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We discuss how the strong-coupling renormalization-group solution of Reggeon field theory satisfies some of
the simplest constraints of direct-channel unitarity, including those which lead to the decoupling theorems for

the simple Pomeron pole.

The construction of a theory of high-energy
diffraction scattering which is consistent with the
constraints of unitarity in both the direct and
crossed channels (hereafter referred to as the
s and ¢ channel, respectively) is an old problem.
In s-channel models, it is difficult to see how to
implement f-channel unitarity. In the Reggeon
calculus,® which is based on the constraints of ¢-
channel unitarity, it is not a question of enforcing
S-channel unitarity, but testing to see whether it
can be satisfied. While the solution of a Pomeron
pole with intercept below unity appears to present
a consistent picture, the weak-coupling solution
of a pole exactly at unity, with asymptotically
negligible cuts, runs into difficulties, chiefly with
the decoupling theorems.?

However, it has recently become clear that this
solution is not, in general, correct.’** Instead, the
partial-wave amplitudes, which correspond to the
Green’s functions of Reggeon field theory, asymp-
totically obey scaling laws, which, in particular,
predict that the total and elastic cross sections
should behave as powers of Ins. Since Reggeon
field theory can be derived without reference to
the s channel, and claims to give a full descrip-
tion of the scattering amplitude in certain kine-
matic regions, the constraints of s-channel uni-
tarity form an effectively independent test of the
theory. Indeed, since it is likely that the predic-
tions of the theory in its simplest form are appli-
cable only to superhigh energies, it may be that
s-channel unitarity is the only laboratory where
it will ever be tested.

The renormalization-group solution of the Reg-
geon calculus in its purest form makes statements
about only exclusive processes in which the trans-
verse momenta are near zero, and the rapidity
gaps between the particles (or, more generally,
clusters) are large and of the same order of mag-
nitude. It can also be applied to inclusive pro-
cesses in certain kinematic limits, for example
the triple- Regge region.® At this level, we can
ask only a limited number of s-channel questions
of the theory. However, since the answers tothese
questions are essentially independent of the details
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of the theory, a violation of one of the constraints
would amount to a disproof of the validity of the
theory in its present form. By contrast, more de-
tailed s-channel questions would involve more
model-dependent answers in the Reggeon calculus,
and such constraints would serve merely to distin-
guish between different detailed possibilities, with-
out modifying the whole theory. In this sense, the
more restricted questions are the more important
ones.

The constraints we shall consider here are the
following.

1. Positivity of inclusive cross sections, includ-
ing the total cross section 0y,,.

2, O <0t : the elastic is less than the total
cross section.

3. § <0, : O, is the cross section for the pro-
duction of n particles (in general, » low-mass
clusters) with large rapidity gaps of the order of
the total rapidity. The theory predicts that
§,/0, < (Ins¥ "8, so it is sufficient to demand that
B>0.

4. The Froissart bound: in D dimensions of
transverse momentum this is 7 <D, where
Otot & (Ins)™

5. Opg <Ot : Org is the cross section obtained
from integrating over the triple-Regge region
(large mass diffraction).

6. OpTR< Oyt : Oprr is the cross section obtained
from integrating over the di-triple-Regge region
(central production of a large-mass cluster).

7. Oy<0i : Oy is the cross section for the pro-
duction of N large-mass clusters with large rapid-
ity gaps between them.

8. Schwarz-inequality arguments: e.g., the 2
-3 production amplitude is bounded by the one-
particle inclusive amplitude in the triple-Regge
region.

Several of these constraints have been discussed
elsewhere and we shall mention them only briefly.
Constraints 5 to 8 are the usual alternative start-
ing points on the road to the decoupling theorems
for the simple Pomeron pole.? From them one
deduces the vanishing of various Pomeron couplings
at zero momentum, proceeds (by more question-
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able arguments’) to the vanishing of Pomeron-
Reggeon-particle vertices, and finally obtains the
decoupling of the Pomeron pole from total cross
sections. In this paper we shall go no further
than the first step, since, in the theory under con-
sideration, Reggeons have a sufficiently compli-
cated structure to defy the arguments of the further
stages, which assume a simple pole behavior. We
note that in this theory the full Pomeron-Reggeon-
particle vertex does vanish, but this comes about
because of screening of the bare vertex by the cuts,
not in spite of the cuts. As a result one cannot
continue this result onto the particle pole on the
Reggeon trajectory, since the cuts decouple there,
leaving the bare vertex uncanceled.?

The derivation of the constraints 1-8 is in gen-
eral quite difficult, since Reggeon field theory is
not Hermitian and one cannot use positivity. The
arguments are usually based on the universality
hypothesis (which can be verified in the € expan-
sion) that higher-order Pomeron couplings and the
couplings of more than one Pomeron to the exter-
nal particles are asymptotically negligible.

With these assumptions, the elastic amplitude
evaluated at rapidity Y and impact parameter b is
proportional to the two-point function of the Reg-
geon field theory, which has the scaling form as
Y,b—~w

©[y¥(Y,B)y*(0,0)]0) = Y7-P?/2f (B2/ ¥?). 1)

The total and elastic cross sections are then pro-
portional to ¥Y" and Y21-P¥/2  regpectively. (In this
paper we use the exponent notation of Ref. 3.)
Universality tells us that the asymptotic sign of
the total cross section is the same as would be
obtained in a theory with just a constant triple-
Pomeron coupling. In such a theory we can use
the renormalization group® to relate iI{1:1) (E, 0),
the Fourier transform of the inverse two-point
function evaluated at zero momentum, to its ultra-
violet behavior as E - — (although this has no
physical meaning)

iT LR 0, g, @) =iT(LD(AE, 0, F(N)
(7 48[4 e
XeXp{—fg B(g/) [1 +77(g )]}. (2)

So long as B(g) and 7(g) have no singularities be-
tween the origin and the infrared-stable zero, we
see that {T{!1XE, 0) has the same sign for all neg-
ative values of E. Since the theory with only a
constant triple-Pomeron coupling is ultraviolet
free, i.e., 3(A)~0 as A ~«, we have ¢T¥1:1)

~E as |E[.--~=. Since this corresponds to the ex-
change of a simple Pomeron pole, the coefficient
of the power behavior of iT{11) ag |[E| -0 is of
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the correct sign to give a positive contribution to
Ot . [We must also demand that 7> -1, since a
factor I'(1+7) appears in taking the inverse Mellin
transform to obtain the cross section. When 7
<-1 it can be shown that I''1:¥) no longer domi-
nates the cross section. However, all approxima-
tion schemes indicate that 7>0.] One can use
similar arguments to show that other inclusive
cross sections to which the calculus can be direct-
ly applied (e.g., in the triple-Regge region) are
positive. In particular, the Pomeron-Pomeron
total cross section is positive. This was a deli-
cate point in the weak-cqupling theory.!°

The constraint 0,<0,, is satisfied because the
left-hand side of Eq. (1) is bounded. In a Hermit-
ian theory such a bound would follow immediately,
since, by the Schwarz inequality, the two-point
function is bounded by ([¢|?), which is finite (with
a suitable ultraviolet cutoff on the theory). In the
non-Hermitian case, we use the functional integral
representation of the two-point function to show
that in the strong-coupling limit this is propor-
tional to the spin-spin correlation function of a
system of Ising spins on a lattice, which is of
course bounded by unity.!! Taking the limit
Y- with b?/¥" fixed on the right-hand side of
Eq. (1), we obtain

n-3Dv <0 . 3)
If the inequality is strict, then Ou /0y - 0. If equal-
ity is obtained, we can always choose the coup-
lings g to the external particles small enough so
that 04 <0wt . In Ref. 11 it is also shown that the
lattice model predicts v <2, which, together with
Eq. (3), implies the Froissart bound 1 <D.
Leaving aside constraint 3 for the moment, we
turn to the decoupling arguments. The constraint
Otr <Oyt is pictorially represented in Fig. 1.
Rules for the construction of the inclusive cross
section in the triple- Regge region have been given
in Refs. 5 and 6. The important point is that
Reggeon energy is not conserved at the central
vertex. This is essentially because the rapidity
of the central vertex is fixed in terms of the ex-
ternal invariants. The dashed line in Fig. 1 rep-
resents a discontinuity in the missing mass. This

FIG. 1. Representation of the constraint opp <0,
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FIG. 2. Diagram giving an upper bound on oy .

can be taken in a completely general way using
signature factors, and does not involve assuming
model-dependent cutting rules.

The integration over particle ¢ may be represen-
ted by Fig. 2. In asserting this we must show that
the leading singularities in Fig. 2 are really gener-
ated in the region of the phase space implied by
Fig. 1. In general, we would expect the scaling
law for the triple-Regge cross section to be valid
only in the region where ¢ is small [less than
(1ns)~"] and InM? is of the same order as lns.
However, since the contributions to Fig. 2 from
all parts of phase space are positive, it is clear
that if we can show that the cross section repre-
sented by Fig. 2isless than the total cross section,
this will also be true for the small part of phase
space in which we have a reliable formula for the
inclusive cross section. I, on the other hand, we
found that Fig. 2 gave a contribution which exceeded
Ot » we would first have to carefully examine the
phase-space integral before concluding that uni-
tarity is violated. In fact, this will turn out not
to be the case. This is a reversal of the usual
logic: we are testing to see whether the theory
satisfies the unitarity constraints, rather than
using unitarity to constrain the theory.

In Fig. 2, the rapidity of the central vertex is
integrated over, and so Reggeon energy is once
again conserved, and the vertex becomes the
usual full vertex which appears in the Reggeon
calculus for the elastic amplitude. The depen-
dence on Reggeon energy E of the diagram is
simply determined, the anomalous dimension ¥
of the vertex dependence (—E)* being given by the
scaling relation®*

y=1+3n-1Dv. (4)
We then have for the behavior of Fig. 2

g S0 o yIV2-DV/a 5)
which is less than O if

3n=5Dv <0 (6)

with the condition that the coupling to the external
particles be small enough, if equality is obtained.
We recognize this as the condition that 0, < 0.
This constraint has also been checked®'® by
assuming the form for the inclusive cross section
given by the € expansion, but performing the
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FIG. 3. Diagram giving an upper bound on gy

phase-space integration directly in D=2. In this
approach, the sum rule is satisfied only because
of powers of Inlns which appear in restricting

the phase-space integral. In our method, Eq. (6)
is seen to be trivially satisfied within the € expan-
sion, so that the sum rule is satisfied by powers
of Ins. However, our argument, together with

Ol <Otot , shows that the result holds independent
of the € expansion.

The constraint (6) on the two-particle inclusive
cross section can be tested by calculating Fig. 3.
We find that it has the same power behavior as
04, so this constraint is also satisfied if o, <0y,.
It is amusing to note that the decoupling constraints
5 and 6 in the case of a simple Pomeron pole are
only effective for D <2. I physics were in 2+¢€
dimensions, such arguments for the triple-Pomeron
zero would not have appeared. This is not true of
the next constraint.

We consider'? the contribution to the total cross
section from the production of two large-mass
clusters such that the rapidity gap between the
clusters is of the same order as the total rapidity.
This involves the absorptive part of the Pomeron-
particle elastic amplitude, which at large rapid-
ities is presumably dominated by the exchange
of a single Pomeron. This argument is illustrated
in Fig. 4. It needs three important qualifications:

(i) To avoid double counting, it is necessary to
localize the centers of the clusters at fixed points
on the rapidity axis, and also to limit their size.
However, we can appeal to a positivity argument
similar to the above to ignore this restriction un-
less a violation is obtained.

(ii) It is not proven that the exclusive production
of large-mass clusters is mediated by single-
Pomeron exchange. In the case of low-mass clus-
ters one can argue this on the basis of universality.
However, it can be seen that any more complicated
contributions would be reflected in higher-order
contributions to the diagram on the right, which
are either of the same order of magnitude by scal-

FIG. 4. Contribution of two high-mass clusters to o, .
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ing, or negligible by universality.

(iii) The discontinuity indicated by the dashed
line in the diagram on the right cannot be taken by
simply using the signature factors, since the dia-
gram has other discontinuities in the total energy.
Instead, it must be calculated by assuming some
kind of cutting rules for the bare Pomeron, for
example those suggested by Abramovskii, Gribov,
and Kancheli. We assume that, whatever conven-
tion is used, the discontinuity indicated by the
dashed line is proportional to the total discontinuity.

With these provisos, we see that the constraint
is saturated up to a constant, since the scaling
relation (4) implies that the diagram on the right
of Fig. 4 has the same power behavior as the
total cross section. Without them, it is difficult
to see how the argument places any constraint on
the theory. These arguments can be extended
without any further difficulty to the multiple pro-
duction of widely spaced high-mass clusters con-
sidered in Ref. 12. Despite the fact that this con-
straint is saturated, the result does not give any
information as to how 0Oy is built up by production
processes, because the internal structure of the
high-mass clusters is undetermined. Since the
Pomeron-Pomeron and Pomeron-particle cross
sections are presumably built up in the same way
as the particle-particle cross section, any state-
ment based on the above result becomes a tauto-
logy.

Finally, we consider the Schwarz-inequality
constraints. These are illustrated in their sim-
plestform in Fig. 5. Inthese diagrams all momen-
tumtransfers are zero, and dashed lines represent
discontinuities in the relevant channels. In the
case of a simple Pomeron pole, this inequality
can be shown to place no constraint on the full
Pomeron- Pomeron-particle vertex.” In the strong-
coupling case the vertex structure is more com-
plicated and this argument probably does not work.
The constraint can be simply expressed in terms
of the anomalous dimensions ¥ and v’ of the tri-
ple-Pomeron vertex and the Pomeron-Pomeron-
particle vertex, respectively: namely 2y’ =v.
This inequality is saturated® to O(e), but strictly
satisfied!® to O(€?). The reasons for this are dis-
cussed in Ref. 13. It appears difficult to establish

I

FIG. 5. Schwarz inequality.

this result in general, and this has not yet been
achieved.
We note that if the two-loop calculations! give an
accurate estimate of ¥’ and ¥ in D=2, then the
inequality will apply by the arguments of Ref. 13,
It is interesting to rewrite the above inequality
in another way. ¥’ appears in the cross section
G, for producing a particle in the central region,
and can be shown by straightforward scaling argu-
ments to be related to the exponent 8 by

B=2y' -2n+3Dv -1, )

Using Eq. (4), the Schwarz inequality is equivalent
to

B> -3n+iDv. (8)

The right-hand side is positive if 0e <0, imply-
ing that B>0. Therefore constraints 2 and 8 to-
gether imply 3. The Schwarz inequality is also
satisfied by the results of the high-temperature
expansion,'® since the left- and right-hand sides
of Eq. (8) are approximately 0.94 and 0.42 respec -
tively. The inequality is strongly violated if the
mass term is taken to be zero. The value of 8 is
then far too small. The O(€?) value of 8 at D=2

is 0.74.

We have discussed how the strong-coupling solu-
tion of Reggeon field theory satisfies some of the
simplest constraints of s-channel unitarity, which
can be answered in a largely model-independent
fashion. While some of these points have been
previously considered, it is interesting to bring
them together and show how they logically relate
to each other. The result 0y <0y, which follows
from the field-theoretic formulation of the Reggeon
calculus, appears to play a central role. These
studies show that the strong-coupling Pomeron is
probably the leading candidate for a consistent
theory of high-energy diffraction scattering, and
that it is sufficient to take a quite general Reggeon
field theory, without assuming any decouplings at
the level of the bare theory.'® The outstanding
problem is to show how the rising total cross sec-
tion is built up out of the partial cross sections,
which means obtaining a reliable expression for
0, when n is near the mean multiplicity. Such an
expression will no doubt depend on more model-
dependent details, but may also give information
on the predictions of the consistent theory in the
nonasymptotic regime.
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