g™

3x0 = B_x'" - I"(;Opcz, (212)

To determine I'}, again only the Newtonian non-
relativistic approximation is retained,

rgo:_%goo.n ’ (2.13)
which becomes in the long-wavelength approxima-
tion:

rgo='%hns,ooxs (2.14)
The equations of motion of the elastic continuum
which result from either of these methods are

8T _ ag™"

axo = _ax—"' +;;pczh,,s_ooxs . (215)
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The term involving k., has already been pre-
scribed in form while the remaining quantities
T°" (momentum density) and o™ (stress tensor)
are quantities familiar from the theory of elas-
ticity.

III. RESPONSE OF AN ELASTIC SPHERE
TO GRAVITATIONAL WAVES

Before turning to the problem of the self-
stressed earth under the influence of a gravita-
tional wave, it is worthwhile formulating and solv-
ing analytically the simpler problem of the forced
vibrations of a homogenous elastic sphere. We
shall assume the wavelength of the wave is very
long compared to the radius of the sphere.

If it is assumed that the excursions of the ele-
ments of the elastic body from the equilibrium
positions are small, the linear theory of elasticity
is appropriate. Let the equilibrium positions of
the elements of the elastic continuum be labeled
by the coordinates x;. (Since the Newtonian ap-
proximation has been made, it is no longer neces-
sary to distinguish between covariant and contra-
variant components in a three-dimensional ortho-
normal-base-vector system.) The displacement
from equilibrium of an element at x; is prescribed
by the time-dependent vector u, (x;, ¢) which is
assumed small. The momentum density is formed
as the product 3(pu,)/dt and, in keeping with the
linearization, p can be considered to be a constant
in a homogeneous medium.

The stress tensor o0, is related to the strain
tensor!® by a generalized Hooke’s law, again under
the assumption of small displacements. The
strain of the elastic medium is defined by
1o, 3&)

u =
47 2\ex;  axg

= 3 gy +uyy) (3.1)

in Cartesian coordinates and is related to the
stress (only in a Fermi coordinate system) by

04;= 045 gy + 2puyy , (3.2)

where A and u are the Lamé coefficients specify-
ing the elastic properties of an isotropic medium.

Besides the stresses caused by strains in the
medium, there are frictional forces which set up
stresses resulting in dissipation of energy. The
dissipative stress tensor is

0f; =058 thyy + 20 (fty; — 5 Oy5 74y, ), (3.3)

where the dot signifies time differentiation. For
now, the dissipative stress tensor will be ne-
glected.

The equations of motion of the elastic medium

in linearized version are thus

9%u ]
0 thzl- =57 (O X gy + 210U ) + 2 PC Ry 00X ™

(3.4)

The boundary condition is that the total force per
unit area at the surface of the elastic medium
vanishes in the direction normal to the surface of
the elastic body. If the normal vector is 7, then
the three conditions

MpOns =0 (3.5)

must be satisfied everywhere on the surface.

While the equations of motion have the gravita-
tional driving force as a volume force, a simple
change of field variables leads to the effective
consideration of the gravitational force as a sur-
face force. Introduce the new variable Z, by
defining

Zp=ty =% By x™ . (3.6)

We shall show later that the new field variable
Z, can in the absence of self-fields be directly
measured by means of seismometers; at this
stage it is introduced for mathematical conven-
ience. Since h,, depends only upon time when
evaluated at the center of mass of the elastic
body, it follows that for the long-wavelength ap-
proximation

Zmn=umn"%hmn . (37)

Consequently, the equations of motion assume
the form

92Z, 8 .
P = 577 LOmn A2y + 20 (Zy + 21 )]  (3.8)

and since spatial derivatives of 4, are neglected

0%Z, _ d
PSR =57 OmarZys +20Zp,). (3.9)

The driving force has disappeared from the equa-
tions of motion only to appear in the boundary
condition

Nl Omn AZyy + 2 (Z iy + 3 1 )] =0 (3.10)

It is calculationally useful to solve the problem
in this reformulated version since the solution of
the equations of motion inside the elastic medium
is that of free vibrations, as pointed out by Dyson.
For a spherical body, the coordinates naturally
suited to the problem are not the Cartesian co-
ordinates used in the above equations. A trans-
formation to spherical coordinates is clearly
needed.
The equations of motion!° are easiest to survey



12 GRAVITATIONAL WAVE RECEPTION BY A SPHERE 341

in vector form:
L -
pa—t2=uV Z+(N+p)V(VeZ). (3.11)

If the longitudinal and transverse vector fields
are introduced by the decomposition
O AO)
Z2=2"+272" | (3.12)

v-ZW=0, vxZW=o,

the equation of motion breaks up into two wave
equations:
27 =
S =efVZY, c=(/p)”
(3.13)

927 .
317 =c,2V2Z('), ¢ =[()\+ Zu)/p] 12

Before turning to the solution of the wave equa-
tions, a look at the boundary conditions will point
the way to selecting those solutions which satisfy
the boundary conditions.

The plane-wave amplitude and polarization has
been denoted previously in rectangular Cartesian
coordinates by h,,. In spherical coordinates, the
corresponding tensor components are

h,, =sin?6(h,, cos2¢ + h,sin2¢),
h, ¢ =siné cos6(h,, cos2¢ + h,,sin2¢)

9
Ohyy (3.14)

86 ’

[T

h,o=siné(-h,, sin2¢ + h,, cos2¢)

1 2dh,
siné 98¢ -

DN | =

We shall consider waves of arbitrary polarization
and write

h,,=sin6 f (a cos2¢ + b sin2¢)=215S,(6, ¢) .
(3.15)

Since all equations are linear, a, b, and f can be
chosen as complex quantities with the restriction

lal?+|b]*=1,

f= he-iwt ,
where w is the frequency of the gravitational wave
and 4 is a real number specifying the amplitude
of the wave. Convention dictates that the real
part of all subsequent solutions is the physical

result.
The function S, (6, ¢) is given by

S, =4%sin?6(a cos2¢ + b sin2¢) (3.17)

(3.16)

so that

h.o= 35, he™tw*

76" 86

b

(3.18)
ro = .1 B_Szhe_‘w‘
sinf 8¢

The stress components which occur in the bound-
ary conditions assume the form

0,,=2uZ,, +\V-Z ,

0,0=2UuZ,q, (3.19)
0703:2“Zr¢v
where
9Z,
Z?‘f_ ar y
_1(3@ Zo, 192,
Z,e—z oy +r 56 , (3.20)

The equations which must be satisfied on the sur-
face of the sphere where » =R are

2u(Z,, +5h,, )+ A\V-Z =0,
2""’(276*’%}779):0, (3-21)
2u(Z, 6+ 3hg)=0.

To satisfy these equations, we construct three
linearly independent vector-harmonic solutions
of the equations of motion. Standard rotation-
group techniques'! indicate that fields which trans-
form according to the J=2 representation of the
rotation group should be sought.

The longitudinal solution Z can be written as

ZW-ve (3.22)

where ® obeys the wave equation of Eq. (3.13).
The solution which will fit the boundary condition
at the center of the sphere and has the proper sym-
metry is

1

Z0= 2 V[jz(qr)szle_iw‘ ,

p g=w/c, . (3.23)

Here j,(g7) is a spherical Bessel function and the
factor g2 has been inserted for dimensional rea-
sons. Here and below we anticipate that the so-
lution involves the same S, presented by the in-
coming gravitational wave [Eq. (3.17)].

The two linearly independent transverse fields
Z( and Z(*1) are most easily constructed by find-
ing an appropriate solution of an auxiliary scalar
equation

2 52 ° (3.24)
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The solution with the right symmetry and obeying
the boundary conditions at the origin is

X =Jjo(kr)S,e =it | k=w/c, . (3.25)

One transverse field is obtained by applymg the
rotationally invariant operator L=Tx¥V to both
sides of Eq. (3.24) to generate a vector solution

- 1 . -
AQRE 77 Ja(kr)LS, . (3.26)

It is easy to verify that V-Z (1)=0,
Another transverse vector field obeying the equa-
tions of motion is obtained from Z (1) as follows:

pACS _k_i vx[jz(kr)f.szle"“” . (3.27)

It is also clearly a transverse field.

The boundary condition on the surface of the
sphere is satisfied by choosing a particular linear
combination of these vector fields

Z=CZW+C,ZV+C,ZW | (3.28)

The toroidal mode described by Z (1) can be dis-
posed of immediately. A short calculation in-
dicates that the solution for Z cannot satisfy the
boundary conditions unless C,=0.

The desired solution must be a linear combina-
tion of the remaining two vector fields. The longi-
tudinal vector field is explicitly

+ 6 jo(qr) ﬁg

AL e ' [; djz(‘l‘)’)s

q* dr % v EY)
s dalgr) 1 ﬁ]
to r sinf a¢ (3.29)

while the excited transverse vector field is

— e-iwt N (kY)
Z0= [r(si%—r——s2

(o5 L)

(3.30)

The tensor strain fields which these vector dis-
placement fields generate can conveniently be
written in terms of the auxiliary functions

Jolx)= J'z(x)/ x?,

filx)= []2 x)/ x|,

d 2
fiw)= Tz U]

The longitudinal strain field is then

Z(rlr) =f2(q7’)sze_iw‘ ,

3, _
ZR=flar) SF e,

(3.31)
2941109 gy Sk 7
The transverse strain field is
Z ()= 6f (kr)S,e i |
20 = 40 100r) + 4 lher)) 2 i (3.32)
2= 3 Lt) + 41k g Sk e

The only remaining quantity needed for the ex-
plicit solution is V-Z. Only the longitudinal field
contributes to V+Z and the quantity is readily
evaluated by using the equations of motion,

T-ZW= Z]é v2[ j,(qr)S,| e-iet

= —j,(qr)S,e Ht . (3.33)

The equations determining the correct linear
combination Z =C,Z®+ C,Z" are

{2“[6(: 1f1(kr) + szz(fﬁ’)l “Cz)‘jz(qr)}sz = "2“ hsz s

(3.34a)
€ LAlr) + 450+ Corlan)} B2 =0 52
(3.34b)
O + 410+ Corlan} i 52
=—ih sjae % . (3.34c)

All equations are to be evaluated at »=R. The
form of the last two equations indicates that these
are not independent.

The two coefficients C, and C, are now com-
pletely determined and specify uniquely the re-
sponse of the elastic sphere to a gravitational
wave. One need only solve the two simultaneous
equations

C,[12p1,(kR)| + Co[21f,(gR) = Njp(gR)] = =2pu ke,
(3.35)
C,[1/2(kR) + 2fo(kR)] + C,[ fi(gR)) = =% h

These coupled equations can be inverted to find
C, and C, provided that the determinant of the co-
efficients of C, and C, does not vanish. The
vanishing of the determinant is a signal that the
frequency of the incident gravitational wave coin-
cides with a natural frequency of the elastic sys-
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tem. For such a situation, it becomes important
to treat the damping of the free vibrations of the
sphere.

The more general version of this problem which
includes a self-stress of the sphere is the subject
of the subsequent section. Numerical evaluation
of these results will be discussed there.

IV. EQUATIONS OF MOTION OF SELF-STRESSED SPHERE

Most astronomical bodies are sufficiently mass-
ive that they cannot be described as homogeneous
spheres. In particular, the stress on the body
due to its own gravitational field causes radial
variations in density and elastic moduli in the
equilibrium state. Further, alterations in the
amplitude of the displacement field induced by a
gravitational wave give rise to additional gravita-
tional fields which can significantly affect the
motion of the body. Such effects are nonlinear
because they require calculations of corrections
to the potential term h(T, ¢)=V/c? of Eq. (1.20),
which are of first order in the amplitude of the
incident gravitational wave. Similar effects have
previously been considered in treating the free
vibrations of the earth.'?

Let p(?, t) be the proper mass density which is
displaced by the amount (r,t)=y - T to a nearby
location, and let p(T, t) be the scalar pressure.
The six variables to be determined are the dis-
placement field G, the density p, pressure p, and
the potential V. Five equations are provided by
Einstein’s field equations; one of these is the field
equation for V. Four more equations follow from
the Bianchi identities: one equation representing
energy conservation and three representing mo-
mentum conservation. The remaining equation is
an equation of state relating stress to strain in
terms of Lamé coefficients.

A double expansion in small quantities is to be
made: All terms are expanded in powers of ¢!
and only leading terms—corresponding to a New-
tonian approximation—are retained; these terms
are then expanded to first order in the amplitude
of the incident wave.

The conservation equations are

™., =0, (4.1)
where the stress-energy tensor is
T"W=pU'UY+ p(g""'+ U U"/c?) -ahV . 4.2)

Here, U*=cdx*/ds is the four -velocity, and the
projection operators U" U”/c? and (g"'+ U* U"/c?)
project onto subspaces parallel and orthogonal to
Ux, respectively. For convenience, we have
separated the stress into a contribution associated

with dilation—the scalar pressure—and a contri-
bution associated with shear, ¢%.
The Eulerian equations of motion which follow
from Egs. (4.1) and (4.2) are
(p+p/UUY,, +(g"+ U'UY/ P,
=(0h+ U U,/cda}".,, (4.3)

with the momentum equations obtained by taking
n=1,2,3. The remaining conservation equation
follows from U, T"",, =0 and the requirement
Uyt =0; it is

(pUY)., + f—z Uv,, =0. 4.4)
To lowest order in ¢~ ' the momentum equations
assume the form

pe(U? o+ Thoc) + pR=o™ . 4.5)

At this point, an expansion in powers of %, is
made. Keeping only first-order corrections, we
write

p=po+ P,
p=bo+ 1V,

= )
Thy=T5+ TAY

(4.6)

V=V,+ Vv,
where

r4o= Vou/€?,
(4.7)
Pgé“= V(l).k/cz _% hks,ooxa ,

Substitution of these expressions into (4.5) and
collecting zeroth-order terms yields the expected
equation

Do,k = —Po Vo.x (4.8)

which expresses the fact that the static radial
pressure gradient balances the gravitational
force. We are assuming that in the static equil-
ibrium case, p,, p,, and V, are spherically sym-
metric. The first-order terms in (4.5) involve
the displacement field ,, since cU* ,=ii,. We
have, on discarding all terms with factors ¢~*

or ¢~?

Py + PoV(”,k +pt® Vout Pm.k - OI:rT,m = 2P ofts X° -
4.9)

Similarly, expanding Eq. (4.4) yields the zeroth-
and first-order expressions

%, o
ot (4.10)

apV .
g—t+poV-U+ poxU*=0.
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Since U,=1#,, the last equation implies

(1 _

pV= =0 Vpo=p oA, (4.11)

where A=y, is the fractional change in volume
resulting from the displacement. In general a
change 6p of pressure can be related to a change
Op of density by means of the bulk modulus K,
where

K=x+3pu. (4.12)
The relation is
5p=Kop/p . (4.13)

Combining Eqgs. (4.11) and (4.13) yields the follow-
ing expression for p:

pV= —u-Vp, KA. (4.14)

Equations (4.11) and (4.14) are equivalent to Ray-
leigh’s method of accounting for the initial stress
in a body. We also have for the shear stress

O = 214 (U = Opmd) - (4.15)

Using Eqgs. (4.8), (4.11), (4.14), and (4.15) to
eliminate p, p*, and o*™, we obtain the equation
of motion

Pofiy = (NA) = (Btty ) = (Bt ), m
~(UmPom+ PoBIWou+ PV Y 4+ (PothnVo,m)a
=4pohy ©° . (4.16)
The equations determining V, and V  follow from

Einstein’s field equations which give in this ap-
proximation

V3V =41Gp ,
which can be written
VV,=41Gp,,

(4.17)
VIV D= 41G(poh + UpPo,m) -

Given the zeroth-order solution for V;,, Eqgs.
(4.16) and (4.17) form a closed system of equations
for the unknown quantities u, V.

Viscous damping may be formally included by
making the replacements

A=A —iw(c+3n), w-u-iwn, (4.18)

where again the time dependence e~*“* has been
assumed for all first-order quantities.

Boundary conditions are imposed by requiring
that the strain vanish at the center of the sphere,
and that the normal components of the stress
vanish on the surface of the sphere at » =R:

2uu,, (R)+AA(R)=0,
ue,, (R)+ [u,,6(R) ~ue(R)/R =0,
ug, (R)+[u,, 4(R)/sinbé —u4(R)|/R=0.

(4.19)

The potentials V, and V¥ are continuous at the
surface, and vanish as » - 0 by gauge choice. For
¥>R the potential V¥ satisfies Laplace’s equation
and can be expanded in spherical harmonics:
V=" CpuP, (1) Yy(6, ¢). (4.20)
r,m
However, only the terms for =2 will be excited
by the gravitational wave; for these terms P,(r) is
proportional to »~3. Matching the interior solution
of Eq. (4.17) with the exterior solution yields the
following explicit condition on the interior solu-
tion:

av Y (R)
oR

(1)
+(1+ 1) V—R(—El =-41Gp,u,(R), (4.21)
where only the [=2 term has been assumed to
contribute.

In the following section, the differential equa-
tions (4.16) and (4.17) are solved, subject to the

boundary conditions (4.19) and (4.21).

V. SOLUTIONS FOR HOMOGENEOUS SELF-STRESSED
SPHERE

If we now assume that a plane monochromatic
wave is incident on the sphere, it is represented
by hy or h,,, h.e, h,, as given by Eqgs. (3.14).
The differential equations to be solved are (4.11)
and (4.12). Regarding the right-hand side of (4.11)
as an inhomogenous driving term, the general
solution of the system of equations consists of a
particular solution of the inhomogeneous equa-
tions, to which is added the general solution of the
homogeneous equations obtained by setting h,;=0.
This method of solution is to be contrasted with
that discussed in Sec. IlI, which involved a new
field variable such that the effect of the gravita-
tional driving terms only appeared in the boundary
conditions. The particular solution is easily ob-
tained for the case of uniform density, and uni-
form elastic constants; it is denoted by subscripts

p:
up=73hy &', V(pl) =-uy V(O).h ,
where

7ACKS 2_”_36_[)9 72

is the static gravitational potential due to the
spherical mass. Thus for the particular solution,

G,
V== byt 202

=—3Ar%h,, (5.1)

where A=4nGp,/3, and k,, has been defined in
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Eq. (3.14).
In vector form the homogeneous elastic equa-
tions (4.11) are

82 - -
Po 372 =pViu+ (A + pu)V(A) + Ap,Ar

-pVV W~ Ap V(ru,) .

The terms arising from the self-gravitational field
prevent the above equation from being easily sep-
arated into longitudinal and transverse parts as in
Sec. IV.

Using the decomposition given in Eqs. (3.31)
and (3.32), writing (no toroidal excitations)

u, =U)S,(6, ¢),

8S
ug =Wir) 52, (5.3)
1 8S
= —_——
“o=Wr) G5 B9

and assuming
v =P()s,,

we find after some calculation that the dilation is
given by

A=X()S,
=(U,+2U/r - 6W/r)S, . (5.4)
The differential equation (4.12) for V¥ becomes
V2P =-34X. (5.5)

The solution of the elastic equations may be ob-
tained with the aid of the following definition:

aw

H='a—r

+(W=0)/r. (5.6)

Then VXu may be expressed in terms of H as
vxa = (rx V)(HS,).

Taking the curl of the elastic equation then im-
mediately yields the following equation for the
transverse part of the elastic displacement:

pﬁ V2H + WH=AX . (5.7)
0

With the help of the easily established identity
V. (rA) - V3(r-u) = A - 6HS,,

the divergence of the elastic equation yields the
following equation for the longitudinal part of the
elastic displacement:

A+2uv

0

X+ (w?+4A)X=6AH. (5.8)

From the two equations [(5.7) and (5.8)] it is

seen that the effect of the gravitational field of
the mass is to couple the longitudinal and trans-
verse displacements. When A=0, the equations
reduce to those of Sec. III.

Operating on the latter equation with V 2 + w?p,/u
and eliminating H yields a fourth-order differen-
tial equation for X which can be factorized:

(VE+R)(VZ+¢*)X=0,

where ¢® and where k%> g? are solutions of the
following quadratic equation for x:

(x = w?po/px = (W + 4A)po /(X + 2u))
-6A%p2/uL(A+2u)=0.
The solution for X is then
X==C,j,(kr) - C,j,(qr), (5.9)

where C, and C, are arbitrary constants and where
minus signs have been introduced to facilitate
comparison with the results given in Sec. IIl. For
H we find

H==L[SC, j,(kr)+ TC,j,(qr)], (5.10)
where

S=[w?+4A -F*(\+2u)/p)/A,

T=[w?+4A - ¢*(X+ 2u)/p,) /A,

and for P we find

3AC, . 3AC, .
P=- -k_zsz(kV)_ —q_z—zjz(qr)+ (wz —ZA)C:,’VZ,

(5.11)

where for convenience the arbitrary constant
which is the coefficient of 2 has been written with
an extra factor w?-2A. The solutions for U and
W may now be found in a straightforward way.
They are

Ulr)=C,(2 + S) j,(kr)/k?*r = C j,(kr)/k

+C,(2+ T)j,(qr)/q°r - C,js(qr)/q + 2C,r,

(5.12)
W(r)=C (1 +3S)j,(kr)/k*r - C,Sj,(kr)/6k

+Cy(1+3T)j,(qr)/q*r = C,Tjs(qr)/q + Cyr .

To the above general solution of the homogeneous
differential equations must be added the particular
solution which is given by

X,=H,=0,

B,=-Av?h,

(5.13)
Uy=7h,

W,=%7’h,

where % is given in terms of k,, by Eqgs. (3.15)
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and (3.16).

The boundary conditions at » =R, the radius of
the sphere, are given by Eqs. (4.14). We shall
write these equations in the form

3
> a,;Cy=ah (=1,2,3), (5.14)
i=1

where after considerable calculation we find the
following expressions for a;; and a;:

a,=-2pu,
a,=-1, (5.15)
a,=2A,

a,, =2uSf,(kR) + 2uuf,(kR) = Nj,(kR),

a,,=2uTf,(gR) + 2u1,(gR) - Nj,(qR),

a,=4u,

a,,=j,(kR X(2+S) K?R? - £ 5]
+j3(kR)(-2 + 5 S)/kR,,

a5, =7,(aR \(2+T)/ ¢*R* - ¢ T] (5.16)
+j3(qR)(-2+5 T)/qR ,

a,;=2,

as, = Aj,(kR)(3S - 9)/k*R?,

as, =Aj,(qR)(3T - 9)/q°R?,

Ay, =(5w?-4A).

The constants C; are then obtained by inverting
the matrix ay;,

Ci=Y_ @ )ya,h, (5.17)
i

and from these values the functions U, Wand the
displacements u,, g, uy can be calculated. If
damping is neglected, the resonant frequency of
the freely oscillating sphere is obtained by setting
det(a;;) =0, and a~! will not exist.

High-frequency limit. It is interesting to com-
pare the results of the present calculations with
those of Dyson, in the limit of high frequency (fre-
quency high compared with the fundamental reso-
nance frequencies of the sphere). In this limit we
have

B~ wPp /i, ¢®=wip/(\+2u), w?>>A
J,(kR) =~ — (sinkR)/kR, j,(kR)=(coskR)/kR,

(5.18)
~ w2\ +u)/Au, T~BAN +2u)/w2(\ +u)<<1.

Since S>>1, it is convenient to obtain expressions
for U and W by letting

C,~6C,/S, S=w.
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Then neglecting terms proportional to T, we have
for the general solution, to which must be added
the particular solution,

U =6C,jy(k7)/ k27 +2C,5,(q7)/g*"

+Cys(q7)/q +2C,7,
W =3C,j,(k7)/ k27 + C,j,(k7)/k + Cylp(q7) /q%7 + Cy7,
X ==Cyllq7r), H=-Cj,(kr), (5.19)
==3AC,j,(g7)/qr + w?C,72.

For this case the matrix of coefficients becomes
approximately

A= 08y =Qy =0y, >0,
a, =@\ +2u)singR)/qR,
a, =4y, a,=2 (5.20)
a,, = (sinkR)/kR,
a,,=5w?
The solutions are
C,=2AhR/5w? =0,
C,-2uqRh/[(\ +2u)singR], (5.21)
C,=—kRh/sinkR,
The horizontal component of displacement at the

surface in this limit, keeping only leading terms
in order 1/w, is given by

W (R)=W, + C,jy(kR)/k

. u 1/21
=3Rh —h(—) =cot[wR(p,/p)’/2]. (5.22)
P/ W
The horizontal component of displacement is then
obtained by multiplying by an appropriate function
of 6 and ¢; in this limit the self-stress does not
affect the displacement. In the direction perpen-
dicular to the propagation direction of the wave,

1 aS
= )_ —
up=W(R sind 0¢°

The term 3Rk(1/sin6)dS,/9¢ corresponds to the
horizontal component of the motion of a free test
mass:

test-mass displacement
= 3R sinf(h, ,sin2¢ - h,,cos29).

The remaining term is the “seismic displacement”
which should be compared with Dyson’s result.®

In the direction normal to the direction of propa-
gation the horizontal seismic displacement is
therefore

/ /
+ (%)1 : 1acot[(aJI%(%’>l 2] siné (h,,sin2¢ - h,,c0s2 ¢).
(5.23)
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At high frequencies the characteristic attenua-
tion length of elastic waves is small compared to
R. Then wR/(p,/1u)!/? effectively has a large imag-
inary part and the factor cot[wR(p,/1)!/2] becomes
a phase factor, e(~¢"/2),

Numerical calculations. Numerical calculations
of U(R) and W(R) were carried out for a homo-
geneous spherical model of the earth with the fol-
lowing parameters: p,=5.52 g/cm®, p=Xx=0.91
x10'2 dyn/cm?, R=6.37x10° cm, =7.0x10"
poise, ¢ =11—017, corresponding to a fundamental
spheroidal oscillation which occurs at a period of
3402 sec. The damping constants have been chosen
to give a value of @ ~400 for the fundamental.

The dimensionless vertical strain per unit gravi-
tational wave amplitude U(R)/Rh is plotted in Fig.
1 as a function of the period of the gravitational
wave. The vertical displacement is seen to be
significant only in the neighborhood of the funda-
mental. On the other hand, the dirnensionless
horizontal strain W(R)/Rk, which is plotted in
Fig. 2, is significant in the neighborhood of the
first harmonic, ,S,.

The calculated value of the period of ,S, is 2355
sec whereas the observed period is only 1462.9
sec. This is because at higher frequencies the
details of the earth’s layered structure have a
more significant effect on the resonance frequen-
cies. It is nevertheless expected that for the real
earth the principal horizontal response will occur
at the ;S, mode frequency.

VI. MEASUREMENT OF WAVE-INDUCED
DISPLACEMENTS

The displacement field #* in general has both
horizontal and vertical components; in this sec-
tion we consider how these displacements may be

500k PEAK VERTICAL
° STRAIN
DSZ
500}
100} zsz |5' J
1000 2000 3000
PERIOD (sec)

FIG. 1. Dimensionless vertical strain per unit gravi-
tational wave amplitude (U (R)/Rh| vs period of gravita-
tional wave.
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observed in principle by means of various types
of sensors—such as gravimeters and seismome-
ters—attached to the surface of the self-gravitat-
ing sphere.

Gravimeter. A gravimeter measures accelera-
tion relative to a local inertial frame. At low
velocities, the motion of a gravimeter which is
freely falling and which would measure zero ac-
celeration will satisfy the equation

xRt g =0. (8.1)

A gravimeter of mass m acted on by a mechanical
force F* will move according to the equation

%%+ c’TE = F*/m; (6.2)

hence the measured value of the acceleration will
be given by the left-hand side of Eq. (6.2). For a
gravimeter attached to the surface of the earth,
we may take

x®=xg+u*(R) (6.3)

where xZ is the equilibrium position on the sur-
face. If the gravimeter measures only the time-
dependent part Ag of the radial acceleration in-

duced by an incident gravitational wave, we have

Ag =i, (R) +c*Ti( R +4,(R)) - *T {(R)

=[i‘/ (R)-hR +AU+‘LI;(TR)}SZ(9, ®), (6.4)
where the subscript or superscript 7 refers to the
radial direction. The first term in Eq. (6.4) may
be interpreted as the contribution to the observed
variation in g due to radial acceleration of the
gravimeter. The second term is due to the force
exerted by the incoming wave. The third term is
due to motion of the gravimeter through the body’s

PEAK HORIZONTAL s
STRAIN e

200}

1007
A —/ A
1000 2000 3000

PERIOD (sec)

FIG. 2. Dimensionless horizontal strain per unit
gravitational wave amplitude [W(R)/Rk] vs period of
gravitational wave.
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gravitational field, and the fourth term arises
from the changing mass distribution. The third
and fourth terms in Eq (6.4) are written in a form
appropriate for a gravimeter placed just below the
surface of the body which has been modeled as a
uniform sphere; if the instrument were placed just
above the surface, the third term should be re-
placed by —2AU. For the real earth the correct
form of this term should be determined by the
static radial variation in g at the actual location
of the instrument. For a spherical uniform model
earth with a gravimeter placed just above the sur-
face the fourth term should be replaced by

oP oP

8—7’ r+e:.a—7'

+471p,GU(R), (6.5)
r—-€
which follows from Eq (4 17).

Seismometer. A seismometer may be consid-
ered as a nearly free test mass supported by a
force sufficient to balance out the static part of
the earth’s gravitational field. Thus the motion
of the seismometer mass is described by the eq-
uation

3‘; +Czroho(l)=0» (6.6)

and hence for a monochromatic wave the position
of the seismometer test mass will be given by

xh=xk+ ALY /w2, (6.7)

The surface of the earth at this point will, how-
ever, move as

xE= x% L A (R) (6.8)

and therefore the observed seismic displacement
will be given by

1
x%— x% =uk(R) —éh‘;xg+ﬁ(Psz)', o (6.9)

The third term in this expression arises from the
changing gravitational field of the earth. If the
self-stress of the earth is omitted, then the seis-
mic displacement is #*(R) - 3hx/; this is the quan-
tity Z* defined in Eq. (3.6). We therefore conclude
that Z* is, in the absence of self-fields, the appro-
priate variable to call the displacement field of the
elastic body measured relative to seismometer
test masses. This result differs from that of Dy -
son® in the sign of the gravitational wave-driven
term, —3hfx;.

Hovizontal strainmeter. As a final example of
a possible detection device we consider a strain-
meter which measures the fractional change in
length between two points on the earth’s surface.
Suppose that when in equilibrium the ends are at
the positions xf and x*. Then when displaced due

to motion of the surface, the two ends will be at
xX +ut(x;) and x*+u*(x,), respectively. The change
of length will be given in terms of the vector Al*
=u*(x,) —u*(x;). Since the difference I*=x* — x}
may in practical cases be considered small com-
pared to R, this length change can be expressed
as

Al =T vut

ou*

=37’ (6.10)

where 3/31 denotes a derivative taken in the di-
rection of the vector /*. If only the horizontal
components of strain are measured, then we may
replace #* by a combination of its horizontal com-
ponents, g or u4 [see Eq (5.3)]. For example,
for a north-south orientation of the strainmeter,
the strain is

Alg 1 duq
! RO
W (R)a3S
=T3_9"’z (6.11)

The function 32S,/862 is of order unity and depends
on position on the surface, so that basic measure
of horizontal strain at the surface is the ratio
W(R)/R. A vertical strainmeter may be analyzed
in a similar manner.

APPENDIX

The metric tensor uses the Landau-Lifshitz
spacelike convention which for a Minkowski space
is

ds? = — (dx°F + (dx*)? + (dx?)? + (dx®)2, (A1)

Greek indices assume the values from 0 to 3.

Latin indices assume the values 1, 2, and 3
except when 7 and s are indices. In this latter
case, 7 and S run over the indices 1 and 2.

In the Newtonian approximation used from Sec.
IIT onwards, covariant and contravariant indices
are not distinguished since an orthonormal basis
is used.

The four-velocity U* is defined by

dx*
Uk= et (A2)

The stress tensor g,, has the sign conventionally
used in elasticity theory,!® while the energy den-
sity assumes the form

T® =pc? (A3)

in Newtonian approximation.




12

1A recent survey of gravitational wave detection is given
by Terrence J. Sejnowski, Phys. Today 27, 40 (1974).

23, Weber, M. Lee, D. J. Getz, G. Rybeck, V. L. Trimble,
and S. Steppel, Phys. Rev. Lett. 31, 779 (1973).

3W. H. Press and K. S. Thorne, Annu. Rev. Astron. As-
trophys. 10, 335 (1972).

4J. Weber, Phys. Rev. Lett. 18, 498 (1967); F. J. Dyson,
Astrophys. J. 156, 529 (1969).

See, for example, C. W. Misner, K. S. Thorne, and J.
Wheeler, Gravitation (W. H. Freeman, San Francisco,
1973), Chap. 35, or Steven Weinberg, Gravitation and
Cosmology (Wiley, New York, 1972), Chap. 10.

fFermi coordinate systems are discussed by J. J. Stoker,
Differential Geometry (Wiley-Interscience, New York,
1969), Chap. 9, p. 312. Note that because of the high
symmetry of the plane gravitational wave metric, the
coordinate system we use is locally Lorentzian every-

GRAVITATIONAL WAVE RECEPTION BY A SPHERE 349

where in a plane. More general coordinate systems
which are locally Lorentzian along a geodesic have
been discussed by F. K. Manasse and C. W. Misner,
J. Math. Phys. 4, 735 (1963).

'J. Weber, General Relativity and Gravitational Waves
(Interscience, New York, 1961) Chap. 8, p. 124.

81, D. Landau and E. M. Lifshitz, The Classical Theory
of Fields (Pergamon, Oxford,1971), Third English
edition, Chap. 11, p. 266.

9F. J. Dyson, Ref. 4.

10The notation we use is that of L. D. Landau and E. M.
Lifshitz, Theory of Elasticity (Pergamon, Oxford, 1970).

1)\, E. Rose, Multipole Fields (Wiley, New York, 1955).

12¢, 1., Pekeris and H. Jarosch, in Contributions in
Geophysics: In Honov of Beno Gutenberg, edited by
Hugo Benioff, Jr. et al. (Pergamon, Oxford, 1958),
Chap. 13.



