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Effective Lagrangian for the Yang-Mills field
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A recently proposed method for evaluating effective Lagrangians is applied to the Yang-Mills field.

I. INTRODUCTION

II. FORMALISM

We consider, as a typical example, the pure
Yang-Mills theory

YM
(p) & uv uv ~

where

(2.1)

In a recent paper, ' a simple method was pre-
sented for the evaluation in the quantum field
theory of the effective Lagrangian induced by one-
loop quantum effects. Using functional integrals
and DeWitt's background-field method, ' exact
results could be obtained by imposing appropriate
"quasilocal" conditions on the background fields.

In this paper we demonstrate that the methods
described in Ref. 1 (henceforth referred to as
paper I) may easily be generalized to accommodate
closed loops of gauge quanta and the fictitious-
particle contributions. Only the outline of the
arguments is given here, and we refer the reader
to paper I for specific details.

erned by that part of p)
+g'" 'which is bilinear

in the quantum field b'„. We denote the resulting
Lagrangian by I ~. After a little algebra we find

L» = —a(t7„b„)' —gf'"Gq„b„b', .
Corresponding to the gauge choice (2.4), the
fictitious-particle Lagrangian is

(2.6)

(2.7)

L„=— (V„g,)' —2(V~na) (2.8)

where, for convenience, we use the real fields
p', and p', defined by

(u' = (q', + iq', ).g2
(2.9)

Following 't Hooft, ' both I ~ and I, may now be
cast into the canonical form

written in terms of the complex fermion fields
m and co*. These fields are purely quantum and
have themselves no background part. Again keep-
ing terms bilinear in the quantum variables, there-
fore, the fictitious single-loop effects will be
governed by

(2.2)

with f'" the completely antisymmetric structure
constants of the group.

As in paper I, we make the background-field
replacement

I.= -2g h'8 8'+h'~'g h' ——2'h'M' h
u u u u

or defining

h,
u

——~uh+ Nuh

and

(2.10)

(2.11)

Bu B +6 (2.3) X =M+ NQq, (2.12)

Vaa S bah face~au u +g u (2 5)

depends only on the background field. As in paper
I, the vecter single-loop effects will now be gov-

where bu is the quantum field variable and Bu is
now to be regarded as a classical background
field. Now, however, we must also add a gauge-
breaking term to g(0) and take into account the
corresponding fictitious-particle contribution.
The gauge-breaking addition is chosen to be'

(2.4)

where the covariant derivative

L = --,'h'. h'. — h'X"h'2;p;u 2 (2.13)

Yq,
——BAN, —B„N~+(Np, N„]. (2.15)

which is manifestly invariant under the trans-
formations

6h =Ah, OX=[A, X], 5N„= s A [N~, A] = -A. ~,

(2.14)

where A(x) is an arbitrary, infinitesimal, anti-
symmetric matrix. The effective Lagrangian will
now depend on the background field only via the
tensor combinations X" and Y'„~„where
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Xlg X 5 2 f 5cGc

Yp', - Y'„, s gf"——"G'„,5 ()

(2.16)

For the vector field, we make, from Eq. (2.6),
the identifications

where

E(Y; s) = —,'tr ln[(ys) 'sin(ys)]

and

(3.6)

~OO

i -X(B)s -E(F;s) -X(p)s&(i)=+ „g, Tr, „,e e e ),

(3.5)

and for the fictitious field, from Eq. (2.8), we
find

yp,
'= Ypn(&)Y. (&) (3 7)

Y(1 rga b facbGc

and similarly for q'2.

(2.17)

with B the background field. Here tr means trace
over p v indices and Tr means trace over ij in-
dices. The over-all sign is plus for a boson loop
and minus for a fermion loop. The one-loop Yang-
Mills Lagrangian will now be given by

YM V fp
Z(, ) =Z(,) +2m(,), (3.8)

III. THE EFFECTIVE LAGRANGIAN

-0 (3.2)

imposed by Schwinger' on the Maxwell field
strength &&, in calculating one-loop effective
Lagrangians for constant external electromagnetic
fields. ) From Eqs. (2.16) and (2.17), the condi-
tion (3.1) automatically insures that

X.p ——0= V~'p. p (3.3)

for both the vector and the fictitious fields. These
conditions, in turn, mean that the matrices X and
Y commute

[X, Yp,] = 0 = [Yp „Yp~] (3.4)

(see paper 1 for details).
Our task is now considerably simplified and the

methods used in paper I to calculate the effective
Lagrangian now carry over completely to the pre-
sent situation. There it was shown that corre-
sponding to the Lagrangian I of (2.13), and the
conditions (3.3) and (3.4), the one-loop effective
Lagrangian (in n space-time dimensions) was
given by

The effective action induced by these quantum
effects will, of course, be exceedingly complicated.
Even in the one-loop approximation it will be a
nonlocal functional of the background field, the
one-loop Lagrangian P» depending on Bp and all
its derivatives. For arbitrarily varying fields,
therefore, one must resort to some perturbative
method of calculation. Instead, however, we wish
to solve for Z(, ) exactly by placing what were
called in paper I "quasilocal" conditions on the
background field. Accordingly, we choose our
background field 8& to satisfy the condition

(3.1)

(This is the non-Abelian analog of the condition

where X'„„Yp'„'8, and 'Jjp „are given by Eqs.
(2.16) and (2.17). Note that for both vector and

fictitious fields X(0)=0, which merely reflects
the fact that we are dealing with a massless theo-
ry. This will prove significant when we consider
the infrared problem.

IV. RENORMALIZATION

As it stands, the Lagrangian 2(,) of Eq. (3.5) is
ultraviolet divergent when evaluated at n =4.
These divergences may be removed, as in paper
I, by the addition of counterterms which are equal
to minus that part of Z(]) which diverges for n =4
at the lower limit of integration (s = 0). By expand-
ing the exponentials and integrating over s, we
find that the counterterms required are given by

I 2 12,( 4)
Tr(X + —,YppYp, ). (4.1)

For the Yang-Mills case, therefore, we have from
Eq. (3.9)

EcC 32 2( 4) Tr[X + 6 Ypp Ypp+ ( 2) 6 Jptl Hpv].

(4.2)

Defining C by

fa~f.M
= G~c., (4.3)

we find from (2.16) and (2.17) that

YM ~ yyy, 2 g a4Z =
2( )

—, C'g Gp,G„, (4.4)

the factor 2 accounting for the two fictitious fields
g, and g2. Remembering the change in sign for
fermions, therefore, and that & = 0, we have

p OO

g() =
2(42 4m'j" -p

-2(e "&"-1)], (3.9)
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These counterterms were first obtained in this
form by 't Hooft using different methods. Alter-
natively (and, of course, equivalently), we may
follow Schwinger and renormalize by subtracting

off the leading terms of the exponentials, keeping
n =4 throughout. The complete, ultraviolet-finite,
Lagrangian then becomes

gYM gYM g')t'M
(o) + (~) (4.5)

h
p 00 2 I

= --,G»G&,+,Tr ~~
—, e e i""i —1 — s' ——,', Y„„Y&,s' —2(e J"i—1 ——,', 'g»'g»s ) (4.6)

0

V. DISCUSSION

The formal expression (4.6) is not yet in a
particularly simple form. Some simplification
is achieved by noting that from (2.16) and (2.17)

b ab & abY'„s-—'gq„5 s ——-~Xq„5„8. (5.1)

Furthermore, with knowledge of the eigenvalues
of the above matrices, the trace operations could
be performed explicitly. This should be reasonably
straightforward provided the group in question is
not too large, but we shall not pursue this here.

Although our effective action

I'=
i

dxg (5 2)

is, from (4.6), manifestly invariant under gauge
transformations of the background field, we must
still discuss its dependence on the specific choice
of gauge for the quantum field. For example, had
we chosen, instead of (2.4), a gauge-breaking
addition

(5.2)

where all quantities are now understood to be the
r enormaliz ed quantities.

However, the final Lagrangian (4.6) still diverges
at the upper limit of integration (s=~). Nor does
it seem possible to deal with these infinities in

the way described in paper I for massless scalar
theories (e.g. , massless A.Q'). This is, of course,
just a manifestation of the well-known infrared
catastrophe of massless Yang-Mills theory.

with & arbitrary, then in general the effective
action I' would depend on (.

In the present situation, however, we note that
the condition (3.1) implies, in particular, that

V~G'„, =0, (5 4)
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which are just the classical field equations. More-
over, since I' depends only on G&„solutions of
(5.4) will also be solutions of

5I'
, =0. (5.5}

One might speculate then that gv" of (4.6) is, in

fact, $ independent in much the same way that
effective potentials V(Q) are ( independent' when

evaluated at solutions of dV/d$=0. Unfortunately,
giving an arbitrary value to $ renders the cal-
culations much too cumbersome to achieve direct
verification of this.

Finally, we refer the reader to a recent paper
of Drummond and Fidler' who have stressed,
within the context of Yang-Mills theories, the
need for elucidating the structure of effective
actions. Here, we simply present Eq. (4.6}as
an interesting exact result of quantum field theory,
showing that Schwinger's one-loop effective
Lagrangian for Maxwell fields may be generalized
to the non-Abelian case where the gauge fields
are themselves quantized.
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