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We consider leading logarithmic corrections to the Born amplitude for wide-angle scattering of off-mass-shell
quarks through sixth order in non-Abelian gauge theories. We review first the situation for the case of
Abelian theories, where the leading logarithmic contributions can be summed to all orders, yielding a simple
exponential form e ~'" '. We find that the non-Abelian theory, through fourth order, yields a form corre-

sponding to the perturbation expansion of an exponential. A partial computation of the sixth order sug-

gests that such an expansion may still hold in that order.

I. INTRODUCTION

We examine the leading logarithmic contribu-
tions to the scattering of elementary fermions
with finite P' &m' at very lar'ge s, t, and u, in

gauge theories. We review first the situation for
Abelian gauge theories (Sec. II). The results of
this section are not new but we believe our ap-
proach can clarify a number of points. The same
problem is then tackled in Sec. III for a model
where the fermions belong to a multiplet repre-
sentation of some non-Abelian gauge group (e.g. ,
colored quarks) and interact via a Yang-Mills set
of vector gluons. We find that, through fourth
order, the leading logarithmic contributions give
a result of the form

p2 2l sp2 p2

where T, is the group matrix on the fermion rep-
resentation and T, T, = C„. The terms in the curly
brackets are to be understood as group operators
in each of the two fermion lines. The calculational
method used in this paper and the form™factor re-
sult obtained by that method have been discussed
in a previous paper. ' Some further calculational
details are given in the two appendixes of this
paper.

We note that our result is of interest for the
consideration of the naive scaling laws in com-
posite hadron-hadron scattering. ' It has been
remarked by a number of authors' that a rapid
falloff of the quark-quark scattering of large s and
t but finite P' would suffice to maintain the naive
scaling laws. Further, it has been commented4
that the falloff of this scattering could be as rapid
as e " ', as is true for the leading logarithmic
terms in an Abelian theory. Our calculations

are an encouraging, but nevertheless weak, sign
that this could be the case. We should also stress
that if this is true then the whole question of the
nonleading terms becomes of crucial importance.
At this moment, we have no insight to contribute
on this matter.

Since the breakdown of the exponential series
occurs first in sixth order it is by no means clear
whether this contribution or nonleading logarithmic
terms of lower order in g' are dominant. We have
no insight to contribute on this matter.

II.WIDE-ANGLE SCATTERING OF ELEMENTARY FERMIONS
IN ABELIAN GAUGE THEORIES

We begin by examining the Abelian case in some
detail. The situation has been discussed correctly
and at length by Halliday, Huskins, and Sachrajda, '
which we shall refer to as HHS in subsequent dis-
cussion. We feel, however, that our analysis
gives a clearer understanding of several points,
and that calculational methods are more trans-
parent and less cumbersome. It is therefore worth
reviewing the situation before tackling the more
complicated non-Abelian theories.

A. Identification of leading logarithmic contributions

Figure 1(a) defines the momentum labeling we
will use throughout this paper. We are interested
in the region

s=(P, +P)' P

—t=@'=- (p, —p,)'» p

—+= —(Pg —P4)»pg',
for all i; s/t and s/u fixed and finite. The dia-
grams of Fig. 1(b), 1(c), and 1(d) show the first-
order corrections to the Born term of Fig. 1(a).
Evaluation of the leading logarithmic contributions
from these diagrams gives' '
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2 2

, (21n't+21n'u —21n's) {y„){y„),
(2.2)

Pz

(o)

-q = (P, -P, ) —t

s = (P,+Pz)

U
"- (P) P4)

2

where the curly brackets represent the insertions
in the two fermion lines. The successive terms
come from Figs. 1(b), 1(c), and 1(d) in that order.
The evaluation of Fig. 1(b) corresponds exactly
to the form-factor case; that for Figs. 1(c) and
1(d) is discussed in detail in Appendix A, and also
in HHS. The significant feature is that one can
readily identify the regions of momentum space
which can contribute leading logarithms. One ob-
tains two powers of logarithms from a loop inte-
gration only when the integration becomes infra-
red singular if either of two external momenta is
set to zero. Because of the linear nature of fer-
mion propagators the loop integrations of Figs.
1(c) and l(d) only have infrared divergences (for
zero P ) if either one of the exchanged photons
is soft, and the other carries all the large momen-
tum transfer q as well as the loop momentum. '
(See Fig. 2.) This feature can be clearly seen to
persist to all orders. Leading logarithmic con-
tributions in higher orders arise only if every
loop integrations is infrared singular in such a
way as to produce two powers of logarithms. If
any two exchanged photons both carry a finite
fraction of the large momentum q then successive
integrations will eventually produce a loop inte-
gration involving two hard bosonlike propagators
and two fermion lines —such an integration is not
infrared singular and, therefore, does not give
leading logarithmic contributions. This feature
of the calculation was noticed by HHS but not ex-
plained.

One can also readily see that diagrams where a
single photon leaves and returns to the same fer-
mion line do not generate leading logarithms. Sim-
ilarly, the self-energy corrections can be seen
to be nonleading. There remains the question of

FIG. 2. Examples of reduced graphs determined by the
single-hard-gluon approximation. The heavy dot indi-
cates contraction of the hard gluon.

whether in higher orders diagrams involving light-
by-light scattering might not also give leading
logarithms. Examination of many examples leads
to the prejudice that this is not the case —we are
unaware of any definitive argument about such
terms. '

B. Cancellation of pinch singularities

A further result noted but not fully explained
by HHS is that pinch singularities originating from
certain nonplanar diagrams cancel when a gauge-
invariant set of such graphs is summed. These
pinches occur in diagrams such as those of Fig.
3, and give contributions which are more infrared
singular (by powers) than is indicated by naive
power counting. The kinematical origin of these
pinches has been examined by Coleman and
Norton. ' Using their analysis one can readily see
that the singularity must vanish when a gauge-in-
variant set of diagrams is summed. The pinch in

Fig. 3 arises when the momenta 0; are propor-
tional to the momenta P;; k; =x;P;. In Fig. 4 the
blobs represent the complete meson-fermion scat-
tering amplitudes T„5 and TBq. All diagrams in-
cluded in Fig. 4 may have pinch singularities
occurring for 4'; =x;P;. However, in this region
the fermion numerators, for example on the in-
coming fermion line labeled P„yield a factor

Pp

(c) (d)
P4

FIG. 1. (a) The Born term showing the momentum
labeling used throughout this paper; (b), (c), and (d)
first-order corrections to the Born term.

FIG. 3. Nonplanar diagram that contains pinch singu-
lax'ities.
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1 P +0p2

The same occurs for each external fermion. The
pinch contributions from the gauge-invariant sum
of diagrams represented by Fig. 3 thus vanish be-
cause tt, qk, „T„q(k„k,) =0. The terms not elim-
inated by gauge invariance are suppressed by
numerous powers of fermion momenta, and hence
are irrelevant. This same argument can be ap-
plied to eliminate pinch singularities in any order
of perturbation theory. (A very similar argument
also works to explain the cancellation of the pinch
singularities in scalar-meson electrodynamics. )

C. Exponentiatfon

The exponentiation to all orders of the Abelian
leading logarithmic contributions can be shown by
a generalization of the argument originally used
in the form-factor case. This has already been
discussed by Cardy. ' It is amusing to see how
simply this result is obtained by our method. ' A
general diagram with a single hard photon and N
soft photons can be described by six parameters

FIG. 4. Gauge-invariant sum of diagrams of the type
of Fig. 3 which is free of pinch singularities. The blobs
represent full meson-fermion scattering amplitudes.

n„n„.. . , n„where (see Fig. 5 for an example)

n, = number of photons joining line 1 to line 2,

n, =number of photons joining line 3 to line 4,

n, =number of photons joining line 1 to line 3,

n4 =number of photons joining line 2 to line 4,

n, =number of photons joining line 1 to line 4,

n, =number of photons joining line 2 to line 3.

Clearly, n, +n, +n, +n4+n, +n, =¹Straightforward
loop-by-loop integration' gives a weight

g2 " [In2(s/P')] ~'+~2 [-ln2(t/P2)]~'+~4[-In2(u/P2)] "~+

8m' (n, + n, + n, )!(n, + n, + n, )!(n, + n, + n,}!(n, + n, + n, )! (2.3)

for such a diagram. The numerator factors of fermion momenta give P, P, or P, P4 for each t-channel line
and similarly P, P4 or P, P, for each&-channel line and P, P, or P, P4 for each s-channel line. The denom-
inators always combine to give factors +s, +t, and +u which cancel these numerator factors (up to terms
of order P; /t) but leave minus signs for each t or u-chan-nel line. It is a simple counting problem to show
that there are

(n, +n, +n, )!(n, +n, +n, )!(n, +n, +n, )!(n, +n, +n, )!
n] n, .n, .n4. n, l n, .f I 1

distinct diagrams with n„. . . , n, lines. Thus, the contribution of all diagrams with N soft photons is

[In'(s/P')] """'[-»'(t/P')1 """'[-»'(u/P')]"""~
n, n,

n, l n, t n, t n4l n, l n61
yl ]fl2f33ff4ff 5ff6

(2.4)

[2 In'(s /P') —21n'(t/P') —2 In'(u/P') ]" . (2.5)

The simplicity of the combinatorics here is in
marked contrast to the situation in the non-
Abelian case, to which we now turn.

III. NON-ABELIAN THEORIES

The technique we have developed allows us to
tackle this more complicated situation graph-by-
graph, but not to make a simple sum to all orders.
We find the situation is very similar to that for the
form factor. '

Up to terms of order g (fourth-
order corrections to the Born term) a number of
cancellations occur and one obtains a simple re-

FIG. 5. Example of a general Abelian graph with n~ =3,
~2=1, +3=2, F4=1, n~=o, &&=1, and M=8.
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suit which looks like the beginning of an exponen-
tial series. We have examined all graphs that
could contribute leading logarithms to the scatter-
ing in this order. We find that there is a possi-
bility that a continuation of the simple exponential
series i.s given by this sum of graphs. We will
return to amplify th3. 8 comment after we have dls."

cussed the fourth-order corrections in some de-
tail.

) Tb

2 = 4

2-g, t

FIG. 7. Lowest-order non-Abelian correction. This
diagram contributes only nonleading logarithms.

.A.. Corrections to the Born term through fourth order

In a non-Abelian gauge theory for the scattering

Q'~Q'2- ~ Q'3Q~

there are in general two possible Born terms, de-
pending on the quark types. These correspond to
two of the three distinct possibilities for the con-
tinuity of the quark line shown in Fig. 6. The
diagrams formed by adding higher-order correc-
tions to any one of these terms are distinct. We
will present our discussion only in terms of cor-
rections to the diagram of Fig. 6(a), but clearly,
it applies equally to sequence built on either of
the other possible Born diagrams with the obvious
modifications of channel label. We write this
Born term as As = (g'/t) (T, ) (T, ), where the
terms in curly brackets represent the group op-
erators to be inserted in the fermion lines.

The diagrams corresponding to lowest-order
corrections to the Born term are the same as
those of the Abelian theory, Figs. 1(b), 1(c), and
1(d). The new diagram in this order, Fig. 7, does
not contribute leading logarithms as the loop inte-
gration is infrared finite in this case. ' We find
the leading contribution to be

+2ln' —, (T. Tb f JLT„T, Ip'

—2ln" —
~ T, Tq T, T~ —. 3.1

Since fx: to-u this can be rewritten as

The first term in (3.2) is obtained from the t-chan-
nel term of (3.1) using the definitions of the
Casimir operator s'

a

bfabc» Tc CA Ta ~c

(3.3)

C~ In' —, A~ . (3.5)

The fourth-order corrections correspond to the
diagrams of Figs. 8 through 11. The contributions
of Fig. 8(a) correspond to second-order form-
factor corrections at either of the hard-gluon ver-
tices and give a contribution'

2 g 2 t 2

A, {al = —, -, (C„—CA) ln' p As .
~ 7T

(3.6a)

The contributions of Fig. 8(b) correspond to first-
order form-factor corrections at both hard-gluon
vertices and yield an additional

g 2 2

A,&„=,(C„—C„)ln' —,8w' p' (3.6b)

The diagrams of Fig. 9 are identical to Abelian
theory diagrams up to group-theoretic weights.
Letting each photon in turn be hard, and evaluating
the resultant diagrams we find

This simply corresponds to lowest order form-
factor corrections at the hard-meson vertex.

The second term, which is the sum of the s-
and u-channel pieces, can also be rewritten using
(3.3)

(3.4)

Thus, the entire second-order correction becomes

(c)

PIG. 6. PossiMe quark-quark scattering Born terms.
The variables s and t are defined with the conventions
of Fig, 3.. The fermion group matrices T, are shown
explicitly.

(o)

FIG. 8. Two "t-loop" corrections to the Born term.
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FIG. 9. Graphs that generate 2s, 2u, and ls-lu
Abelian corrections to the Born term. FIG. 10. 2s non-Abelian corrections.

+ ' t
A» =, ln' — [(1+~ )(T, T» T, }(T, T, T, }+( —,

' —$) (T, T» T,}(T, T, T» }
+ (- ~ +4) (T, T» T, }(T» T, T, }+(4 - -,) (T» T» T, }{T» T, T, }
+ (-,' - -;) (T, T T, }(T, T T, }+(1+-,') (T, T, T, }(T, T, T, }]—

C2 g2 t
3

2I -8
2ln' 2 Aa (3.V)

The diagrams of Fig. 10 can readily be seen to contribute leading logarithms only when the large mo-
mentum transfer is carried across the diagram by the gluon with no Yang-Mills vertex correction. This
is the extension to higher orders of the observation that Fig. 7 is nonleading and shows that again in the
non-Abelian case the single-hard-photon approximation correctly gives all leading logarithms. The con-
tributions of Fig. 10 are then

2 2

, ln'(t/P') ~ C~'As (3.8)

The contributions of Fig. 11(a) give leading logarithms when either gluon is hard and yield
2 2

Ajx(a) =
2 ln t P 2 Cg —C~ C~A~

For Fig. 11(b) only the gluon which has the vertex correction can be hard; the other choice gives nonlead-
ing logarithms (just as in the Abelian case). The net contribution of these terms is thus identical to that of
Fig. 11(a). The diagrams of Fig. 11(c) are examples of those which give nonleading contributions.

The diagrams of Fig. 12 constitute the only new feature of this calculation (everything else can be eval-
uated by inspection with the methods developed for our form-factor calculation). We find there is no sur-
viving leading logarithmic contribution from these diagrams. Let us examine Fig. 12(s) using the momen-
tum routings shown:

6".(.) =
(,,)., I(T.T»—T.}(T»T~}tf.. .

where

(3.10)

d4~ d
2~'p~'p- ~'p4~ p -~' pp ~+ ~~ p.~ p ~ ~~ p4 ~.pp. p

t '~'(~ —~)'(P, +~)'(P, +&)'(p, —&+~)' (3.11)

We notice that the substitution k —~, p, p4,
P, ——P, leaves the denominator unchanged but
converts the second term in the numerator into the
negative of the first. Thus, we can write

where K is a constant independent of s, t, u. Hence,
the contribution of Fig. 12(a) vanishes. The argu-
ment for Fig. 12(b) is identical.

Collecting all fourth-order corrections we find

I= F(s, t, u) —F(- t, —s, u), (3.12) A»=
( 4(C~ —C~) 2 ln (t/P ) As

where the quantity F(s, t, u) is obtained by eval-
uating the first bracket in the numerator of (3.11).
Using our usual techniques' we find

F(s, t, u) =Kin'(t/p') +nonleading logarithms,

(3.13)

2 2

A, +A„=—,4C&', in'(t/P') As,

A„= —,BC„(C„—C„) ———, 1n'(t/P') As,

A„=O,

(3.14)
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which gives a resulting fourth-order correction

—2C„;In'(t/P ) As . (3.15)

1 2g In'(t/P') C ' +3t 8~2 N t (3.16)

where the + represents only terms propor-
tional to C&' and higher-order Casimir operators.
The details of this discussion are given in Ap-
pendix B. It is quite plausible that the term de-

B. Comments on sixth-orcfer corrections to the Born terjcn

We notice that the simple form of (3.15) is due
to two important features:

(i) The fourth-order form-factor result gives a
simple form for the t-channel corrections of Fig.
11;

(ii) The vanishing of the contributions of Fig. 12
means that all the contributing terms can be
viewed as products of 8-, t-, and u-channel vertex
corrections to the effective four-fermion vertex
produced by extracting the single-hard-photon
line.

The first of these remarks is also true in sixth
order, but the second no longer applies. Identify-
ing a single hard gluon line labels each segment
of fermion line as initial state if it occurs before
the hard-gluon vertex or final state if it occurs
after that vertex. In sixth-order corrections there
are leading logarithmic terms arising from dia-
grams where more than two fermion lines are
connected via tri-gluon interactions. This de-
stroysthe simplepattern denoted (ii) above. We
have not calculated these diagrams, but we have
examined their group structure. Combining these
terms with others we obtain the result

noted + in (3.16) is in fact zero. We have not,
at this stage, carried out the calculation. (Using
the method given in Ref. 1 this would be a
"straightforward but tedious" exercise. ) An amus-
ing exercise which we found helpful in reach-
ing this conclusion is to consider the rather un-
physical problem of the strong (non-Abelian) cor-
rections to electromagnetic (Abelian) quark-quark
scattering. Dynamically the problem is identical
to the one discussed here (only as regards leading
logarithms, of course). The only difference is
that the single hard vector meson couples to the
fermion line with a group matrix 1 in place of T,.
This simplifies the group structure of each dia-
gram sufficiently that one can more readily exam-
ine the question of possible cancellations. Through
fourth order the net result is the same in this case
as for the fully non-Abelian case. This is no
longer true in sixth order, but the exercise is
still instructive in that case.

IV. SUMMARY

We have reviewed the leading logarithmic cal-
culation of wide-angle scattering in Abelian gauge
theories to all orders. We have then carried out
a calculation of the fourth-order corrections to
the Born term in non-Abelian gauge theories. We
have checked that certain cancellations occur in
sixth-order corrections, but we have not per-
formed a complete calculation. However, one is
left with the strong possibility that the leading
logarithms sum to give a severely damped con-
tribution both in Abelian and non-Abelian theories.
A number of questions remain that must be ex-
amined before one draws physical conclusions
from these results. Principal among these are
the behavior of nonleading logarithms and the
question of whether these leading logarithms are

. p)+r pger-k

(a)
P2 p4+k

(a)
(b)

(b)

(c)
FIG. 11. (a) and (b) The 1t-1s and 1t-1u corrections;

(c) examples of graphs giving nonleading contributions.

P~
(c)

FIG. 12. (a) and (b) Thoro loop corrections that cannot
be classified as belonging to any of the types described in
Figs. 8-11; (c) the hard-gluon-reduced form of Fig. 12(a).
Vfe. call it a "pyramid graph. "
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removed by inclusion of real emission of massless
vectors as they are in the Abelian case. Cornwall
and Tiktopoulos' have given speculative answers
to both these questions which lead to a number of
very strong conclusions. However, we feel that
more systematic calculations (or rigorous general
arguments) are needed before such conclusions
can be justified. Hence we present this work as
simply a calculation of leading logarithms, which
suggests that an interesting feature of Abelian
gauge theories may be shared by the non-Abelian
theories.

APPENDIX A: EVALUATION OF FIG. 1(c)

We consider first Fig. 1(b). We will examine
this first by standard Feynman parameter tech-
niques and then briefly discuss the application of
our simplified techniques. The amplitude for Fig.

l(b) is

„., (r.(tt, S-)r.}(r (tI. It)r'}
(2v)' k'(k +p, —p, )' (k +p~)' (p, —k)'

(Al)

The numerator factors in (A1) are enclosed be-
tween projection operators

J'(p.)(" }&(p,) 8p.)( "}&(p,),
where

p; p(p;) = p(p;) p; = 0(pq') .

Since we are looking only for leading terms we
will drop any numerator term that is manifestly
of order P~'. Using the Feynman parameter tech-
nique on (Al} and setting all P equal for sim-
plicity gives

where

g'S) „,k,„„6(1g; n;)-(r.N, r ~}(r"Nr'}
(2x)' ' ' (k"—[n,a, t+ a, a,s+(a, +a, ) (n, + a,) p']}' (A2a)

and

Nq =(Ps(1 —a2 —a ) + n4tt4+ a2Pq —tt }

N2 =(p4(1 —a4 —a2) + gl 2+ a~ps+I }

(A2b)

(A2c)

The numerator terms linear in k' vanish by symmetry and the term quadratic in k' gives no leading log-
arithms (it is only an infrared-finite part of the integral). Thus, we find

Z' ' 6(1-Z )(y.N, y }(y"N.y'}
(2m)' i ' ' (n, a, t+a, a,s+(a, +a, ) (a, + a,)p'}' (AS)

where N, and N2 are equal to iV, and N2 defined in (A2b) and (A2c), respectively, with k' set to zero.
Naively examining the denominator would suggest that one should get terms of order (1/st) ln't from each
of the regions az-1, a„e„a4-0; n, -l, e„a„a4-0; n, -1,e„u„n4 0, and e4 1, a„a„u, 0. How-

ever, one readily sees that in the last two cases there is a. numerator factor 1 —ns (or 1 —a„respectively)
which will remove one power of a logarithm. Thus, the leading logarithmic contributions come only from
Gz 1 that is, the region k -0, or from n, - 1, that is, k -—q. One readily sees that each of these re-
gions corresponds to one hard gluo-n and one soft-gluon exchange. Furthermore, the numerator in (AS)
becomes

{yp y&}{yg~y8}=s{y„}{y"}forn, -1, a, ns, n4 0

(yg, r8}(r"tt.r'}=s(r }(r"}f»a. -l, a, n, a.-o.
This shows that the leading logarithmic terms from the evaluation of (AS) all have a simple numerator
structure identical to that of the Born term. This result does not agree withthatof Fishbaneand Simmons'
who obtain a much more complicated form. Correcting a small algebraic error in their Eq. (2.16) we find
that their result [their Eq. (2.18)] is identically zero. (The contributions which they isolate do correspond
to the single-hard-gluon region, though they do not seem to realize this fact. } One obtains the result of
HHS by straightforward integration of (AS).

We can readily obtain the same result by the method of Ref. 1 where we seek to isolate the regions of
momentum space which give leading logarithms by using the Feynman parameter technique on only three
denominators at a time. We find
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(2x)' ' ' ' ~ " (k' —n q —n,p4+ a,p, )' [k"+ n, (n, + a, ) p'+n, as]'
N(k' - 0)

(k '+ q —a,p, + n,p, )' [k"+ n, n,s + n, (a, + a, ) p']'

N(k'-- p4) -0
(p~ —k +a2q+ n p~) [k + ain t+ns(ai+n )p ]

N(k -p,)-0
(p, +k' —a,q+ a,p, )' [k"+ n, n, t+ n, (a, + n, ) p']')

' (A4)

The four terms correspond to isolating the denom-
inator k", (k'+q)', (p, —k')', (p, +k')' in that order.
Each cubic denominator gives double logarithms
only for one possible choice of parameters. The
notation N(k'-x) means the numerator in (Al) is
evaluated with the substitution k' =x, since that
corresponds to the singular region of the cubic
denominator in that term. The first two terms
then are clearly one-hard-gluon (and one-soft-
gluon) contributions. The second two terms give
no leading logarithms as the numerator vanishes
in the singular region of the cubic denominator.

The analysis of Fig. 1(d) proceeds in exactly
the same fashion and one can once again convince
oneself of the validity of the single-hard-gluon
approximation.

APPENDIX B: CALCULATION OF THE SIXTH-
ORDER CORRECTIONS

1. Classification of the eighth-order graphs

In this appendix we present a calculation of the
sixth-order corrections to the Born term, and
show that the exponential series breaks down. We
have found that to exhibit this it is not necessary
to carry out an explicit computation of all the con-
tributing graphs.

We sort all graphs into two classes. Shrinking
the hard-gluon exchange to an effective four-fer-
mion vertex we identify these as the following:

I. Tsvo-by-theo graPhs, in zohich any complex
of exchanged gluons connects only Aeo fermion
lines. A complex of gluons means gluons which
are interconnected via tri-gluon interactions. This
class includes graphs in which there are more
than one such complex connecting different pairs
of fermion lines. Some examples are shown in
Fig. 13.

II. GraPhs in chick more than two fermion lines
are connected by a single comPlex of gluons. Fig-
ure 12 is an example of such a graph in sixth order
which we refer to as a pyramid graph (a rather
loosely chosen name). The eighth-order graphs
shown in Fig. 14 are all formed by adding a single
disconnected gluon to Fig, 12. Also in this class
are the graphs of Fig. 15 which we refer to as non-
planar & graphs.

Our analysis proceeds by examining first the
contributions of all graphs of class I in some de-
tail. We find they give a contribution of the cor-
rect form for the continuation of the exponential
series of (1.1) plus an additional piece 2h due to
the nonexponentiation of the form-factor result,
and some other pieces of distinct group structure.
We then examine the graphs of class II and show

that they also have a distinct group structure from
the term 4 and hence, cannot in general cancel
this piece.

:
2,. Two-by-two graphs-class I

We find it convenient to subdivide the graphs of
class I into four subclasses, which we identify

+ CROSSINGS

+ CROSSINGS

(b)

+ CROSSINGS

FIG. 13. Examples of "two-by-two" graphs. FIG. 14. Sixth-order "pyramid graphs. "
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+ +

FIG. 15. Nonplanar H graphs.

x =
3, , in'(t/P') (B1a)

For graphs of class I (i) we can use the form-
factor results directly to obtain

as the following:
(i) graphs with three t-channel loops;
(ii) graphs with two t-channel loops;
(iii) graphs with one f-channel loop;
(iv) graphs with no t-channel loops.
We express all contributions in terms of a weight

which multiplies the factor +4~ where

(for the choice A =P„D= P3, B= P„and C = P,).
The second diagram can be cast in this same form
by commuting two of the group matrices corre-
sponding to t-channel gluons. The additional piece
coming from the commutator is canceled by the
remaining two graphs. (This is, of course, just
the second-order form-factor correction pattern. )
The graphs of Fig. 16(b} add in a similar fashion,
as do those of Fig. 16(c). Evaluating each set and
adding we find for Fig. 16 the contributions, ivith
x defined by (Bla),

w, , =- 8(C„-C~) (Blb)
2l

(C„-C„}'(T.T, )(T.T, j —+ ~

w„= —3.8C~(C» —Cx)' + (B2)

where the symbols + ~ ~ indicate terms which do
not involve the quantity C„. These may include
terms which cannot be reduced to the simple
(T, ) (T, j form of the Born term, or they may be
proportional to A& but with a proportionality con-
stant depending only on C& and a higher-order
Casimir operator which we write as K' The
graphs involved are those of Figs. 16 hnd 17 with
all suitable choices of the labels, that is, A and D
can be 1 and 3 or 2 and 4 (in either order). For
each choice of A and D there are two possible
choices for B and C. If we look at the diagrams
of Fig. 16(a) we find that the first diagram is
clearly proportional to (C„-C„)'(T, T, ) (T, T, j

This contribution includes sixth-order form-factor
corrections at either hard-gluon-fermion vertex
and also fourth-order corrections of one vertex
multiplied by a second-order correction of the
other.

Turning now to graphs with two t-channel loops
we find

when the single gluon is in the s channel and

(C„-C„}'ET.T, )(T, T.} , + ~ ~, (—B4)

when the single gluon is in the I channel. The
graphs of Fig. 17 give

8(3l)x, g'
(2(}2 E s I u2 (CE-C~)'IT. Tb)(T. T5)—'+''' (B6)

for a single s-channel gluon and

2

(B6}

for a single u-channel gluon. Combining similar
s- and u-channel terms yields a commutator,
(T, T, ) ([T,, T,]}=-C„(T,) (T, $, and hence, the
sum of (B3) through (B6) gives the result stated
in (B2).
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A D A D A D A D

G G G G

C 8 C 8 C 8

D A D A A

(b)

C B C B

D A D A

(c)

C B C 8 C 8

FIG. 16. Reduced graphs representing those three-loop corrections to the Born term which have been explicitly com-
puted in Appendix B. Case where two loops are in one sector of one channel.

The graphs with one t-channel loop are again
those of Fig. 16 and 17, but now with the choices
A and D equal to 1 and 2, 3 and 4, 1 and 4, or 2

and 3. In addition, we must include the graphs of
Fig. 18, where one gluon is exchanged in each of

the three channels. It is again a matter of straight-
forward computation to obtain

w, &
= 3.8 C&' (C„—Cz) + ~ ~ ~ .

The graphs of Fig. 16 give

(C» —Cg) {T,T~ T, I((T, T~ T, ]+(T T~ T, j) + ~ ~ ~ .

The first term is the 1t, 2s contribution while the second one is the 1t, 2u. Similarly, those of Fig.
17 contribute

(C» —C~) {T, T~ T, )((T, T~ T, )+ (T, Tt, T, )) —+ (B9)

The contribution from Figs. 18(a) and 18(b) are

(C» —C„)(T, Tg T, ) ({TgT, T, }+(T,T, T, ))—+ (B10)

and

—12»(C» —C~) (T, T~ T, l ((Ty T, T, }+(T~T, T, )) —+ (B11)

respectively. Adding (B8) and (B9) we get, after
performing various commutations,

3!»(C» —C~) (8{T,T~ T~) (T, T~ T, )

12C+~ (T, T~ j (T, T~ j
+8C„'{T.) {T.)+ Z) ~, , (B12)

FIG. 17. Case where two loops are in the two different
sectors of the same channel.
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(0)

(b)
3

FIG. 18. Case where one loop is in every channel.

where

E 4jTi, T ) (Tq Tq ) if& q if

Adding (B10) and (Bl1)we obtain

(B13)

+ 3!x(Cii —C~) (8(T, Ti, T, j ILT, T, T, j
+»C~(T. »'l(T. Ti )

+4C~' (T, ) fT, j+ F) —.(B14)

3. Graphs of class II

Addition of (B12) and (B14) gives (B7).
The graphs with no t-channel loops can be eval-

uated similarly. One readily finds that the com-
mutators which arise on adding s- and u-channel
graphs yield only terms proportional to C& or a
higher-order Casimir operator times the Born
amplitude, or terms such as the F of (B13) above.

factor corrections. We have verified this state-
ment by examining the group-theoretic weights of
these diagrams. It is simpler to do this first for
the rather unphysical problem of strong correc-
tions to electromagnetic quark-quark scattering.
The dynamics of this problem is identical to the
one we are studying, the only change is that the
single hard vector meson couples with a factor 1

replacing the group matrix T, . This simplifies the
group algebra. In lower orders it restores the
property of the purely Abelian theory that there is
an exact cancellation between s- and u-channel
contributions and the full correction comes from
the t-channel form-facter corrections. A similar
simplification results for sixth order. The graphs
discussed previously add up to

C '
(1)(1}+terms proportional to ( T, )( T, j

and f"'f' 'JT, T, ) (T, T~ f .

(B15)

The graphs of Figs. 14 and 15 remain to be dis-
cussed. The graphs of Figs. 14(a) and 14(b) do
not give leading logarithmic contributions. The
argument is the same as that used to eliminate the
pyramid graphs (Fig. 12) in fourth order. None of
the remaining graphs [Figs. 14(c) and 15] can be
reduced to give contributions which cancel the
additional (C» —C„)C„'(T,) (T, )term of the form-

The additional graphs all give contributions which
have group weights which vanish or give terms
corresponding to the extra terms in(B14). Forthe
real problem with a hard exchanged gluon the situa-
'ion is similar. The additional terms look somewhat
more complicated but again cannot be reduced to
terms proportional to C~.
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