Comment on "Group theory of the spontaneously broken gauge symmetries"

Victor Elias, Shalom Eliezer, and Arthur R. Swift*

Department of Physics and Astronomy, University of Massachusetts, Amherst, Massachusetts 01002 (Received 4 August 1975)

Several additions are made to Li's analysis of the patterns of symmetry breaking in SU(n).

In a recent paper¹ Li examined systematically the pattern of symmetry breaking in the general rotation group O(n) and unitary group SU(n). His comprehensive analysis forms a very useful guide for anyone interested in studying symmetry breaking in large groups. In the course of our work we have discovered that in a couple of respects his discussion of SU(n) is incomplete.

When SU(n) is broken by a scalar field ϕ^{ij} that transforms as a second-rank antisymmetric tensor, Li shows that the symmetry $SU(n) \rightarrow SU(n-2)$ when $\lambda_2 < 0$. [λ_2 is one of the parameters in the potential $V(\phi)$.] The correct result is $SU(n) \rightarrow SU(n-2) \times SU(2)$. The extra SU(2) appears because, as shown by Li, the vacuum expectation value (VEV) of ϕ^{ij} can be chosen to be $\phi^{12} = -\phi^{21} = \sigma$. Since ϕ^{ij} is antisymmetric, it is a singlet under SU(2) transformations of the 1, 2 indices and remains invariant under SU(n-2) transformations of the remaining n-2 indices.

Li's results are also incomplete when SU(n) is broken by a scalar field ϕ_i^t that transforms as a tensor belonging to the adjoint representation. The correct patterns of symmetry breaking are

 $SU(n) \rightarrow SU(l) \times SU(n-l) \times U(1)$

 \mathbf{or}

 $SU(n) \rightarrow SU(n-1) \times U(1)$,

where l=n/2 (*n* even), (n+1)/2 (*n* odd). Which case is realized depends on the parameters of the potential $V(\phi)$. The extra U(1) in either case results from the fact that the VEV of ϕ_j^i can be chosen proportional to a diagonal generator of SU(n). This diagonal generator commutes with the VEV of ϕ_j^i and generates a U(1) symmetry which is unbroken.

*Research supported in part by a grant from the National Science Foundation. ¹Ling-Fong Li, Phys. Rev. D <u>9</u>, 1723 (1974).