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Simple interpretation of the Melosh transformation'
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We discuss a simple and physically transparent derivation of the Melosh transformation. This enables us to
investigate several difficulties in the field.

The transformation connecting current quarks
and constituent quarks has been the subj ect of
many recent discussions. From the free-quark
study of Melosh' one can abstract algebraic prop-
erties which have recently been applied to hadron
decays. Whereas the algebraic properties have
been remarkably successful, ' the free-quark study
itself has beenunder considerable debate. ' ' The
most difficult point in the free-quark study is the
so-called angular condition. .

We discuss the angular condition by demanding
that the nucleon state at rest have well-defined
spin. This gives a concise and physically simple
derivation of the Melosh transformation. Using
this simple derivation we can understand several
points which are not transparent in the original
derivation. We also investigate a transformation
for the case where SU(3) is broken by quark mass-
es. In addition we discuss the problem of magnetic
moments.

The major problem in defining the Melosh trans-
formation is how to classify single quark states
having transverse momentum p& &0 under both
constituent and current SU(6)w. For states with

p& =0 the classification is simple and self-evident
because the third component of W spin coincides
with the ordinary spin projection for both algebras.
Quark states with p, &0 are easily defined for the
SU(6)w of currents by using the Lorentz generators

Z'=Z'+Z2 Z'=Z'- Ji Z3
9

where K' are boosts and 4' rotation generators.
The null plane (x, = x'+x' = 0) on which the light-
like charges are defined is left invariant by the

operators in Eq. (l). These operators also com-
mute with the generators of SU(6)w of currents.
We thus define the lightlike helicity basis (LLHB)
which transforms simply under SU(6)w currents:

lp„p„z&~=e's''e '"'Im/v 2, p& =0, &&,

p, =(8+p, )/v 2,
&u =in(/2 P, /m),

Tt
= p~/~&p. ,

and A. represents the helicity of the qua. rk. We have
omitted for simplicity all SU(3) and color indices.

The SU(6)w strong symmetry of con.stituents is
a collinea. r symmetry. If we discuss only the
free-quark model, then quarks with p, & 0 need not
have simple transformation properties under this
collinear symmetry. On the other hand, if we
build a baryon state out of three constituent
quarks, the quark wave function will involve p& &0
even when the baryon is restricted to p& =0. Thus
a classification of quarks with p&+0 is needed in
order to classify baryons under SU(6)w of constit-
uents. Our major clue for such a classification is
the angular condition which we define as follows:
A baryon state built out of three quarts, as is done
in the constituent-quark mode/, must have svell-
defined J and sPin.

In the free-quark model a ba.ryon state at rest
is built by superposing state vectors of the three-
quark sector of Fock space

3
~ 3 .

IW0, Sw, S.& = I„, .'f(k, p. , p„)6(k+p. +p, ) lk, p., r. Sw S.&. (3)

From the W-spin subgroup of SU(6)w we have

Ip„p„p„s,s) = P cP, ',';,, Ip„~,&lp„&,& lp„&,&, (4)
Xi j X2 ~ X 3

where C q, '~,' q couple the three quark W spins into a total W spin Sli, with the projection along the third
projection along the third axis S,. For baryons at rest made purely out of quarks, W spin coincides with
ordinal y spin.

The angular momentum condition for the baryons at rest tells us that a rotation does not change the spin

12



N. MABINESCU AND M. KUGLER 12

and therefore the W spin remains unchanged. Consider now an arbitrary rotation

p»"-&p», &lp;, );& = Q I~p», )»»g ~, (p», ~)

(6)

For an arbitrary spin basis the representation matrices Dq~'q depend not only on ~ but also on p». Con-
sequently, we have

B)p„p,p; S~, S ) = Q C), ') P y (Ap„X') ~Ap, A. ') ~Ap, )(. ')D'g~ y (p„(»))D~gP ) (p, (»))D)/5 ) (p, (»)),

Only if the matrices D'z/, '),, (p», &) do not depend on p» does S»» remain unchanged; then

SS ~ Sg ~ ~3
PD)~, ) (»p)Dx', k (&)Dz', x (&) = Ds', s ((»))Cx,', v, x'

where 8,'=X,'+&,'+A. ,' and the angular condition is
satisfied, i.e., the baryon transforms correctly
under rotation.

The only spin basis which fulfills this condition
is the canonical spin basis, which should there-
fore be identified with the constituent spin basis.
A state of momentum P and spin projection X in
this basis is obtained by a boost in the direction
of the momentum from a state at rest with spin
projection ~ along the third axis:

e»x p (8

where

X =arctanh((p~/p').

The canonical spin basis and the LLHB are con-
nected by the following Wigner rotation:

transformation properties under the SU(6)p, strong
algebra for baryons at rest. In order to classify
baryons with three-momentum different from zero
a momentum-dependent set of SU(6))», operators
has to be used. They are obtained from the oper-
ators of the SU(6)p, strong algebra for the baryons
at rest by the same Lorentz transformation used
to boost the baryon states. In particular, one can
choose this Lorentz transformation such that the
SU(6)„current algebra remains invariant.

The spin basis for the moving baryons will be
then the lightlike helicity basis:

(PP, p, S„S,),

8»p& E /(EpP )&»»n(v"2P E&/»») ~M 0 S S ) (10)

IP, &=g&~.~(&)l&. p» )')i

~2 p+ +Bz + $ p» x (T
0 x, x(P) )( x [2~2p (pp + )] 1/2 )(x I (9)

where g~ are two-component Pauli spinors. The
fact that the constituents' spin basis is identical
to the canonical spin basis is due to the fact that
in this spin basis the spin and the orbital angular
momentum are decoupled' and so a SU(6)p x O(3)
classification becomes possible.

The formula (9) defines the unitary transforma-
tion between current- and constituent-quark states.
This unitary transformation performs the same
Wigner rotation as the transformation found by
Melosh' in the frame of the free-field theory for
baryons at rest and consequently is equivalent to
it.

Let us now consider the classification of the
baryon states with three-momentum different from
zero. Such states can be obtained from (3) by a
Lorentz transformation. Any Lorentz transforma-
tion will change the original canonical quark spin
basis so that the new baryon states will lose their

The Lorentz transformation used in (10) does not
introduce any new Wigner rotation between the
current and constituent quarks, so that the spin
rotation which brings the current into the constit-
uent quarks may be obtained from (9) by replacing
the actual quark momenta P by their momenta in
the baryon rest frame [»f, = p,M/2P„q»
= (1 —P, /P, )p, when P is the baryon four-momentum,
P the actual quark momentum, and p the quark
momentum in the baryon rest frame]:

v 2q. +m+iq»xF
Q x, x (Py ) )( x [2~Pq (qP )]»/ )(, g ~

A similar formula was found by Osborn' in terms
of the quark positions, momenta, and spin oper-
ators in the frame of a first quantization theory
and which leads to our formula (ll) by sandwich-
ing it between the baryon states (10).

The present interpretation of the Melosh trans-
formation may shed some light on the discussion
of the matrix elements of the electromagnetic
dipole operator between nucleon states at rest.
Melosh used the formula [Eq. (41) of Ref. 1]
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=i I 0, —.2 d x&x+ xE,' x+—~, M02
M

(12)

and argued that the second term is proportional
to the Dirac magnetic moment. However, it was
pointed out that the matrix elements of Ey between
the plane waves are not well defined, and so the
matrix elements of the dipole operator cannot be
identified with the total magnetic moment. The
present model allows us now to easily evaluate
the matrix elements of E, between baryon states
at rest. A crucial point is the fact that the spin
basis of the constituent quarks is the canonical
spin basis. In this basis E, has the following rep-
resentation:

PPk PPk+ ~ ~
+&Pk ()P& PO+M Pk gP3 Pk gP1 k

(13)

where P„and O„are the momentum and the spin of
the kth quark. Also essential is the fact that the
baryon states are classified not only according to
Q(2) but according to the full O(3) algebra of the
orbital angular momentum. Between states with
I =0, the use of spherical wave packets becomes

mandatory in our approach. All the terms in the
expression of &, depending on the momentum dis-
appear, and we are left with the result

&M, O, - ,'(F.,-]~, 0, —,') =&M, o, --,')S, (M, 0, —,'&, (14)

where 8 is the total-spin operator. This allows
the identification of the matrix element of the
dipole operator with the total magnetic moment.

On the other hand, it has been shown that the
l~= 0 part of the dipole operator behaves as a (1, 8)
+ (8, 1) tensor which leads to the —~ ratio of the
total magnetic moments of the nucleons. In this
approach a non-35 part of the dipole operator found

by Osborn, and which in his formalism appears
from the derivatives of the mass operator of the
many-quark system with respect to the relative
quark momenta, does not appear because the mass
is kept constant and equal to the nucleon mass.
Such a term may, however, appear when the dipole
operator is sandwiched between resonant states.

Another problem which receives a simple inter-
pretation in the present approach in the pr.oblem
of the SU(3)-symmetry breaking in the free-quark
model with nondegenerate masses: m~ =m~&m~.
It was recently pointed out' that in this case the
operators of the SU(3) current algebra, do not
fulfill the angular momentum condition, and no
solution of the angular momentum condition has
been found.

Let us consider the lightlike SU(3) charge which
carries a6' quark into a A. quark with a different
mass:

E4'"= d4x& x q~ x A.""q x.

dp d pg A. ~ B & p pg A, (M Q p+ pg A,
y

—Q p+ pg g 5 p pg A.

n, B X

(15)

where a (p, pt, X, n) and & (p, p~, X, I3) are quark
creation operators in the LLHB.

The action of F""on the wave function (3) con-
sists in changing a 6' quark into a X quark with

the same P„Pt, , and lightlike helicity. However,
if mz mq, po and p, will change. This leads to a
change of the canonical spin as well as to a change
of the rotation symmetry of the f(p„p„p,) wave
function. The new state obtained will then be a
mixture of states with different S~ spins and dif-
ferent orbital angular momenta. One may want

a unitary transformation V which transforms the
F' charges into SU(3)-strong operators W' which
do not change the spin-orbital momentum structure
of the wave function. In terms of creation and
annihilation operators the 5""sfor hadrons at rest
are expected to be

d3
a p, h., ~ap, h.,

n, B
—bt(p, A., P)b(p, A., a)],

(16)

where a (p, X, ct) and 5 (p, A, P) are creation oper-
ators for quarks with three-momentum p and
canonical spin A, and SU(3) indices a and P.

The observations made here are just a reflection
of the statement that if SU(3) is not conserved,
the charges as defined on null planes are not Lo-
rentz scalars. They change momenta and carry
angular momentum. One could modify the trans-
formation by adding a Lorentz boost acting on A,

quarks only. 'this will change the created X quark
momentum to that of the initial 6' quark. This
procedure is not a complete solution to the pro-
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blem since SU(3) generators will remain frame-
dependent objects.

We have seen how the constraint that three quark
wave packets have well-defined spin generates the
Melosh transformation. Such a demand for phys-
ical hadrons is obviously reasonable. In the free-
quark model there are no hadronic bound states,
and imposing an angular condition on nonstable
wave packets may be somewhat arbitrary. This
arbitrariness becomes even more obvious when
we note that in order to impose the angular con-
dition we had to make use of the simple form of

the wave function in (3). In interacting theory the
wave function may be very different. Thus the
details of the angular condition are interaction
dependent. 4 It is therefore up to us to find an in-
teracting model and try to justify the empirical
successes in a more realistic approach.

After completing this work we have learned that
similar physical arguments were given by Buc-
cella, Savoy, and Sorba.
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