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Gravitational tw~body problem mth arbitrary ~mes, sp~, and qmd upole moment
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We find the precession of the spin and the precession of the orbit for the two-body problem in general
relativity with arbitrary masses, spins, and quadrupole moments. One notable result which emerges is that, in
the case of arbitrary masses m, and m, , the spin-orbit contribution to the spin precession of body 1 is a factor
(m, +p./3)/(m, + m, ) times what it would be for a test body moving in the field of a fixed central mass

(ml+ m2). Here p, denotes the reduced mass m, m, / (m, + m, ). This contrasts with the result of Robertson for
the periastron precession where the corresponding factor is unity. These results may be of interest for binary
neutron stars and, in particular, for binary pulsars such as PSR1913+16.

I. INTRODUCTION

The gravitational two-body equations of motion
for arbitrary masses without spin were first
derived by Einstein, Infeld, and Hoffmann' (EIH).
Corinaldesi, ' using the quantum theory of gravita-
tion, seemed to have derived the EIH equations of
motion from the one-graviton exchange interac-
tion. But later Iwasaki' showed that the two-gravi-
ton exchange interaction was also needed to obtain
the G' term in the Hamiltonian from which the
EIH equations of motion could be derived.

Papapetrou ' and Corinaldesi' derived equations
of motion of a spinning test body in a given gravi-
tational field. Then Schiff' used these results to
find the precession of a gyroscope in orbit about
the earth.

In a recent paper' we derived the precession of
the spin and the precession of the orbit of a spin-
ning test body in the gravitational field of a much
larger spinning body. In our procedure we used
the one-graviton exchange interaction of two spin-
& particles' derived from Qupta's' quantum theory
of gravitation. This potential energy was first con-
verted to a classical potential energy and then (as
we were interested in the gyroscope problem) the
large-mass approximation was made.

Because of the recent interest in binary neutron
stars and, in particular, binary pulsars such as'
PSR1913+16we now think it is appropriate to give
the results for the precession of the spin and the
precession of the orbit for two bodies with arbi-
trary masses, spins, and quadrupole moments.
We need only proceed as before' but without mak-
ing the large-mass approximation.

Because of the fact that the spin-independent
part of the Hamiltonian which we use" appears
to be different from that of the EIH Hamiltonian,
we present in Sec. II a general Hamiltonian for
the two-body problem for arbitrary masses with-

out spin and show that the results of Barker, Qup-
ta, and Haracz' are related to the EIH Hamilto-
nian by a coordinate transformation. The essen-
tial point here is that all the different forms of the
Hamiltonian lead to the same observable result for
the precession of the orbit.

In Sec. III we shall write down the Hamiltonian
and Lagrangian for the two-body problem for ar-
bitrary masses, spins, and quadrupole moments,
while in Sec. IV we shall give the precession of
the spin and in Sec. V the precession of the orbit.
Here we also point out that the spin-dependent
parts of the equations of motion may be written in
several different ways (depending on the choice of
the spin supplementary condition) but they all lead
to the same observable results for the precession
of the orbit.

We shall present our conclusions in Sec. VI.

II. HAMILTONIAN WITHOUT SPIN

The spin-independent part of the Hamiltonian
which we use" [Eqs. (2), (10), and (11) below] is
apparently different from the EIH Hamiltonian'.
For instance, it does not contain a. ( P r) term,
whereas the latter does. It is our basic purpose
in this section (a) to show that our Hamiltonian'8
is related to that of EIH by a particular coordinate
transformation, and (b) to write down a general
Hamiltonian [Eqs. (1)-(4) below], which is obtained
from that of EIH by a general coordinate transfor-
mation [Eqs. (6)-(7) below].

Qn reflection, the fact that the Hamiltonian can
be written in a variety of ways should not be sur-
prising. It is simply related to the fact that the
metric tensor may be written in a variety of ways,
depending on the choice of coordinate conditions.
For example, the Schwarzschild exterior solution
of Einstein's field equations, for a spherically
symmetric mass distribution, may be written in

standard, isotropic, or harmonic coordinates.
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These are common choices, but of course, an
infinity of possible choices exists.

Our procedure is to start with the EIH Hamilto-
nian and then make a general transformation [see
Eqs. (6)-(t) below, where a is an arbitrary para-
meter] T. his gives us a very general Hamiltonian,
containing the parameter o. [Eqs. (1)-(4) below].
We then point out that, for a particular choice of
n, we obtain the Hamiltonian which agrees with
the one-gravitation exchange interaction of Refs.
7 and 8. Other interesting choices of n are then
discussed.

Let m„r1 Py and m„r„P2 be the mass, posi-
tion and momentum of the first and second parti-
cles, respectively. We shall be interested in the
Hamiltonian in the center-of-mass system which
is given by Hiida and Okamura" as

X(o.) =X,+ V, (a) + V, (a),
where

(2)

z = 2, which gives a Hamiltonian without a G' term.
However, the restriction to mass-independent val-
ues of a is not necessary. In fact, it is also possi-
ble to eliminate the P' term in V, (a) by choosing
a = ~ + ~ p/M or to eliminate the ( P ~ r)' term in

in V, (o.) by choosing o. = —a pjM. The results are

V, (n =-', + k p, /M)

Gm, m~ 3m, 3m, (P ~ rP

G'pM(p + 2M)
2 +=2+20

and

V, (a = —~ p/M)

Gm~m2 1 4 3m, 3m2 P'1+ 4+ +
2m2 2m, m, m c

P'
P. 52,m2C

G'gM(p +M)
C K

(10}

G2p, M2
V, (o.) = (1 —2u)

2C J' (4)

and a is an arbitrary dimensionless parameter.
The reduced mass and total mass are given by

(5)
m jm2 M=m +mm+m '

1 2

We also note that r=r, -r„P=P, =- P„and c
and G are the speed of light and the gravitational
constant, respectively. The Hamiltonian of Eq.
(1) can be obtained from the EIH Hamiltonian [Eq.
(1) with a =0 and r and P replaced by r~,„and
P ~», respectively] by the coordinate transforma-
tion

1 1
k k2 k2' (12)

Note that the potential-energy term V, (a = —k p, /M)
of Eq. (10) agrees with the one-graviton exchange
interaction of Barker, Gupta, and Haracz. ' If the
large-mass approximation (m, »m, ) is made, the
EIH Hamiltonian (a =0) becomes identical to the
Hamiltonian with a = ——,p/M.

Another Hamiltonian that is of interest is one
where n = I + Ay/M and X is a constant, independent
of the masses, for when the large-mass approxi-
mation is made the coordinate system of this Ham-
iltonian will be a Schwarzschild coordinate sys-
tem.

Let us now look at an important aspect in the
derivation of the one-graviton exchange interac-
tion from quantum field theory. Consider the
term

r,„=r 1 —a

which implies that

(6} where

k =p'-p =q -q'. (13)

GM ( P ~ r)r
EIH

There are two values of z that Hiida and Qkamura"
singled out for special attention. They are n =0,
which corresponds to the EIH Hamiltonian, and

The initial and final propagation four-vectors for
the particle of mass PFly are p and p', while those
for the particle of mass m2 are q and q', respec-
tively. The propagation four-vector p has a mo-
mentum of a p and an energy of capo. Equation (12)
can be written as"
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1 1
k~+x(Po -Po)(qo- qo) ——,'(1-x)[(PQ -Po)'+ (~Q -qo)'] '

Then using

k (p'+p)
~0 ~0 pi +p0 0

k (q'+q)
CP -00=

0 0

in the denominator of Eq. (14) we get

k ~ (p'+ p) k ~ (q'+q), k ~ (p'+p) k (p'+p) k ~ (q'+11)k ~ (q'+q)
(Pl+P.)(ql+e. )

'
(P.'+P. )' (e.'+e.)'

(14)

(15)

(16)

(17)

Hiida and Okamura" have shown that the relation
between x of Eqs. (14) and (17) and u of Eq, (1}is

while the corresponding potential-energy terms'
l 1for the u = —s p/M = --, case are

u = —+(I —x), x=4u+1. (18)

In the center-of-mass system we have p' = —q',
p = —q and P, =P,', q, = q,', so that in Eq. (17}we

may set8

(19)

if we choose

Gm p2
V&(u=-s)=— 1+7r m c

5 G'm'
V, (u=--'. )= —+, .

III. TOTAL HAMILTONIAN AND LAGRANGIAN

(27)

(28)

1 —x 1 1

&0&0 2 &0 &0
(20)

so that the k,' term of Eq. (17) will be zero. We
then have

The total Hamiltonian for arbitrary masses,
spins, and quadrupole moments is given by [see
Eqs. (1) and (62} of Ref. 7 and Eqs. (46) and (47)
of Ref. 13]

X,(u) =Mc'+3C(u)+ Vs, +Vs+Vs, a+Vo, +Vo, ,
2 2 2 2

pp +gp mj +m2 1 p

(P, +q, )' (m, +m, )' M
' (21) (29)

P2 P'x =
m 4m'c' ' (22)

V, (u) = — I+(~s —4u}, , +(s+4u}m'c' m'c'r'

(23)

Using x=1 —2g/M in Eq. (18) we find u = —sp/M.
We conclude that the particular form of the poten-
tial energy that appears in Ref. 8 results from tak-
ing k,' =0 in the denominator of Eq. (12).

It is also of interest'" to consider the particu-
lar case of equal masses, i.e., m, =m, =m. Hence

p =m/2 and M =2m. It follows that

where X(u) is given by Eq. (1) and

V = 2+ ' S~" ~ (rx P)c'r' +
2m,

Vss =, , 2+ ' S ~') ~ (rx P),c'r' 2m2

G 3(a'" |')(&+" ) "„)-(.i)

OZ,"'m, m, 3(n&') ~ r}'
Ql 2r3 r2

(3o)

(31)

(32)

(33)

G'm'
V, (u) = (1 —2u) 2r2 (24) VQ, — (34)

(25}

9 G2
V, (u =~) = ——

2 8 4 c2r2 (26)

Hence the corresponding potential-energy terms
for the u = s + s p/M = ~s case are

Gm 7 ( P rj
1

=
8

= r + m2C2r2

where S('i I ' u ' v, and 8 ' I~" e' v,
are the spin, moment of inertia, angular velocity,
and velocity of bodies 1 and 2, respectively. To
first order, S = I co 8 ~ = I ~~ and P
= p.v, where v =v, —v, . Also, n~" and n&" are unit
vectors in the 8~'i and S ~' directions, respective-
ly. The quantities J,"and J,"for bodies 1 and 2,
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respectively, are given by [see Eqs. (38) and (40)
of Ref. 7 and Eqs. (6} and (48) of Ref. 13]

-(, ) G 3r(S"' r) -(, )
LT C2r3 r2 (42}

m1J &I 2. dV' r' —3 n ' ~ r') p, r')

(35)
I() ()r (43)

IV. PRECESSION OF THE SPIN

The results for the precession of the spin may
be derived using the techniques of Ref. 7. For
body 1 we find (similar results can be given for
body 2)

n" ' =0") X n(') (39)

where

and

g(1) g(1 1 g(1) g(1)
dS + LT+ Ql (40)

3m2 prxv
2m c r'

1
(41}

m J =~I(' =2 dVI ri' 3 n( ) ~ ri p r

(36)

and p, (r') and p, (r') are the mass densities of
body 1 and body 2, respectively.

We note that m, c' and m2c' contain the rotational
energy of body 1 and body 2 as well as the rest en-
ergy. We thus have'

Mc'=(m c'+m c')+(sf&')(o") + ~f"'(u&'~+ ~ )

(37)

The total Lagrangian corresponding to Eq, (29)
is given by

Z, (n) = —(m„c'+m~c')

+ (
—' f(&)~(&) + 2 f(2)(v(2) +. . . )

+ k pv'+-,'(1 —3p. /M)pv'/c'

—[V,(n) + V, (n) + V~, + Ve, + Ve, a, + V, + V, ],
(38)

where p, v replaces P in the potential-energy
terms.

The terms Q&'), Q&„'), and Q[)',) are determined by
the terms V~„V~, ~, and Vz, in the Hamiltonian
of Eq. (29). Equations (41) and (42) can easily be
inferred from the results of Sec. II of Ref. 7,
while Eq. (43) is given by Eq. (40) of Ref. 13.
Note that Q L'r and Qf", have the same form as in
their large-mass approximation, while 0 ds does
not and hence is a new result.

The secular results for the precession of the
spin are given by

n("=n "xn '
av (44)

where

0',-(, ) 3G(d(m, + i(/3)
2c'a(1 —e') n,

(2)

A r(1)
(1) ~m2 (1 ) ~ (1)QI) „= 2f( ) ( ) 3(1 }3y [n 3(n'n }nJ

I/y, GM '~' 2w

a(1 —e)'~ a T (48)

where T is the orbital period.
In particular, it is notable that in going from

the large-mass approximation (m, »m, ) to the
case of arbitrary masses, the results for 0,"
and 0,', are obtained by the replacement m,
-m, + p, /3 (whereas, as we shall see in the next
section, the corresponding replacement for 0*(
is m, -m, +m, ).

(4'I)

and e is the eccentricity, a is the semimajor axis,
& is the average orbital angular velocity, L = rx P
is the orbital angular momentum, and n is a unit
vector in the L direction. Also, we have the re-
lation

V. PRECESSION OF THE ORBIT

Using the Lagrangian of Eq. (38), we find that the equations of motion are

v+GMr/r' = B(n),
where

B(n) = B&e)(n) + B&» /B&~) +B&'~ 2) y B&()') +B&o~)

and

(49)

(50)
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B (o, = —2)2/M) =, , 4 1+ —— — 1+ ——v'r+4 1 ———(v ~ r) v(E) 1 GM 3 p, GMr 5 p. 1 p,

cr 4M 2 M 4 M
(51)

B' =
2 5 4+ ' —'S ' ~ rxv) r+PS(' xv —~ v r)S' xr,

l
(52)

B(' = » 4+ ' —' S(') ~ rxv r+PS "xv —~ v ~ r S("xr,
2

(53)

[(S '2I ~ r) S ~'~+(S ~'l ~ r) S~2I —5(S"' ~ r)(S"' r) r/r'+(S(" S "') r]c2r5~

-3GJ(')I
([I —5( ' ~ )'/r'] r+2(n "~ r)2r' )

-3GZ(')M
([I —5( n"' ~ r)'/r'] r + 2( n" ' ~ r) n" 'j2r'

(54)

(55)

(56)

E/p, = 2 v2 —GM/r,

L/p, =rxv,

A/y. =vx(rxv) —GMr/r.

(57}

(58)

(59}

Taking the time derivative of Eqs. (57)-(59) and

using Eq. (49) we obtain

Z/p, =v ~ B(a}

L/p, = r x B(a),

A/p. = v x [rx B(a)] + B(o,)x( r x v) .

(60}

(61)

(62}

The term B~ l(a) is determined by X(a) of Eq. (1},
while B ' B(' B" B(~') and B' "are deter-
mined by Ve„V5„V2, 2„Vo„and Vo, of Eq. (29),
respectively. Equations (52)-(56) can easily be
inferred from the results of Sec. V of Ref. 7, but

Eq. (51}cannot and has to be worked out. In Eq.
(51) we used the particular value of a = —2 g/M
so that this equation would have a very simple
form and make it easier to derive Q* of Eq.
(67).

For a Newtonian elliptic orbit for two spherical-
ly symmetric bodies, the energy E, the orbital
angular momentum L, and the Runge-Lenz vector
A are constants of the motion, which can be writ-
ten as

and

~+(g ) 3G(d M
c'a(1 —e') (67)

II*"= ' ' ' [n"'-3(n ~ n&'&)n] (68)

3GS(i )S(2 'I/p ~
2c'a'(1 —e')'

x((n ~ n ' )n~2 +(n ~ n ' )n '

+[n "n ''-5(n n ' )(n n ' }]n), (70)

(e l
—3GMJ /(d

4a'(1 —e')'

x(2(n ~ n ' )n~'i+[1 —5(n ~ n~'I) ] n], (71)

&e»
—3GMJ2~"/ ~

4a5(l e2}2

x(2(n ~ n(' )nt2~+[I —5(n ~ nt'i)2] n). (72)

GS( )i4+3m m0*"'= ' + ' ' [ t"-3{n &'&) ] (69)

The secular results for the precession of the

orbit are

i,„=0 (63)

L,„=Q*xL „ (64}

A,v
=Q+xA )

where

(65)

Qy Qg(E) + Q)k(l) +Q)k(2) + Q)k(122) + Qg(Ql) + Q2k(Q2)

(66)

The terms Q*( ) Q*(" Q*(" Q*("' Q*( ')
and Q* "are the results corresponding to
B' )(n) B('& B&" B("' Bt 'l, and B&o" re-
spectively. Equations (68)-(72) can easily be
inferred from the results of Sec. V of Ref. 7,
but Eq. (67) cannot and has to be worked out.

The Einstein term Q* is independent of the
value of a used in B~ l(n) and was first given by
Robertson. '4

The terms Q*' and Q*(' are new results. The
large-mass approximation {m,»m, ) of Q*~" was
first given by Lense and Thirring. ""
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The large-mass approximations of 0*'~~, Q+('&,

and 0* ' were given in Eqs. (76a)-
(76e) of Ref. 7, while the large-mass approxima-
tion of 0* o" was given in Eq. (49) of Ref. 13.

The form of B&" and 8&'~ (though not B '2i) de-
pends on which spin supplementary condition is
used. Our results, which are derived from the
quantum theory of gravitation, correspond to a
specific spin supplementary condition. Since the
spin supplementary conditions only determine the
location of the center of mass of each of the bod-
ies, the observable quantities Q* ' and Q* are
independent of which spin supplementary condition
is used. " For the large-mass approximation
(m, »m, ) the explicit forms B&«",

&

and B&„", of B&"
have been given" for the Corinaldesi-Papapetrou
and the Pirani spin supplementary conditions, re-
spectively. It was further shown" (in the large-
mass approximation) that the result from the
quantum theory of gravitation for B&' 1S 2(B cp)
+B&&p&'). This corresponds to the supplementary
condition of Pryce" and Newton and Wigner, "
which has the advantage that, in the transition to
quantum-mechanical operator language, the op-
erators corresponding to the different components
of positjon commute wjth each other.

We note that if Q(d's represents the de Sitter
term for body 2, which can be obtained from Eq.
(45) by interchanging m, and m„we obtain the
result

0*& '=~(Q" +0&" )dS av dS ay

~ 2 [9(@&1) ~@&2) )2 +7(f1&1) @&2) )2]y/2

(73)

In the equal-mass case we note that Q*~ ' =~7'Qds',
whereas in the large-mass approximation, as we
have previously shown, ' Q*~ ~ =2Q~ds~

Letting Q„' represent the Lense-Thirring term
for body 2, which can be obtained from Eq. (46)
by interchanging indices 1 and 2, we find that

O*"'= (4+3m, /m, )fl &'& (74)

0* =(4+3m /m )0 '
1 2 LT ay

(75)

In the equal-mass case we note that Q* "=7Q "
LT ay

and Q* "=7Q~L'T', „, whereas in the large-mass ap-
proximation, as we have previously shown, ' Q~("
—4Q(&)

I-T ay'

We now define the total angular momentum

J =- L+S i"+S~ i.
Then, using Eqs. (44)-(48), Eq. (64), and Eqs.
(66)-(72), we find that

(76)

J,„=Q*~r. +Q~,'„~x S ~'~+Q(,'„~~S("-=0,

VI. CONCLUSIONS

We have shown that the spin-independent part
of the one-graviton exchange interaction given by
Barker, Gupta, and Haracz' is related to the EIH
Hamiltonian by a coordinate transformation. We
then found the precession of the spin and the pre-
cession of the orbit for the two-body problem in
general relativity, with arbitrary masses, spin,
and quadrupole moments. In the Hamiltonian of
Eq. (29) the potential-energy terms Vs», Vq„
and V~, have the same form as in their large-
mass approximation, while the terms V» and Vs
do not. Thus the new results Qd's' and Q,'s „along
with Q*~'~ and Q~(, which were derived from
V» and V, are of particular interest. It u ill
be interesting to see if these results can be
delved from a pureLy classical treatment.

We have now applied" our results to the case
of the recently discovered" binary pulsar
PSR1913+16.

where Q(,'„~ is the precession of the spin of body 2,
which can be obtained from the result for Q(,'„by
interchanging the indices 1 and 2. In other words,
the total angular momentum is conserved.
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