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Time graph of the unstable particle and the nonunitary representations of the Poincare group
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The second-quantization scheme for neutral scalar fields describing an unstable particle is formally developed
within the framework of the nonunitary representations of the Poincare group, ++&. The fields satisfy the
postulates of conventional field theories with a modified spectral condition. The exponential decay law for the
time graph of the unstable particle is derived from a study of the asymptotic behavior of the causal Green's
function.

I. INTRODUCTION

In the traditional developments of quantum field
theory, the unstable particle continues to enjoy a
special status and is normally attacked in the
framework of the Lehmann spectral representation
defining the propagator. It is suggested that there
is a pole in the lower half-plane of the second Rie-
mann sheet of the propagator and the real and im-
aginary parts of the pole provide the mass and life-
time of the unstable particle. Levy examined the
method of the propagator in the context of the Lee
model. The time graph in all such models con-
tains the characteristic exponential decay terms
and the nonexponential decay terms as well. The
latter were attributed to the time distribution of
production and detection events. Further, in the
presence of elastic channels, one opens up the
Riemann surfaces and there seems to be no unique
prescription for the analytic continuation of the
propagator function. '

At the group-theoretical level the classic work
of Wigner' on unitary irreducible representations
of the Poincare group provides a basis only for
classifying the stable particle states. The redis-
covery of Majorana wave equations made no con-
tribution to this problem, since the stable particles
and resonances with various spin contents are
treated on the same footing. ' Fleming's analysis
of the unstable particle on the hyperplane, however,
has shed some light on the dynamical features of
this problem. ' We wish to present here a sys-
tematic analysis of the field-theoretic aspect of
this problem based on the work of Kawai and Goto. '
The relevance of nonunitary representations of the
Poincare group associated with complex four-mo-
mentum was first noted by Zwanziger, ' and later
Schulman analyzed the quantum-mechanical aspects
of this problem through the Poincare semigroup.

In a previous communication, we studied the
lifetime and mass spectra of unstable particles
quantitatively from the generalized wave equations
involving complex four-momentum, and the agree-
ment seems to be fairly good with the observed

data. ' Here, we confine ourselves to a systematic
quantization scheme for the neutral scalar field
describing an unstable particle and deduce the ex-
ponential decay law for the time graph. Our ma-
terial is arranged as follows.

In Sec. II we briefly survey the classification of
nonunitary representations of the Poincare group
with complex four-momentum, namely (i) the de-
generate class and (ii) the nondegenerate class. In
Sec. III we study the mathematical properties of
the generalized functions relevant to our analysis
and introduce the field P(x) for the unstable par-
ticle as a functional on the space S of infinitely
differentiable functions of compact support. ' The
Fourier transform of p(x) for complex four-mo-
mentum X is a functional in the space dual to K).
It is understood that in the conventional sense, the
Fourier transform of P(x) is undefined for com-
plex A, ; only in the sense of a distribution is it a
well-behaved function. The properties of the field
P(x) are studied in the light of the Wightman
axioms. In Sec. IV we introduce the "smoothed
out" creation and annihilation operators for the
field p(x). We carry on then second quantization
of the neutral scalar field and compute explicitly
the Pauli-Zordan operators D 'i(x) and the causal
Green's function D'(x). The exponential decay law
for the time graph of the unstable particle is ob-
tained from the asymptotic behavior of D'(x).
Finally, we conclude our discussions in Sec. V
spotlighting some of the salient features of our
analysis.

II. NONUNITARY IRREDUCIBLE REPRESENTATIONS

To each element (a, A) E 6'+, the universal
covering group of the connected Poincare group 6',
where a& T, (the translation group) and
AH SL(2, g, we associate an operator U(a, A) such
that

&(a, A) P(A. , s) = e' '
Q(A. ,A) P(A(A ')X, s) .
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T(a) (P(X, s) = e'~' ' y()(. , s), (2.2b}

P(A) y(Z, s}= y{A(A-'))(., s), (2.2c)

q(A) y(~, s) =q(~, A)y(), s) . (2.2d)

The operators P{A), q(A}, and T(a) satisfy the
following properties:

T(a, )T(a ) = T(a, + a ), T(0}=I,
P(A) T(a) = T(A{A)a)P(A),

q(A) T(a) = T(a)q(A),

(2.3a.)

(2.3b)

(2.3c)

q(), A, )q(a-'(A, )~, A, ) = q(), A, A,). (2.3d)

Equation (2.3d) denotes the multiplication law for
the operators q(A, , A) which can be derived from
the group properties of U(O, A). It also implies
that the subgroup GzC' A satisfying the condition
A(A)(: G' = G~ (1 G,' defines a matrix representation
q(A. ,A) [ =q(p, q, A)] of G„. Without any loss of
generality, we can consider the group G& =Qz, A,

being any four-vector on the orbit of A. . Thus, for
given A. on the orbit of ~, we can choose a definite

A~ "~ such that A(A~ "~)X=A,; and for any AH 6'+,
the matrixA [A„},'AA„. -~, where)(. '=A(A ')A]
belongs to G&. So, w'e define

q(), A) =q(p, q, A)

=D(Aq g 'AAg g). (2 4)

In (2.1), the square-integrable functions ((P(A. , s)}
form a basis in a linear space for an arbitrary
complex )(, (=p+i q) and

U(a, A) = U(a, I)U(O, A) = T(a)q(A)P(A}, (2.2a)

parameter subgroup of both the groups. The ir-
reducible representations of such groups are one
dimensional and are given by

q{p,q, A)y(X, s) = e'"'y(X, s).
Note that s can be integer, half-integer, or com-
plex. For a detailed discussion of these repre-
sentations, the reader is referred to the work of
Schulman. '

III. CONSTRUCTION OF THE FIELDS Q(x)

A, Mathematical preliminaries

(~f)(x) -=f{ }= f(x)e" "d'x, (3.1)

where A, g=Ap+p p»% and A. is a Minkowski four-
vector. Let ~ =p +iq; then,

f(X) = f(x)e'~ ' "e ' "d'x. (3.2)

f f(x)} in general could decrease to zero more
rapidly than any power of 1/Ixf as x-~." The
space of functions jf(x)} satisfies the condition

Iff(x}ll.=sup. Ix'D'f(x)l {II I, fll&m)

=sup„M. (x) ID'f(x) I (Il I- m)

Let (f(x)}E-5) be a set of G" functions with com-
pact support" in the domain G„(= Ix I

& o} in space-
time. Let S' be conjugate to 8 (the dual}; i.e.,
the elements of X}' are distributions. We define the
Fourier transform f((f or f" by

It can be easily checked that (2.4) satisfies (2.3d). ~ =0, 1, 2, . . . (3 3)

A. Classification of the little groups

(a) Degenerate class. In this case, p and q are
proportional. Using q& =(-I'/2m)p&, we have

)(.„=p„+iq„= (1 —ir/2m )p„.
Thus,

(2.5)

i.e. , apart from a complex factor in ~„, the struc-
ture of Gz is the same as in the classical case;
namely for p' &0, =0, &0, the little groups are
SU(2), E(2), and SU(l, 1}, respectively. For p' &0,

pp &0, the irreducible representations of 6'+& are
characterized by (M, s), where s is the intrinsic
spin and M =m —il /2

(b) ¹ndegenerate class. We obtain the nonde-
generate class of representations when p and q are
linearly independent. The little group G& =G~ A G,
is a one-parameter group and the intersection of
the groups can be taken only along a common one-

M (x) =sup. Ix" I (I&l-m)

=sup„ fx,'o ~ ~ x,"I (fo f-m).

For all jf(x)&$, M (x)D'f(x) are continuous and
bounded I» I II-m In particular llf(x) II are fi-
nite and that where M (x) =~, there necessarily
D'f (x) = 0. Thus,

M.(x)=1, xgG„
=0, xg G„.

Thus, the Fourier transforms of (f(x)} are entire
and analytic functions of ~ and have growth «1 and
of type ~o. (see Ref. 12), i.e. ,

(~'y(~(I = f a'g(x)e"'*u'x

&a

= e j j C,(f(x)) . (3.5)
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ID f(x) I are bounded, so also is C~( f"(x)). We
prescribe the topology in this space by using the
countable set of norms,

IIf(»lli =sup. tlfi(&) If(&) I,

where

M, (&(.) =e

e-(&oldol+' ''+&ilail&I&( "o ~ ..g ~I
max l ))I ~ i'

(3.6)Ik I =ko+0, +k, +k, =0, 1, 2, . . . ,

I Q I
= o(o + +& + Q2 + +& = 0 1 2

B. Fourier transform of the generalized functions P(x)

«t (f",(&())oui be a set of functions restricted
on the ray L (=L,xL, xL, xL,) in the &(, plane. For
degenerate class representations,

q„=(-r/2m}p„,
and the ray I. passes through the origin to infinity
at an angle 8=arctan(-1/2m} with the real &(.

aXls.
Definition 1. We define the functional (L)(&(,)&g)~

as the Fourier transform of (j)(x) according to

( d(&),f(e)), f4"(e)f=(e)d'x

=(»)'(y, f)
= (2')'y(f) .

We assume that along L, (L)(&(.)e"l'l is absolutely
integrable for any real o.. Thus,

(i(X),f(X)), f[()(Z))*f(Z)=d'Z

= (2v)' f(x) Q*(x)d'x

where

=(»)'( P(x),f(x))
= (2m)'(L)( f),

1
(t)(x)

( )4 P(&).)e "*d'&- (3.7)

defines the Fourier transformation along L for
complex ~.

e' '*f(e)d'e)d'e.

4(X)e ' 'd'X) d'e

(interchanging the A. and x integration by virtue of the
the absolute convergence of the double integral)

Definition 2. We define the complex conjugate
and Hermitian adjoint of (j)(&(.) as'

(y*(& ),f(& )).=e-'"( j(~),f(& )).*,
( j'(», f(& )), = e-'"( j(& ),f(~)),',

(3.8a)

(3.8b)

L&
= arctan(-I'/2m ).

C. Properties of the fields Q(x)

The action of U(a, A) on a vector ft)(f)(L&0&D is
thus given by

U(a») ft&(f)40 = 4'(f(. ,A&) 40 ~

Since f(, „&~6, we have

U(a, A}D=D .
(iv) Spectral condition. For a~T„we have the

following spectral decomposition for the nonunitary
continuous linear operator T(a) (using Stone's the-
orem):

T(a) = U(a, I) = exp(ia„&("), .

where &(,„=(1—i r/2m)p„ is interpreted as the
coInplex energy-momentum operator. As usual,
the spectral support of p& lies in the closure of &he

positive light cone; however, for complex A,&, V+
is modulated by a complex factor.

(v) Local commutativity. If the supports of f(x)
and g(y)HS are spacelike separated, i.e., if
f(x)g(y) = 0 for (x- y)' & 0, then

y(f), y(g)]lL =0, vl(=-D.

One may now analyze the properties of the fields
Q(x) in the framework of the Wightman axioms. "

(i) HiLbert space of states The s. pace of states
is a separable Hilbert space 30 =(((L)f ): II (pf II'& )
and the field Q(x) acts as an operator on it. Fur-
ther, there exists a strongly continuous linear
representation of (P, on 3C.

(ii) (p(x) as an operator vaLue-d distribution. The
test function space S and the set of fields l(t)(x)f
are mapped into linear operators (j)(f); J)f tE S
over 3C. The operators f(&&(f)) are defined on a
common invariant dense domain" D~X such that
()L„(p(f)(L)i) is a distribution for (L)„(L),H D and

Q(f)Dc D, )L&o&D

fpt(f)Dc D, U(a, A)Dc D.

(iii) Covariance of the fields. To each element
(a, A}E-6' there exists a continuous linear opera-
tor U(a, A) such that

U(a, A)ft)(f)U '(a, A) = Q(f(, „&), fee
where
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(vi) Particle interpretation( The S-matrix for-
mulation for the fields (t)(x) will be discussed else-
where. In the present communication, we will
confine ourselves to compute the Green's function
for (t)(x) and study its asymptotic behavior.

f d ')),
I X„a (X)a(X) . (4.V)

The complex energy-momentum four-vector is
given by

IV. PROPAGATOR FUNCTIONS

Our first task is now to compute the Pauli-
Jordan operators D(')(x) for the fields (())(x). The
causal Green's function can then be expressed in
terms of D ')(x) and D )(x) by defining the vacuum
expectation values of the time-ordered product,
namely

&o I T( P(x) P(y)) I o&

Let

Then

A. Evaluation of [P(f),P(g)]

1f) (2 )3/2

~(-)(f)+ ~(+)(f)

3

( ),t2 [a()),)f(-z, -(u), )

+ at()).)f(x, (d),)]

(4.8)

To furnish this, we first introduce the Fock rep-
resentation for the creation and annihilation opera-
tors of the free field p(x):

( )„,[a()).), at()(')]z

1
y(f) =(2,)312 (2 )„,[a()(.)f(- )(., -(u), )

+ at()(.)f(z, (d„)]. Using (4.2) we have

x f(-)(., —(u~)g()(. ', (u),.) .

Symbolically, we write

(4.1) e ie d-

[0' '(f), 0"(g)]= 2, ~ 2„ f(-»-~~)g()) ~~) .

d'A.
,t2[a(x)e ' '"+a (x)e' '*].

The creation and annihilation operators satisfy the
following commutation relations, namely

[a()(),a'()(')],= e '"6', ()(. —)(.-'), (4.2)

Similarly,

e-3 j8
[0"(f»0' '(g)]=-(2,).

(4.9a)

f()(., (u, )L2

x g(-)(., —(d ),) . (4.9b)

where 8 =arctan(-I'/2m) and bi ()). —)).') is Dirac's
5 functional taken along I.. We have introduced
the extra phase factor on the right-hand side of
(4.2) to make the commutator real. " We now de-
fine the Hermitian number operator N as

Using the property of the contribution for the 5L
functional (with complex argument),

(&+f,g), =(&(z)x f(z'), g(z+z'))z

=(f(z'), 6(z),g(z+z'))i

Id3~la'(~)a(~) (4.3)
=(f(z') g(z'))g

=(f g)z (4.10)

We note that the creation and annihilation opera-
tors have the following commutation relations with
N:

bi(X' -M') = [5z()(.,—(d„) —5i()).,+(d„)],

[t((, at()).)],=at()(),

[))t, a()(.)],= -a()(.) .
(4.4)

we obtain

(4.11)

We also require that a()() IO& =0. The transforma-
tion properties of a(X) and at(g) are given by

[(t) (f), Q (g)]= 2
" d')). ()(-)(. )5 (A. —M )

L

U(b A)a ()).)U '(b, A) =e'~~' 'at(A(A))). ),

U(b, A)a()))U '(b, A) = e ' ~ 3a(A(A))().
(4.6) and

x f(—)) )g(~) (4.1,2)

Similarly, under a pure translation,

U(b, I) I » = T(b) I» = e" 'I » . (4.6)

I('(f), ( '(g)j=
2

', 8 "'1 d're(~ )a, (~ m')'
x f(-)).)g()() . (4.13)
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Note that

8(gp) = 1 for pp &0,

8(-gp) = 1 for pp & 0 .

Combining (4.12) and (4.13) and using e(Ap) = 8(Ap)
—8(-Z„),

[4(f), S(d)]= .e "f d'z s(z'- sd')e(x, )

x f(-g)g(y)

the causal Green's fi~nction as usual by

(4.17)

-3)e
D+ (x) =

2
d'l). 8(A.,)5 (A.

' —M')e
l

D'(x y)—=i( T((f)(x)(I()(y))),

=8(x,- y, )D' '(x- y)

—8(y. — .)D"( -y},
where D "i(x y) -are the free-particle propagator
functions defined by (4.12) and (4.13), i.e.,

where

ie—" 8(i sg, y)~, (4.14) (4.18)
e-3 je

D (x)=
2

d'A. 8(-A, )5 (A.'-M')e ' '".
(2 )4 P L

(6,f) = b*(d).)f(A.)d A.
We now carry out the A.p integration in (4.18) and
obtain

4 (x)( f(x)e *d'x)d''s

f(x) h(A. )e ' '"d'A. d'x
L

= (2~)' f(x)~*(x,M )d'x

= (27(}'(z,f)

Thus (see Ref. 16)

[(((f} 4(g}]=-»e "'«(x M}*gf)

(4.15)

(4.16)

D('(x) = —f(x),4@x Br

D(-'(x) = —f*(x),1
4m. Bx

where

f(X) — e-pi8 ei()r+Xpxp)
2r g Ao

fsc(x) — e-Sip e-i(h +x x )
-i 3 dA,

2w

(4.19)

From the property of the convolution, it follows
that if the supports of f(x),g(y) are spacelike sep-
arated, then [ (t)(f), P(g)] =0."

F». The causal Green's function D'(x) and the time graph

and

Let

Z/2
X = (Z,'+ X,'+ X,'}'", r = g (x,')

A, =M sinh()p = ( m —il'/2) sinhy,

Ap =M cosh& =(m-ii'/2) cosh@.

(4.20)

(4.21)

To estimate the asymptotic behavior of the time
graph of an unstable particle, we analyze the
property of the causal Green's function. We define

Then,

f(x) =—' e '"
2r d(() efdf(s'p cosh 4) tr sinh(s) (4 22)

-~ —i tan '(p/2m

(p pl ane

oo+ i tan ( I'/2m)
rd

~san S(r/2)n)

(1) x, &0, x, &». ;

(2) x, &0, x, & r;
(3) x, «, (x, l&»";

(4) x, «, ( (x&;»

(4.23)

Substituting (4.23) in (4.22) and using the integral
representations of the cylindrical functions, we
have

d(() exp[i M&u cosh((()+ gp)]

The y integration is taken along L, ' as shown in
Fig. 1. Here, we have to distinguish the four pos-

sibilitiess:

FIG. 1. The contour L' in the p plane.

=»)(H '~(Mv u)
= j)([Jp(M)(u)+ iNp(M)(u)],
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(2) dp exp[iMI-u sinh( y+ (((}o)]= 2Ko(M v'-u ),
L

(8) dy exp[ —i M V u cosh(y - y, ))

= -i~a&; }(MW«)

iv-[J,(Mv u) —i N, (Mv u)],

dyexp[ —jM}}'-u sinh((((}- Po)] =2Ko(ME u),—

u = x' = (x,)' —(x)' (4.24)

From (4.22) and (4.24), we finally obtain

f(x) =(1/2j}N (M~u) ——,'c(x )J (Mv«), u)0
(4.25)

= —K,(Mv'-u), u &0.

Substituting (4.25) in (4.19), we have

-3i6
~ ~

Di'}(x)= e "e —e(x,)6(u) v
™

8(u)[N, (M~«) vie(xo)J, (M Wu)] + 8(-u), K,(Mg u)
8w u 4p'g-u (4.26)

or

+ 8(-u}K,((Kd-u}I,iM
gg-u

e-3$8
D'(x) = 5(u) —— 8(u)H,~'i(Mv u )

+ 8(-u)K, (Mv'- u
iM

pv'-u
(4.28)

It is understood that the Fourier transformation of
(4.28) exists in the sense of the generalized func-
tions of Gelfond and Shilov" and is given by

D,(Z) =, (4.29)

We note that the relation (4.29) was derived by
Simonius" from an entirely different and heuristic
way. The time graph was never shown explicitly.

To obtain the time graph of the unstable particle,
we consider the asymptotic behavior of (4.28),
i.e. , for large values of u, we have

D'(x) --8(u), ,~, exp(-iMv u)
32+ u

+8(- ) 82 3( „)3~2 exp(- M v'-u ) .
(4.80)

The Pauli-Jordan function is now given by

D(x) =D' (x)+D (x)
t

= e "e —e(x,)5(u) — 8(u)e(x, )J',(Mv u )

(4.27)

We note that D(x) vanishes outside the light cones
(f or u &0). Now, the causal Green's function
D'(x) is given by

D'(x) = 8(x,)D '(x) —8( x,)D' (x)-
e-'" M

5(u) — 8(u) [J,(M~«) —i N, (M v u )]

Equation (4.30) displays the remarkable exponen-
tial decay law for the unstable particle.

V. CONCLUSION

The field theory of the unstable particle has been
analyzed by resorting to the covariant property of
the fields under the degenerate class representa-
tions of F . The field describing the unstable par-
ticle is an operator-valued distribution on the
space S of infinitely differentiable functions of
compact support. In fact, the choice of S could be
relaxed and the analysis could be analogously car-
ried out in the more general space of type S~ or
S8 [correspondingly, the Fourier transform of
Q(x) is described in S„=S, or SB =SB] of Gelfond
and Shilov. " The Fourier transform of p(x) for
complex four-momentum A. is a functional in X)'

and such that ( P(X),f(A.))~ is convergent and regu-
lar along the contour I. in the complex X plane. In
our opinion, this is rather the customary practice
in quantum field theory to extract the finite part
from a divergent series or integral by suitably
choosing the test function space S. Only in this
sense Q(A. ) is well behaved or else it is undefined
conventionally.

The fields satisfy the axioms of conventional
field theories with a modified spectral condition.
From the properties of the generalized functions,
we show that the Pauli-Jordan operator ~(x,M}
smeared with the test function f(x), i.e. ,

(6(x,M),f(x)} is finite'6 and identically vanishes
for spacelike x."

It is worthwhile to make some remarks on the
work of Ref. 18 in the light of our analysis. In Ref.
18, the splitting of the field into positive- and
negative-frequency parts is nonlocal since the two
frequency parts are defined separately on two dif-
ferent Hilbert spaces. The definition of the Fou-
rier transform of the field is also not clear when
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the momentum is complex. So the introduction of
the Fourier transform of the field as an operator-
valued distribution as in our present analysis is
rather imperative. The re gularization introduced
for computation of the Pauli-Jordan operators
seems to be far from explicit. Further, unlike
our present analys. 's, the time graph for the un-
stable particle has not been computed in Ref. 18.
In Sec. IV we have rather made some adaptations
of the work of Bogoliubov and Shirkov" and by
suitably defining the contours have computed the
Green's function D' (x). .

The physical implication of the nondegenerate

series representations of (P+ for exchange scatter-
ing and tachyons will be reported separately.
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Dividing both sides by lx I

and taking the least upper
bound (lub) of A on the right-hand side, we have

I
j&'(x)

I
~ C„ infk lul xl

'
=C„$(x/n),

where,

$ (x/u) = inf„1/I x/nl k

Il for Ixl~u

0 for x &a.

i.e., if f(x) is infinitely differentiable which vanishes
for

I xl & n, then

I
x D"f(x) I

c„u'.
Since u is arbitrary, (j(x)}are infinitely differentiable
with compact support. If, however, (f(x)}e S„(see,
e.g. , Gelfond and Shilov, Itef. 12, p. 171), then(j(x)}
together with all their derivatives decrease exponenti-
ally at infinity, with an order ~ 1/a and a type ~ a

dependent on the function f(x), i.e.,
I
j(")(x)l c„exp(-a

I
xl"").

I'We have from {2.2) jp) =Jj(x)e'k'"e '"dpx. Suppose
xp —0, x —xp . Then

q x= qpxp-q x& (qp —Iql)xp

p(qp- lql)(lxpl+ IXI).

For q &0, qp&0, we have

e ' =«r(-p(qp —Iql)(lxpl+fxl)l

= exp[-u(lxpl+Ixl)l u 0 ~

Thus, from a quick and rough estimation, we find that
e '" will play the role of cutoff or regularization.
By a similar argument, we can also construct entire
and analytic functions of f (P) in the lower half-plane
with A=p-iq, q &0, qp&0 (for xp&0). Since inthelimit
q 0 both these functions coincide, we can in general
speak of a single analytic function (by the edge of the
wedge theorem) whose convergence properties are de-
fined with respect to the norm (3.6) .

~2I. M. Gelfond and G. E. Shilov, Generalized Functions
(Academic, New York, 1966), Vol. 2, p. 130.

~SR. F.Streater and A. S.Wightman, PC T, Spin and
Statistics and all that (Benjamin, New York, 1963).

~4The dense domain D is generated by the polynomials
over fields smeared with test functions (f(x)} applied
to the vacuum state gp&X.

~5This follows from the definition of the complex conju-
gate of the functional. Substituting 61 (z -z') for
PP,) in (3.8), we have

(dg(x -s'), f(x))z =e p's~(dr, (~ -~'), j*(&))lg,

Vz, z'e C~. Thus follows (4.2).
~GThe convergence properties of (4.15) can be proved as

follows. We have

(('(".M). f(")1=)&' f( )('(*.I)
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Using

we find

-b~(AO+ (A~2+M2)t~~)],

0=1*2 3

e- 3ie
(&(x~M) ~f(x)) =

(2x)3 2p g+Mm)ggg

x [f"(gg P 2+M2)»)

—f(~„-P.,'+M')"') ].
Note that LI, passes through the origin and is the same
for all the components X~. Since f(A)c Qz„, we have

~ f (A) ~

~ const x e&'~; the constant might depend upon

f (A.) . Now,

d3A,
](E(x,M), f(x))~ —constx sup~

& & i [f(Az, pz +M ) ) —J (Aq, —(IIq +M ) )]

d3P~const x supp
& M2 &&2

[f(pa, (pa +M ) }-f(pa, —(pq ™) )]

In this equation we have made use of the fact that when
~, the contribution to the integral

2P 2' Mg)tgt [f( k (a ™)
dhk 2 2«2

Lk

—f (Xq, —(Aq2 +Mt)t~t) ]

have

1 3g d &k

(2 )3, 2P, 2+M2)«2
k

x {exp [-i(a~x~ —(X~t +Mt) xo)]

exp[i(-Z„x, —P.,'+M')"'x, )]j.
in the second and fourth quadrants identically vanishes

by using the asymptotic properties of fP.). So, by a
counterclockwise rotation, we can take the integral
along I k on the real axis in the complex ~k plane.
Thus,

](b.(x,M), f(x)}(—constx lim (~)f(py (p +M ) }~)~ oo

—const' (@ED).

~VThe vanishing of (4.16) for spacelike supports of f(x),
g(y) can be demonstrated as follows. Symbolically, we

Now, going to the Lorentz frame where F0=0, and re-
placing Ak -Ak in the second term of the above inte-
grand, we find

=0
M. Simonius, Helv. Phys. Acta 43, 223 (1970).

~9¹N. Bogoliubov and D. V. Shirkov, Introduction to the

Theory of Quantized shields(Interscience, New York,
1959), p. 147.


