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In previous Faddeev-type treatments of three-meson resonant systems, the Galilean two-body relative
momentum has been employed in relativistic partial-wave analyses carried out in the three-body center-of-
mass frame. However, this leads to difficulties in the interpretation of the Galilean form as the proper
relativistic two-body relative momentum. We show that these difficulties are overcome if the two-body
internal momentum is defined so as to have both its magnitude and direction independent of the Lorentz
frame in which it is evaluated, analogous to the identical property of the Galilean relative momentum for
various Galilean frames. Using such a relativistic version of the internal momentum, we carry out, as an
example, a partial-wave analysis of the minimal-dynamics X-matrix equations using the Omnes coupling
scheme. Finally we apply our results to the I = 0 channel of the three-pion system.

I. INTRODUCTION

In the past decade there have been a number of
studies' whose purpose was to generate a Lor-
entz-covariant version of the Faddeev equations.
There have also been a number of more or less
unsuccessful attempts' ' to use such relativized
Faddeev equations to examine the properties of
three-meson resonant systems. As an alternative,
other nonrelativistic three-particle theories, such
as the boundary-condition model, have also been
extended to relativistic situations with apparently
a greater degree of success. ' However, one
inconsistency in the Faddeev-type calculations,
independent of the particular model employed,
has been the use of the nonrelativistic two-body
relative momentum with relativistic one-body
kinematics.

The purpose of the present study is to give a
more complete treatment of the relativistic
kinematics and to give a practical relativistic
partial-wave analysis for a system of three spin-
less particles. For the sake of definiteness, we do
this in the context of the minimal-dynamics Ã-ma-
trix formalism for 3-to-3 scattering. ' In this for-
malism, the connected part of the three-particle K
matrix is ignored. This permits the three-body
T matrix to be determined entirely by on-shell
two-body t matrices. Despite the drastic approx-
imations involved, ' the formalism has the distinct
advantages that we avoid the model dependences
associated with specific off-shell extensions of
the t matrices, and that below the inelastic thres-
hold, the region in which we are most interested,
the formalism is unitary.

The body of the present work will proceed as
follows: In Sec. II, we will explain our notation,
define the relevant two-body dynaD;ical variables,
and express the on-shell two-body t matrices in

terms of these variables. These results are well
known but have not been used to date in Faddeev-
type calculations. '4 ' In Sec. III, we construct
states of definite total angular momentum using
the Omnhs approach. " Although we follow the
derivation of Ref. 11, an outline of the calculation
is given in order to emphasize the necessity of
using the relativistic relative momentum in the
three-body center-of-mass frame in relativistic
situations. In Sec. IV we construct eigenstates of
parity which are compatible with the geometry
considered in Sec. III. In Sec. V we perform a
partial-wave analysis of the minimal K-matrix
equations and apply the results to the I=0 channel
of the three-pion system. The special complica-
tions arising from the symmetrization of the I& 0
channel amplitudes will be treated in a separate
paper. In Sec. VI we summarize our results.

II. RELATIVISTIC KINEMATICS

We begin with an arbitrary reference frame g
and a set of fixed spatial coordinate axes in that
frame, (X(q), Y(q), Z(q)). We consider three spin-
less particles with masses ~, &0, i = 1,2, 3 whose
momenta and energies in the g frame, p;(q) and

e, (q), respectively, satisfy the mass-shell con-
straint

e '(n) =
Ipi (n) I'+ ~i'

The two-body and three-body total energies and
momenta in the q frame are defined by

(E (n), p, (n)) =(e (n)+e (n), p;(n)+p (ri)) (2 2)

and

(2.3)

respectively. The subset of reference frames for



3320 J. A. LOCK

which P(n') = 0 will be denoted by (n'j. Each of
these frames is called a three-body center-of-
mass frame and any two elements of (n'] are re-
lated by a pure spatial rotation. Let us choose
an arbitrary frame uH(n') with respect to which
we will define our three-particle states. We call

haft ~E(u) —=Ws (2.4)

Mjj =&(j(rj,) ~~, .j=. (2 6)

the two-body invariant mass. In an arbitrary
frame g we have

E'(n) —IP(n) I' =&' (2.6)

the three-body invariant mass. The frame obtained
by boosting from the n frame with the velocity
-P;j(u)/E;j(n) will be called the y&j frame. In this
frame we have P;j(y; j) = 0 so that the yjj frame is a
two-body center-of-mass frame for the particles
i and j. We take the coordinate axes of the y&&

frame to be parallel to those of the n frame.
Other i-j center-of-mass frames may be obtained
by applying pure rotations to the y;& frame. We
will not, however, be interested in these but will
consider only the y&, frame obtained from our
specific frame n by the preceding pure Lorentz
boost. We call

ka, jj jp (n) . ~jpj(n)
m +m f

The Jacobian of this transformation is

z p(n), pj(n
k j(jn), Aj(n)

(2 9)

(2.10)

We recall two special properties of k;j(n):
(i) When evaluated in the Galilean two-body

center -of -mass frame y;;, the relative momen-
tum evaluated in that frame is equal to the momen-
tum of particle i in that frame,

k;j(rjj) =p;(~ j) (2.11)

(ii) Both the magnitude and direction of k;, (n)
are independentof the Galilean frame q in which the
relative momentum is evaluated, namely,

where i, j, and k are cyclic.
In order to elucidate the properties of the relat-

ivistic two-body relative momentum, we briefly
recall the two-body Galilean kinematics. In trans-
forming from the single-particle momenta p, (n)
and pj(n) to the Galilean relative and center-of-
mass momenta k;, (n) and P;,(n), respectively, we
have

P jj(n) = p'(n) +pj(n)
and

and

&;j'(n) —
I Pj j(n) I'=Mj j'

The connection between gg and ~, is"
M„.' =%' —2%e, (n) +jjj,',

(2.7)

(2.8)

k; j(n) = p;(r';j). (2.12)

Relativistically the form for the relative momen-
tum which guarantees that properties (i) and (ii)
are satisfied with respect to Lorentz frames is
known" to be

p, (n)[e, (n) +ej(yij)] —p, (n)[e, (n)+e,.(y, , )]
«j(n) ™jj (2.13)

However, when transforming between single-particle momenta and relative and center-of-mass momenta,
the Jacobian is frame dependent, "specifically,

p;(n), p;(n) ej(n)e, (n)
k;j(n), Pj j(n) Zj, (n) e;(r&j)ej(r;j)

(2.14)

(2.15)

we obtain

In Sec. III it will be necessary to make use of the two quantities lk, j(n)l' and k;j(o.) p~(n). Using the
Lorentz version of property (ii) for k„(n) and the relation

Mjj=[lkjj(r;, ) I'+~ ]'"+[Ik;j(rjj)I'+~ ']j' ',

Ik, (n)l =[M, —(mj —mj) ][Mj —(m)+m ) ]/4Mjj

Rewriting Eq. (2.13) in the form

(n)p;(n) — ;(n)pj(n) P (n) [p (n) "p;(n)]
M,.j Mj[E(j(n) +M j]

and using the fact that P;j(o,) = -p, (n), we find that

(2.16)

(2.17)

k, , (n) p, (u)= 2*'[e,(n)-e, (n)]+ ~ E,,(u)(m,
' ~j') (2.18)
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In previous relativistic three-body calculations, "' Eq. (2.9) rather than Eq. (2.13) or Eq. (2.17) has
been employed as a relativistic two-body internal momentum. Such a choice satisfies property (i) but
violates property (ii) when Lovente frames are considered. " As will be seen in Sec. III, the Lorentz
frame independence of the magnitude and direction of k;~()I) is crucial to the carrying out of a simple
partial-wave analysis of the three-body equations in the three-body center-of-mass frame.

Henceforth we employ the notational shorthand

lp, p2p, & „=- lp, (n)p. (n)p3(n) &

in describing three-body states in momentum space. We will find it convenient to expand our three-body
equations in the three bases lk, &P&p, &„where (ijk) is a cyclic permutation of (123). This basis has the

advantage that in considering the matrix elements of the two-body t matrix in the three-body space

, & kaj Plgl It" Ik(&P;&pa & „
the two-body portion of the matrix element is treated in the usual way, i.e. , in terms of two-body relative
and center-of-mass momentum-space states. Nonrelativistically we recall that with the normalizations

, ( p'p'p' Ip,p,p. &, = (»)'„..«pl(n) p~(n—)) (2.19)

and

~ & k('p P'Bilk';P(~p~& ~ =(2v)'f)(k w (n) -k~'g(n))f)(Pj g(n) —P(, (n))t)(p'()I) -p~(n)) (2.20)

the on-shell two-body t matrix in the three-body space takes form

„&p$2p,'I t'Ip, p,p,& „=(»)'&(p,'(q) -p&(q))„&p,'p~ I
t Ip;p; &„

= (»)'&(pg(q) —
pg (q))i)(P(, (n) —R, (q))f(lk;J(y(, ) I', ~]gg), (2.21)

where 6,&
is the angle between p;(y;, ) and p;'(y(&), or equivalently

I
property (i)] the angle between k&&(y„)

and k;& (y;, ). On the other hand, in the relativistic case, choosing the normalizations

)) (p'p p'Ip)P p &g
= (»)'8e, (rl)e, ()I)e,(6) [~'(p,'(q) —p, ()I)) (2.22)

and

„(k,'~P,', p) lk;, P &p„&„=(27))'2e„(q)5(k;',(]I) -k;;(r]))5(P,'&()I) —P;, (q))5(p„'(q) -p~()I)),

we find, using Eq. (2.4) that the on-shell two-body t matrix in the three-body space becomes

„&p$l llpt lp,p.p. &„=8(»)'e, (q)e;(y~)e~(y;, )f (p,'(n) —p.(]7))~(Pl,(n) —P;, ()i))f(W', , ~;~),

(2.23)

(2.24)

where 8,&
is again the angle between p;(y;;) and p, (y;, ), or equivalently I property (i)] the angle between

k;,-(y;, ) and k,', (y;;).

III STATES OF DEFINITE TOTAL ANGULAR MOMENTUM

With our intent being to obtain the matrix elements of the two-body t matrix in the three-body center-
of-mass frame we first define three reference frames, o., (k= 1, 2, 3) with coordinate axes (x),(o(), y~(o(),

2,(o)), which are obtained by applying the rotations A(A„B„C,) to the o( frame. The Euler angles A„,B~, C,
are defined such that the x„(a)a~(o.) plane is aligned with the p, (o.)p, (n)p, (u) plane, with the z~(o, ) axis paral-
lel to p~(o), and with the y)(u) axis parallel to p~(n)xp, (o). We may then construct the states of definite
total angular momentum J, Ie,eg, jM(L(~&, from the single-particle states via the Wigner projection tech-
nique. ""Here e, are the single-particle energies in the o. frame, ~is the projection of J along Z(o.),
and g, is the projection of J along z„(o(). The normalizations of these states are chosen to be

„(e',e2e3J'M'p, 'I e,ep, JMij.„&„=5~v 6„„5&„5(e,'. (o ) — ( e))o.

The overlap between these states and the states Ip,p,p, &„ is then
1

, (eeeeeep]~p p p)„= ( . (2e)' ((Z p (u), , ( I!(e (u) -[p (u)+ee/'] ')eepe, (A(( (:,)

(3.1)

(3.2)
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in agreement with Ref. 6.
Although the derivation of the expression for the on-shell amplitude

~ &e'ep,' j'M'ii»
~
t ' ~e,e e,JMii» )~

proceeds exactly in the manner of Ref. 11 except for our use of relativistic one-body and two-body kine-
matics, we will outline the derivation in order to emphasize a crucial point which occurs in the parametiza-
tion of the scattering angle 8;,. Introducing complete sets of single-particle momentum states and using
Eq. (3.2), we have

n &eie»e»&'M'~»
I t'leis. ~MJ»)

~

dpi(o')dp2(u)dps(o')dpi(avp»(o')dp»(a)
(»)'64ei(o. )e»(o}e,'(i»}ei(ir}e.(o')e, (o')

2gl ~1 i&» 2g+1 i&» ~ ~ ~x, 5 Z p,'. (u) 5 g p, (o.) 5(e,' (n) . [p,"-(i»)+m, ']' ')5(e, (ei) -[p,.'(~) +m,.']'~')

x&*'&„(~Cl)&'~(A.B»C.} &plplpllt'lp p.p. ) .
Evaluating one initial and one final momentum integral, transforming to energy-angle variables via

dp»(n)dp, (n) =e,(i»)e,(n)e, (oi)de, (oi)de, (a)de, (n)dA»d cosB„dC»,

(3 3)

(3.4)

using Eq. (2.24}, transforming 5(p»(o) -p»(n}) to the energy-angle variables, and performing the energy
integrations, we find that Eq. (3.3) simplifies to the expression

&e'e»e,'&'M'&»I f'le,es.&Mu»). = d A»d cosB»dC»d A»d cosB»d C»

(2J'+ I)'~' (2J + I)'~' 5(e»'(u) -e»(o))
e, y& e~ yi 5 cos8„"—cos8'

x 5(p„' —i' )g)~,~, (A»B»Q )g)eli (A» B»C»)f (M~, , 8,.~), (3 5)

where (8„,Q") are the polar angles of p»(n) in the n frame. The angles 8'„" and Q' are defined in a similar
way in the primed coordinate system. We notice that in Eq. (3.5), if 8, 8„", Q, 4i", and 8;& depend in a
complicated way on the Euler angles (A„B»C„) and (A»B»C»), the Euler angle integrations become in general
quite complicated.

We now take note of two crucial points. First of all, our particular choice of Euler angles allows us to
make the identification 8 =B„8„' =B,', Q" =A, , and P„' =A,'. Secondly, we stated in the previous section
that 8;; is defined in the y;& frame, it being the angle between k;;(y;&) and k,'&(y;&). If we choose to work with
this definition we encounter problems in relating 8;& to the two sets of Euler angles since the Euler angles
are defined with respect to the directions of the momenta in the u frame while 8;, is known in terms of y&&

frame quantities. But if we recall that the direction of our relative momentum given by Eq. (2.13) is
Lorentz frame independent, we see that the angle between k;, (y;, } and k', , (y;;) is the same as the angle be-
tween k„(n) and k,'~(n). In this way we are aMe to write 8;~ in terms of ci frame variables and connect it to
the Euler angles which are also written in terms of n frame variables. Referring to Fig. 1, in the u frame,
with our particular choice of Euler angles, the law of cosines for spherical triangles in this frame gives

and

Ug =—C„—C

cos 8 J ——cos $„cos$» + sin $» sin)»' cos U &,

where

(3.6)

(3.7)

k, i(~) p»(~)
(3 3)

where again $» is defined in a similar way in the primed coordinate system. Then we can easily perform
the dA„'d cosB,' integrations in Eq. (3.5), use the change of variables of Eq. (3.7), and carry out the
dA»d cosB»dC» integrals using the conventions of Edmonds" for the rotation matrices, which then yield
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u(e, (~) -e,(n))
(~&egg'~'u» ~& ~~P,&&&~)») = 4 .&»&„& .2 .3 ~ ~ «() &&)~&(r&&) ~U&~"» "f(~&&, ~;;(&»,~», ~&, ))

(3.9)

in analogy to the Galilean result of Qmnhs. "
Finally, we define a "standard body-fixed" set of axes (x(n), y(o.'), 2(o.)) with respect to the n frame.

These axes are oriented so that the x(o.)z(n) plane is coincident with the p, (n)p, (n)p, (o.) plane with y(n)
parallel to y»(o, ) and with D» denoting the angle between z(n) and 2»(n). We then define the states
(eAe, JMi).), where p is the projection of J along z(o), by

~e,e,e,JMi»)„—= g d„,„(D»)(e,ep,JM))»)„.
PI,

(3.10)

In this new basis the on-shell two-body t matrix becomes

&«»(o') -&»(n))„(e,'e,'esJ'M'i). '
~

t' ~e,e,e,JMp)„= 5~,~ &„s 3 e(();))e, (y„)
2w) p» o.

~2 7I'

&& Q dq q, ( D»)d@-„(D») dU~e'"» o'f(~;q, 8;;(g», $», U~)). (3.11)

For a simple specification of our standard body-
fixed axis, we choose the (x(u), y(a), 2(u)) axes
to be coincident with the (x,(n), y, (o.),2,(n)) axes.
For this choice, the angle D, is the angle between

p, (e) and p»(o.). The advantages of this choice will
become evident in Sec. V.

It is useful to comment upon the previous treat-
ments of this sort. In the nonrelativistic case, it
was this same Galilean frame independence of the
direction of k „()})which allowed Omnhs" to write
8&, in terms of the n frame variables rather than
in terms of the y;& frame variables and thus con-
nect 0&& to the u frame Euler angles via the law of
cosines for spherical triangles in the Galilean
three-body center-of-mass frame. As to the rel-
ativistic treatments, Mennessier etal. ' do not
specify which form they use for the two-body
relative momentum. However, in their Omnes-
type formalism, they choose to apply the law of
cosines for spherical triangles in the y;, frame
rather than in the e frame. This causes problems
in that their U;, is written in terms of y;& frame
variables and must still t)e reexpressed in terms
of the e frame variables before the Euler angle
integrations may be performed. Mishima et al. '
and Basdevant and Kreps' define their n frame
Euler angles so as to make the x»(n)y»(n) plane
coincident with the p, (u)p, (n)p, (n) plane with x»(o.)
parallel to p»(n) &&p&(o.). For this choice of Euler
angles, they still arrive at an expression for the
two-body f matrix analogous to Eq. (3.5) but they
cannot make the simple identifications 8„=@and

@=A». This causes problems which are com-
pounded by the fact that they use Eq. (2.9) rather
than Eq. (2.13) for the relative momentum. Since

h;)(«)
~t h~

p («) =p&«)
I

FIG. 1. The scattering of relativistic particles i and j
with relativistic spectator k as seen in the three-body
center-of-mass frame, 0. . The unprimed (initial) mo-
menta p&(o.'), p2(a), p&(o.') lie in the x& (o.') z& (o') pl.ane and

primed (final)momenta p& (o. ), p 2 (o,'), p3 {0.') lie in the
g~ (o. )S'„(0.) plane. The initial, and final. relative momenta
k+(m) and k&;(a' are defined in Eq. (2.13). The angl. e be-
tween the initial and final momentum planes is C& -C~ and
the scattering angle is 8~& as explained in the text.
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both the magnitudes and directions of k;& and k,',.
vary by differing amounts between the z.

&
and n

frames, the angle between k „(o.) and k&& (o.) which
is used in their analyses is not the scattering
angle 8;;.

An alternative method for constructing states of
definite total angular momentum has been employ-
ed in some previous calculations. "' * This con-
sists of coupling the angular momentum of the
relative motion of particles i and j to the angular
momentum of the relative motion of the ij center
of mass and particle k. We will denote such states
in an abbreviated way by ~(ij)k). The connection
between the nonrelativistic version of this coup-
ling scheme and the nonrelativistic Omnes meth-
od has been made by Balian and Brhzin. " Relativ-
istically, this successive coupling scheme has
been studied by Wick ' using the helicity formal-
ism and by MacFarlane" using the canonical for-
malism. The connection between these two suc-
cessive coupling schemes has been made by
McKerrell. ' For relativistic situations, in the
evaluation of the recoupling coefficients ((ij)k~(jk)i)
as in Eq. (35) of Ref. 18 or Eq. (5.4) of Ref. 20,
one of the Wick angles is the angle between k;&(y„)
and p„(o). Again two reference frames are in-
volved and we must either write p, (n) in terms of

y;, frame variables or write k;&(y;, ) in terms of
o. frame variables. Using Eq. (2.13) simply ac-
complishes the second program while the use of
Eq. (2.9) yields a. vector k, , (n) whose magnitude
and direction are different from that of k;, (y;&)

= p;(y;, ).
In Sec. V we will see that the partial-wave-ana-

lyzed two-body t matrix using the Omnhs approach
is quite simila. r in structure to the two-body t
matrix analyzed using the successive coupling
approach as in Eq. (7.4) of Ref. 2.

+ —(-1) "~e,e,e,JM -p)„,

where A. =+1. For these states we have

(4,2)

IV. STATES OF DEFINITE PARITY

We assume that parity is conserved as is expect-
ed in purely hadronic interactions. Using the
Omnhs approach of the previous section with the
Euler angle convention of Basdevant and Kreps'
and of Berman and Jacob, "parity eigenstates are
easily obtained. However, as seen in the previous
section, this choice of Euler angles leads to dif-
ficulties in performing the Euler angle integrations
and is thus less practical for our purposes. How-
ever, with our specific shoiee of Euler angles
delineated in the previous section, the parity
eigenstates can be constructed in the manner of
%erie" and Mennessier et gl. ' Following these
authors, if (P is the parity operator and n, is the
intrinsic parity of particle i, we have

6'~e,e,e,Jul) =w,w, w, (-1) "~e,e,e,JM p)„. -(4.1)

Then we construct the parity eigenstates

~e,e,e,JMp, x) -=—,'
~e,e,e,JMy)

6' ~e,e,e,JMilA)~ = w, w, w. ,P, ~ie,e,e,JM~) (4.3)

„(e',e'e,'J'M'il'A'. ~e, ee, JMiAl) = —,' 5 5 6„„5(e,'(a) —e,(o))[5„„+A(-1) "5„.„].
j

From Eq. (4.2), we infer that ~ee,e,JMOX) is identically zero for A(-I) = -1. In this new parity basis,
Eq. (3.11) assumes the form

x Q [d„„{D„') +Ad~.„{w D,')-]d'„~(D.,)- d~„cos(i,~;)f(M;;, 8;;(&„&;,I;;)).
(4.5)

V FINAL EQUATIONS

We are now in a position to make an expansion of the minimum-dynamics K-matrix equations in the
~e,e,e,JMilX) basis. Introducing the notation

Tz„~(e',e2e,'; e,e,e„p,' ) il„(e,'e2e+Mil=—'A. j T '
~e,e,e,JMp. X),

we find that Eq. (3.2) of Ref. 10 has the explicit realization
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T~„„(e,'e2e,'; e,e,e„p,'p) = (e',e2esJMp'A ~
t '

~e,e,e,JM»)

,
de", (a)de2'(n)de, "(o.) Q ~ (e,'e2e,'JMp'&

~
t '

~e,"e2'e3 JMg "&}~

&&iw6(OR" -OR}[T«„(e,"e2'eg; ee,e„g"g)

+ T«~(e,"e2'eg; e,e,e„p"&)], (5.1)

where OR' =OR and where the two-body f-matrix elements are given in Eq. (4.5). Applying these results
to the I=O channel of the three-pion system and noting that the only two-body isospin system which enters
in this channel is i;, = 1, we may expand the symmetrized scattering amplitude f(M;„8;,) as"'"

16~
f(M&, 8„)=

M
(2l+1)e' & sin6,'P(cos8&),

i =oaa
(5.2)

where 6, is the w-v phase shift in the (l, i;, =1) channel. With this partial-wave expansion, the two-body
f matrix of Eq. (4.5) simplifies to

a (ele2es J'+'&'l I"leie2e3JM»)~ = 4v 4 ~6 x ~ 6(e~(&) —ea(&)}

.~le"~sin6t Q [a'„,„(-D,') + ~X,„(v Il,')]e»-(D, ) 1;"~((„0)1'l~(~,', 0).

As a result of the Bose symmetry of the three-pion scattering amplitude, the three coupled integral
equations of Eq. (5.1) may be rewritten as a single integral equation using the transformation employed
in Ref. 6,

X«g (e'e'e,'; e~e~e„p'p ) =- T~„~(e'e'e,'; e~e2e„u'p ) + T«~ (e'e'e,'; e~e2e„g'p ) + Tz„~(e'e'e'„e e e„.p'p ). (5.4)

Then permuting the final-state and intermediate-state indices in Eq. (5.1}and adding the resulting expres-
sions, we obtain

X~„~(e,'e2es, e,e2e„y,'g} = L«„(e',e,'e,'; e,e,e„p.'p)

de", (u) de,"(o.)de,"(n)

& g iv6(OP" OR}[ (e'e, ,'e-'JMp'X]t '(e3'efe,"JMp"I}„+„(e'e,'e,' JMp'A )t '(e e' e2",JSMp."A} ]
nfl

xx«) (e",e,"e,";e,e,e„P"p, ),

where L«~(e', e',e,';e,e,e, ; p'p) is the inhomogeneous term defined as in Eq. (5.4) with f' replacing T . The

fully symmetrized three-pion scattering amplitude is given by

X~» (8(e',e,'e,'); e,e,e„p,' p },

(5.5)

where 8 denotes the antisymmetrization operator. Owing to the relative unimportance of the i;; =1, I, & 3
m-~ phase shifts in comparison to the i;; = 1, / =1 phase shift for ~&&& 1.5 GeV,"which is the region where
we will use these equations and expect them to be most reliable' we truncate the partial-wave expansion
of Eq. (5.2) at the P wave. Finally, substituting Eq. (5.3) into Eq. (5.5), using our convention for the

angles D„and defining

X«~(e,'e,'e,'; e,e,e„g'p) =X«„(e',e2e,'; ee, ep'p) X»~(e',e,'e,';—e,e,e„p' p),

we obtain for the I=O three-pion channel the finite domain one-dimensiona], integral equation

X«„(e',e2e,'; e, ee„2y.'p, ) = g«„(e',e2es; e,e2e„p,'p)

4j.pM„
(M' 4m ) ~[e'(u) m ]

~'"

xe"~&"2~& sln6', (M,',)1'~'(('„0) Q l~
de",(n)[d'„,„„(D")+ &d„.„.(v +D")]

gg

(5.6)

& y'", ($",0)y«~(ef, e,'+e,' -e,",e', ;e~e2e„g"p), (5.7)
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where Z~~z is defined as in Eq. (5.6) with I zz~
replacing X&„~, where

~Z~a 2el(~) 22(~)
2[e,"(n)' —m, 2]'/'[e', ((y)' —m ']'/' (5.6)

M' [' ((y) 2e"(~)]
(~g2 4~ 2)l/2[eg( )2 ~ 2]1/2

and where the limits of integration are

( ) [eI(~)2 m 2]l/2(~i2 4~ 2)l/2

(5.9)

VI. SUMMARY

In summary then, we have pointed out that in
order to perform a straightforward partial-wave
decomposition in the three-body center -of -mass

Calculations using Eg. (5.7) to examine the reso-
nant behavior of the I= 0 three-pion system are
now in progress.

frame for relativistic three-particle systems, the
relative two-body momentum must be defined in
a relativistic way as in Eq. (2.13). As an explicit
example of the use of this relativistic internal
momentum our formalism was applied to the
Omnbs coupling scheme with the minimal-dyna-
mics K-matrix equations in Sec. V and specifically
to the three-pion system in the I= 0 channel yield-
ing E l. (5.7). This relativistic treatment of the
internal momentum may also be applied to the
particular Faddeev-type off -shell models consid-
ered in Befs. 1-7. The application of the present
analysis in symmetrizing the more complicated
I &0 channel amplitudes for the three-pion system
will be treated in a forthcoming paper.
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