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One-loop divergences of the nonBnear chiral theory
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An application of dimensional renormalization to chiral-invariant theories is presented. The naive Feynman
rules may be used in this framework without introducing any noninvariant corrections to the on-mass-shell 8
matrix in the one-loop approximation. Moreover, the soft-pion theorem is fulfilled in all orders of perturbation
theory.

Recently there have been several discussions on
perturbation theory in the nonlinear chiral theo-
ry. ' ' In spite of the nonrenormalizability of this
theory it is expected that chiral invariance should
constrain the counterterms in such a way that one
may extract some useful results from the one-loop
calculations, for instance. In doing any pertur-
bative calculations in this theory we are faced with
the following questions:

(I) Is the Adler condition (the soft-pion theorem)
satisfied order by order in perturbation theory'P

(2) Is the on-mass-shell S matrix computed in
perturbation theory invariant under redefinitions
of the pion fields?

If one worked without any caution (i.e., using
naive perturbation theory) the answer to these
questions would be negative. However, it was
pointed out' that if one does the perturbation cal-
culations more carefully, by adding an extra term
multiplied by &4(0) to the Lagrangian, the Adler
condition is automatically satisfied. The second
question seems to be more complicated, and in
order to give a proper answer one must use an in-
variant renormalization with respect to a kind of
gauge group. '4 Using the background-field tech-
nique Ecker and Honerkamp' succeeded in calcu-
lating the one-loop counterterms of the nonlinear
chiral-invariant pion Lagrangian. These counter-
terms are manifestly chiral-invariant and gauge-
invariant, but they do not have the same structure
as the initial Lagrangian, i.e., the theory remains
invariant in the one-loop order but it is not re-
normalizable. Unfortunately, all these calculations
contain a lot of meaningless things, and one has
to introduce a regularization method to deal with
them properly.

The purpose of this paper is to show that dimen-
sional regularization is very suitable for doing
all calculations in this particular theory. We shall
show that in this regularization method one-loop
diagrams automatically satisfy the Adler condition,
and the on-mass-shell 8 matrix is invariant under
redefinitions of the pion field even though we use
a naive perturbation theory.

The Lagrangian of our theory can be written as&'

g, j(7) being the metric in a curved isospace with
consta. nt curvature f, '.

All one-loop diagrams can be obtained in a way
explained by Coleman and Weinberg' if one starts
with a prototype diagram, which is a simple circle
in this case. Now it is easy to check that in the
soft-pion limit (i.e., when all external momenta
are zero) all these diagrams contain the integral

d"k,

where n is the space-time dimension. But this
term which is so meaningless in a usual regular-
ization can be treated properly by a convenient
definition of the n-dimensional integration. After
this redefinition it can be shown that this term
vanishes in the framework of dimensional regular-
ization.

Thus one can say that the Adler condition is in-
deed automatically satisfied in this regularization,
at least in the one-loop approximation. We do not
need to add any counterterm to satisfy this con-
dition. This is easy to explain, and all the mystery
of this cancellation consists in the occurrence of
the &'(0) factor in the counterterm introduced by
Gerstein, Jackiw, Lee, and Weinberg' which is
now zero. It is natural to ask ourselves whether
such a cancellation exists in higher orders of per-
turbation theory. The answer is affirmative, but
we do not give the proof here.

The second question can be solved by using the
standard procedure of the background-field method
and applying the technique developed by 't Hooft. "
If we write

7T = 7T +X

where w' are background fields and X' quantum
fields, one can expand the Lagrangian Z in quan-
tum fields about the background fields. The linear
terms yield the equation of motion for the classi-
cal background fields
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&;=~,. = -g;, (~) ~' I', „.,(v)s, v's"~», (3)

The values of N&" and M& can be read off from the
complex version of Z, to be

N~~' =-F~q&" n

Mr =-g' (S; I» r„&err
'a~rr" +g,» r I7rr ').

The counterterm which should be added to J to
render the theory finite in the one-loop approxi-
mation in the framework of dimensional regular-
ization is given by 't Hooft's lemma' as

4Z = —Tr (~r» Y„„Y"'+»X')

where the matrices Y&„and X are

Y~»=&pN„—&„Nq +[N~ N„],
X=M - N„N~ -8„N~,

and e =8rr'(rr 4).
These matrices can be written explicitly as

(8)

Y~„~ =R~~, ~~m (10)

(11)

where A&» is the Riemannian curvature tensor for
the metric g;, . The fact that isospace has a con-
stant curvature f, ' implies

&rr»r =err (gr» grr —grrgr») . (12)

Introducing these terms into (?) and not forgetting

where I'»;r =» (g;» ~ &+gr», ; —g;&»} are the Chris-
toffel symbols for the metric g;r (g;» z means the
derivative of gr» with respect to the pion field rr ).

The quadratic part 4, of has the form

~, = »g;;(~)s„x's"x'+(g;;.» s, v')8" x'x"

+»(grr»r S, rrrr S rr )X X

In order to apply the lemma of 't Hooft" wehaveto
double the fields g, make them complex, sub-
tract a total derivative, and redefine (y')*
-(y')*g;r to arrive at the standard form

& = -X~ X'+2X';N~&" ~„X'+X*~',X' . (5)

??= g

(14)

where I",=rf('/rf&( q, is the derivative of the geo-
desic from n'' to f' A. is the length for this curve
and g'(0} =rr', f'(1) =7r' I'„'„...., » are the gener-
alized Chrlstoffel symbols. Using rouinstead of
X we can write 2, in the form (5) with N& given
by (8) but with M; modified as follows:

M;=M', -g' Fq~8

In this case &2'=0, and ~Z is manifestly chiral™
invariant as expected.

In conclusion we can say that the dimensional
regularization and renormalization provide us
with Green's functions satisfying the Adler con-
dition and with on-mass-shell S-matrix elements
which are independent of the parametrization of
the pion field in the one-loop approximation. In
particular the one-loop approximation w propagator
is zero, and for the m-w scattering amplitude only
one subtraction constant must be introduced. In
order to satisfy not only the Adler condition but
also the independence of the on-mass- shell S-
matrix elements of the parametrization of the
pion field, we do not have to do the canonical per-
turbation theory more carefully, but just apply it
naively and use dimensional regularization.

the factor 2 to undo the doubling we finally get

f—, 4[2(g;; s„rr'&„rr ~)'+ (gr r &„rr'&" rr r)']+ ag ',
(13)

where 42 ' contains Si as a factor. %e note that
~C' is not manifestly chiral-invariant but the
first term in (13) is. On the other hand, when we
calculate the on-mass-shell 8 matrix we can use
the equations of motion (3), and AS' =0 in this
case. In other words, the on-mass-shell S matrix
is invariant under redefinitions of the pion field,
at least in the one-loop approximation.

Had we used a coordinate-independent pertur-
bation expansion we would have obtained a mani-
festly chiral-invariant 4Z. In order to see this
we simply notice that
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