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We study the high-energy behavior of the elastic scattering of two isospin-2 fermions interacting through
the Yang-Mills field. The Higgs mechanism is invoked so that there is no infrared divergence. In the sixth
order, the amplitude for isovector exchange is found to behave as sin's multiplied by a function of t, while
the amplitude for isoscalar exchange behaves as s lns multiplied by another function of t. These results are
qualitatively different from the answers previously given in the literature. In particular, there is no
contribution to the leading terms from large transverse momentum transfers; this is the reason why we obtain
one less factor of lns in sixth order.

I. INTRODUCTION

Recently the study of the high-energy limit of non-Abelian gauge fields was initiated by Nieh and Yao.
They consider the theory where the Yang-Mills boson' interacts with a fermion doublet and study the fer-
mion-fermion elastic scattering at high energies. To avoid the infrared problem, a complex scalar doub-
let is introduced and the Higgs mechanism' is invoked to give masses to the vector mesons. In terms of
the usual Mandelstam invariants s (the square of the center-of-mass energy) and t (= —Z2, where Z is the
momentum transfer), Nieh and Yao study the limit s -& with t & 0 fixed and state that in sixth-order per-
turbation theory the amplitude behaves as s ln's and that in eighth order the amplitude behaves as s ln's.

The purpose of this present paper is to demonstrate explicitly thai in sixth order this previous result is
incorrect. Instead we show that, for s - with fixed t +0, the sixth-order non-spin-flip amplitude is
given by

SR ' -—2 'g' m ' s [(ln's —vi lns) v ' 7 ' f,(t ) + 3wi lns I(' I "f2(t )],
where

f,(t) =()('+ Z') (1.2)

and

f (t)=(—' ' 6t')ttt —— +t' )t + — +t'
I(2v)' 2 2

2 2

In (1.1)-(1.3), g is the coupling constant, 2)2 is the mass of the fermion, )( is the mass of the Yang-Mills
boson, v' ' and 7 '~ are the Pauli matrices for isotopic spin of first and second fermions, and I ' and
I ' are the corresponding 2 &2 unit matrices.

For comparison, the second-order non-spin-flip amplitude, which comes from the Born diagram of
Fig. 1(a), is

(2) 2 3g2~ 2s r(1).r(2) (~2+y2) 1
t

and the fourth-order non-spin-flip amplitude, which comes from the two diagrams of Fig. 1(b), is

3)t'(' -2 'g'2)2 's[2(21ns —)(i) r(' 3 "+3@iI(' I("] k —— +A2 k + — +A2
(2)1)3 2 2

(1.5)
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We make the following remarks about the result
(1.1):

l. In this final result all integrals over the
transverse momenta converge. Therefore, all
lns factors arise from integrations over longi-
tudinal momenta. This is similar to the situation
in quantum electrodynamics. '

2. In order to get (1.1), Feynman diagrams that
contain the scalar particle must be included. In
particular, the scalar particle is needed to pro-
duce the factor &'+ 4' in the isovector amplitude
(1.2). Thus this isovector amplitude vanishes
when t= X'. This is similar to the situation for
fermion exchange in quantum electrodynamic s.'

3. Neither the Higgs ghost nor the Faddeev-
Popov ghost' contribute.

4. We particularly wish to call attention to the
last term in the isoscalar amplitude (1.3). The
analogous term in quantum electrodynamics ap-
pears when three photons are exchanged between
two electrons. However, in that case there is more
cancellation among diagrams and the sum of the six
graphs with three photons exchanged is of order s in-
stead of s lns. This is a profound difference between
the cases ofAbelian and non Abelia-n gauge theories.
On the basis of this lack of cancellation of loga-
rithms in the non-Abelian case, we speculate that
in the leading-logarithm approximation the Yang-
Mills theory is unitary in both the s and t channels.

II. METHOD OF CALCULATION

The relevant Feynman rules for this theory are
given in Fig. 2. We operate exclusively in
't Hooft's A gauge' where there are no k&k, terms
in the propagator for the Yang-Mills field. In this
gauge the propagator for the Yang-Mills boson is

geabc [(Pl P2) pgpv + (Pb P3)fl gvp+ (pb —py)v gp p]

(2 5)

where e,&, is the totally antisymmetric symbol
with e,» =1; the fermion-boson vertex

2 &g7a'Yp p

where the Pauli matrices 7; obey

2=~a = 1~ Ta Tg = 6~pc Tc

the scalar-boson vertex

4~$pv ~ay j

and the four-boson vertex

[bab bed (2' vgp a gp pgva gv agvp)

(2.6)

(2.7)

(2.8)

+ bac bbd (2' p gva gg v gp a gp a gv p )

+ &„&„(2g„,g, v
- gv „gp —g„~g, )] . (2.9)

The derivation of these Feynman rules from a
Lagrangian is a somewhat subtle process and
many more propagators and vertices are needed
for a complete theory '' than are given here.
However, for sixth order, it may be shown that
none of the omitted propagators (such as the Higgs
ghost or the Faddeev-Popov ghost) and the asso-
ciated vertices contribute to (1.1).

We will study the sixth-order scattering ampli-
tude by means of the momentum-space techniques
which have proven useful in previous studies of
massive quantum electrodynamics. ' For a de-
tailed discussion of these methods, we refer the
reader to Ref. 9.

—&~aag~v
Q2 g2 +$6 (2.1)

where a and b (= 1, 2, 3) are isotopic-spin indices
and V, and v (= 0, 1, 2, 3) are space-time indices.
[The metric is (+ ——-).] The fermion propa-
gator is

f+m
Z 2 —rpz +it

where g=yvkv and Dirac y matrices obey

[y„, y,] =2gv.

(2.2)

(2.3)

We also need the propagator of the scalar field
of mass M: (b)

2

jp (2.4)

The vertices which we need are (Fig. 2): the
three-boson vertex

FIG. 1. (a) The Born approximation. (b) The two .
fourth-order Feynman diagrams which contribute to
leading order as s
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YANG- MIL LS BOSON
PROPAGATOR

FERMION PROPAGATOR
4+ m

—fh +LE

SCALAR PROPAGATOR k~-M +i~

YANG - MILLS
3-VERTEX

g abc ~Pi Pp~p9+&

+ ~Pp P3 p 9'
~P3 P1 p9pp.

FERMION- BOSON
VERTEX

gl 7ggp

YANG —MILLS
4-VERTEX

. aQ
LQ ucb &cd (29pp Qpa Qpp Qpa Q~a 9pp)

+~ac ~bd QQ~pg~a Qpg 9pa gpa g„p }

+~ad ~bc(29pa gyp Qpugpa Qppgua},

SCALAR- BOSON
VERTEX

[9 Xg pSab

FIG. 2. The Feynman rules for a Yang-Mills boson interacting with a fermion doublet which are needed to study the
high-energy behavior of fermion-fermion scattering in leading order.

The essence of the momentum-space method is
that in the s - limit we choose a coordinate sys-
tem where the large components of the momenta
of the incoming and outgoing particles are along
the z axis. Let r, +~, and ~, —r, be the momenta
of the incoming fermions, r, -r, and r, +x, be
those of the outgoing fermions as shown in Fig. 3,
then we have approximately

r, -((o, (o, 0},
r, -((a, —(u, 0),

(2.10a}

where co =-,' Ws. In such a coordinate system, FIG. 3. The kinematics for fermion-fermion scattering.
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x, =(0, 0, r~) . (2.10b)

We make use of (2.10) by introducing the vari-
ables'

and

k+ = ko+k3

k =ko —k, ,

(2.11)

so that

dk dk, = ~ dk, dk

Thus

(2.12)

x, =2++0 —,x, =0

x„=O —, x, = 2~+0 (2.1s)

x, ~=0,
and the basic approximation is to drop r, , r„,
and r» wherever they occur in the Feynman in-
tegral.

We will also impose a cutoff k~,„on all trans-
verse momentum components which appear in the
Feynman integrals in the intermediate stages of
the calculation, and for each Feynman diagram
we compute the s -~ behavior in the presence of
this cutoff. For the individual Feynman diagrams
the remaining integrals over transverse momenta
will not converge when the cutoff is removed.
However, we find that after all contributing dia-
grams are added together the cutoff may finally
be removed. This situation is entirely similar to
the case of quantum electrodynamics.

The twenty diagrams which contribute (with the
cutoff) are given in Fig. 4. Of these diagrams we
need only consider explicitly diagrams 1, 3, 7,
15, and 19 since the remaining diagrams are ob-
tained from these by symmetry considerations.

In the final answer, the real part of the ampli-
tude is larger than the imaginary part by a factor
of le. We will compute both the leading real and
the leading imaginary parts. The result (1.1)
should be interpreted in this sense.

We remark that in the diagrams of Fig. 4 there
are no diagrams with four boson vertices. In
particular, the diagram of Fig. 5 does not con-
tribute to leading order with a cutoff imposed. It
is known that, without a cutoff, by itself the dia-
gram of Fig. 5 is of order s, but that this un-
physical behavior is cancelled by similar s' terms
from diagrams 1 and 2. With our momenta-space
approximation technique these terms, which can
never appear in the final answer, are suppressed
from the beginning. This situation is again en-
tirely similar to the case of quantum electrody-
namics. '

12

6 I
14

IÃ

17 18

20

FIG. 4. The twenty sixth-order Feynman diagrams
which contribute to leading order with a transverse
cutoff. The s channel is from left to right.

FIG. 5. A Feynman diagram which does not contribute
to leading order with a cutoff imposed in momentum
space even though without the cutoff it is of order s2.
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III. FEYNMAN DIAGRAM 1

From the Feynman rules of Fig. 2 we find that the amplitude for Feynman diagram 1 shown in Fig. 6 is

d4k d4k
cjoy(6) (1)4 R 1 ~ ~D -1

(2~)' (2m)4
(3.1)

N, = [u(r, —r, ) y~T,"(g, —g, +m) y„T,' u(r, +r, )] [u(r, +r, ) y, T,' (P, +k', +m) y z& u(r —r )]

xe„~[(2k,—k, +r,),g»+(2k, —k, +r, )&g~, +(-k, —k, —2r, )zg&, ]

xe„,[(-k, —k, +2r, )~g~+(2k, —k, —r, ) zg, ~+(2k, —k, —r, ),gp q] (3 2)

and

D, = [(r, —k,)' -m' + ie][(k, —r, )' —X' +i&][(k, —k, )' —A.
' +i@]

&[(k, +r, )' —&'+is] [(k, —r,)' —A.'+ie] [(k, +r, )' —A,'+is] [(r, +k,)'-m'+is] . (3.3)

We first use (2.13) to approximate D, as

D, D, =[(--2&v+k„)k, —k,~ -m'+is][k„k, -(k»- r~)' —X'+is]

X[(k,+ —k2+) (k, -k2 ) —(k,z —k2~) —32+is][k,+k, —(k, ~+r~)~ —%~+it]

&&[k,+k, —(k» —rj)' —A.'+is][k,+ k, —(k»+r~)' —&' i+]e[(2~+k, ) k, +k, 'j-m' i+a] . (3.4)

%e will then carry out the k„and k,+ integrations
by closing on the poles

r2-k(

k,+=C,(2~+k, ) ' (3.5a)

and

k„—k2, =C,(k, —k, ) ', (3.5b)
r-k

l I

with

(3.6a)

C, =(k,~ -k,~)'+A.' —ie . (3.6b)

Define

q, = —k (3.7a)

kg+ r] r]-kp

q, k, -k, (3.7b)

Then the integral over k, and k„gives zero un-
less

r&+k&

0&/~~ 0+$2~ Qy+Q2 ~2~ (3.8) FIG. 6. Feynman diagram 1.
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Therefore, we obtain

3R(6) ( )ag6(2(d) I klI- 21. dq dq N D Id
2(2)1)2 2(2)T)' (3.9)

where

D, =q2[(k2, +r~)'+)I'][(k2, —r, )'+)('](2(dqI -k,~2-ma+i@)

x[-q, C,q, ' —(k, I —rI)2 —12+is][-qI C,q, ' —(k» —r~)2 —)12+is] . (3.10)

We must now approximate the numerator. First of all the isospin factor is reduced using the identity

ebcd ~ace (6ba 6de 6be 6da)

to obtain

(1) T(1)7(2) T(2) 6 E' = ( T~(1) ~ 7.(~ 7 (2),7 (2) 7 (1) 7 (1)7'(2) ~(2) 5

Now using (2.7) we obtain

T~(1) .~~(r) 7 (2) ~ T~(2) 9 y(&)1{2)

(3.11)

(3.12)

(3.13)

and
r(1) ~(1) r(2) 7(2) 3 I(1)I(2) ~2(7(1) T(1) r(2) T(2) ~ T(1) ~(1) T(2) ~(2)+ r(1) r(1) r(2) ~(2)]7g TQ TQ Tg

31(&)1(2)+2~(&).~ (2) (3.14)
and hence

7 7' T T 6 6 =QT 'T —617z Ty Te Td 6y&g Gag(-.

We now approximate

p'2 —k'I+m-), p'2+$2+m-)"2 .

(3.15)

(3.16)

Then we anticommute r'2 and $2 past the y matrices. The terms where $2 or yb act on the free spinors may
be dropped to leading order by use of the Dirac equation. In this way we may expand (3.2) into a sum of
nine terms. Two of these terms may be shown not to contribute and we are left with

E, -4(2T (') F(') 6I(')I('-)u(r, —r, ) you(r2+r, ) u(r, +r, ) yt, u(r, —r, ) i)i„ (3.17)

where

ÃI = r2 r, (-k, —k, —2r, ) (- k, —k, +2r, ) +r, (2k, —k, ) r, (-k, —k, ) +r, (-k, —k, ) r, (2k, —k, )

+r, (- k, —k, ) r, ~ (2k, —k, ) +r, ~ (2k, —k, ) r, ~ (- k, —k, ) +r, ~ (2k, —k, ) r, (2k, —k, ) +r, ~ (2k, —k, ) r, ~ (2k, —k, ) .

(3.18)

To simplify N, further we use

u(r, —r, ) yt, u(r2+r, ) r, ),m '5-. . . u(r, +r, ) you(r2 —r, ) -r, ),m
I 5. . (3.19)

where &, , is 1 if the spin of fermiona is the same in the incoming and outgoing state and is zero if the
spin of the fermion is flipped. Therefore,

~ -2(27" T("-6f"~I'")sm-'6
2 2

Moreover,

ÃI =(k, +k, +2r ) (k, +k, —2r, ) r, r,
+ 2[r, (2k, —k, ) r, (-k, —k, ) +r, (- k, —k, ) r, (2k, —k, ) +r, (2k, —k, ) r, (2k, —k,)]

=(k, +k, +2r, ) (k, +k, —2r, ) r, r, +2[r, (2k, —k, ) r, .(-k, —k, ) +r, (k, —2k, ) r, ~ (2k, —k,)]
-2(d {(k„+k2+)(k, +k, ) —(kII +k»+2r~) (kII +k» —2rI)

(3.20)

+ [(2k„—k,+) (- k, —k, ) + (k„—2k„) (2k, —k, )]]
-2(d'(Caqa '(-q, —2q, ) —(k»+k2~+2r~) (k»+k» —2r, ) +[2C q, '(q, +2q, ) +Cq, '(-2qa-q, )]j .

(3.21)
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The only regions of the (q„q,) space which can contribute to the maximum number of logarithms in (3.9)
(i.e., ln's and ilns) are

and

Q&q, «q «2(d (3.22a)

(3.22b)

(3.23)

which is independent of q, and q, . Then, since

Q&q «q
But if (3.22b) holds, the factor D, ' (3.10) behaves as q, 'q, which can give two logarithms only if multi-
plied by q, 'q, '. Suchatermwith four factors can clearly never be produced by N, of (3.21). Therefore,
we only need consider the region (3.22a).

When (3.22a) holds, D, ' of (3.10) behaves as q, 'q, '
Fu. rthermore, the second term in (3.21) behaves

as q,q, ' which does not produce two logarithms. Thus N, may be approximated as

N, -2&cP[- C, —(k» +k,i +2rd) (k,i +k» -2ri)]

2ld 02

dq, q, '(2~q, —k»'-m'+is) '- —(ln's —2m' lns),
0 0

we obtain the final result:

K ' -2 'g'm 's(ln's —2nilns)(2T ' r ' -6I 'I '
) 5 i5 'i 'i K D

d2k
1 lb 1 2 ~ a (27/. )3 (2p)3 1J Ii

where

D,i = [(k,d
—r i)' + &'] [(k,~ + ri)' + X'] [(k,i —r i)' + X'] [(k,i + r i)' + A']

(3.24)

(3.25)

(3.26)

E» =(k» —k»)'+X'+(k, d +k»+2ri) (k»+k» —2ri) . (3.2V)

IV. FEYNMAN DIAGRAM 2

Feynman diagram 2 as given in Fig. 7 is obtained from Feynman diagram 1 by s —u interchanged. Its
calculation differs from Feynman diagram 1 in only two respects. First of all, the isospin factor is

7a rb edbc haec Td ~e Ta rb (5da 5be de ba) Td ~e(1) (Z) (2) (2) ( i) ( i) (2) (2)

= 7-( ) T(»7-(» 7( ) 9I(»I(»

=-6I ' I ' -2r' ~ r (4.1)

Secondly, (3.24) is replaced by

02

dq, q, '(-2+q, —k»' —m'+is) '- —(2~) '21n's . (4 2)

Therefore

3m&' + 5m&')-2 'g'm 's 5 i6, [6I&'iI&')7fglns+2r i» y&»(ines 7fbins)]» ai ~ D
d'k d'k

1 2 lb' 2 ~ 2 (2w)' (2s)'

(4.3)

V. FEYNMAN DIAGRAM 3

The amplitude for Feynman diagram 3 given by Fig. 8 is

~(6) 2 6 dk, dk, ND
2 (2n)4 (2w)'

where

&, = [u(r, +r, ) y, v, ' (y', —g, —g, +y', +m) y„r,' (y', —td', +m) y„r,' u(r, r,)]-
x[u(r, —r, ) yq T,' (p', —g, +m) yp 7'd' u(r, +r, )]
X fade [gap( k& 2ka ri)p+gpp(k, —k, + 2r, ), +g»(2k, +k, —r, )p]

(5.1)

(5.2)
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D, =[(r,—k,)'-m'+is] [(r, —k, —k, +x,)' —nc'+i@][(k, +k,)' —A.'+is][(k, —r, )' —X'+i@]

x[(k, +r,)' —A.'+is] [(k, —r,)' —A'+is] [(r, —k, )' —m'+i@] . (5.3)

We use (2.13) to approximate D, as

D, -3, =[-(2&@—k, ) k, —k»' —m'+i@] [-(2v —k„—k,+) (k, +k, ) —(k»+k, ~ —r~)'-m'+ie]

&[(k,++k,+) (k, +k, ) —(k»+k, ~)' —A.'+i'm] [k,+k, —(k» —r~)' —X'+ie]

x[k~+k2 —(k2q+r~) —A.'+ie][k2+k, —(k2~ —r~) —A. +i@][-k2+(2z—k, ) —k» -m'+it] . (5.4)

and

k„=—C,(2+ —k, )
' (5.5a)

We will carry out the k„and k„ integrations by
closing on the poles

mion. Therefore, only the poles (5.5a) and (5.5b)
need be considered.

Define, instead of (3.7),

(5.7a)

or

k„+k„=C,(k, +k, )
' (5.5b)

and

q, =k, +k (5.Vb)

k„+k2+=2(o+C~(k, +k, ) ', (5.5c)
Then the integral over k,+ and k„gives zero un-
less (3.8) holds. Therefore, we obtain

with

C, = (k,~ +K»)'+ A.
' —ie (5.6a)

and
2

C, =(k, +k,~ —r )'+m' —ie . (5.6b)

However, the pole (5.5c) is suppressed by the fac-
tor in the numerator coming from the upper fer-

k-r
I I

rp-k) -kg+ r(
k

-k -r2 I kp-r)

FIG. 7. Feynman diagram 2. FIG. 8. Feynman diagram 3.
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Nt(6) ~ 6 2+ -s
2 2(2m)' 2(2m)'

where

D, =q,[(k,~+r~)'+&'][(k» —r~)'+&'][-q, C,q, '-(k» —r~)'-X'+is]
x (2 &or&, -k, ~' -m 2 + is) [-2 uq, —(k,~ +k» —r~)' -m' + is] .

We next reduce N, . First we note that

(1) 7.(1) (1) (2) T(2) ~ ( 7( 1) 7(1)7. (1)+ 2g T(1)) g ( T(2) T 2 +2

7(»7-(»+27(»7-( ) 7 ( )g I( +27.(»g 7-( ) 7-(»7y 7g Tg Cg&gTg 7y + 7y Tg Tg 6ya+ + 7g E&~g Tg Ta

=2i( 7&'&/&'&7 &2&r&»+2/~'&. 7&2&+8I&'~I&2&)

6;«(i) I(2)

(5.8)

(5.9)

(5.10)

(5.11)

with

Ã, =2(u'(-2k, —k, ) =2~'(q, —q, ) .
Using this numerator with the approximate denominator D, (5.9) in (5.8), we see that both the regions

0&q «q «2a and 0&q, «q, «2~ contribute. Therefore, using (3.24) and (4.2), we obtain

K '~-+2 'g'm 's(3I~' I~'~) 5. ..5, ,

(5.12)

2 2

x
(

",
(

', [(k,~+r~)'+X'] '[(k,~ —F~)'+A']

where to obtain the last line we used (3.14). Therefore, if we also approximate f, —g, —p', +f', +m by p,
and anticommute f, to the left, approximate f', —f, +m by g, and anticommute p', to the right, approximate
f', —g, +m by f, and anticommute f', to the right, and then use (3.19}, we find

6& I I 4s Ps y 1 2 2 ~ Nj

&&(—,'(ln's —2ni lns) [(k» —r~)'+ A'] ' —~ ln's[(k» +k»)'+ &'] ') . (5.13)

VI. FEYNMAN DIAGRAMS 4, 5, AND 6

Feynman diagram 4 is the same as diagram 3 reversed right for left. It is also obtained from diagram
.3 by s u. It is easily verified that the isospin factor for diagram 4 is the same as that for diagram 3

[namely, (5.10)]. We thus may obtain the expansion for R~'~ from (5.13) by the replacement

s-,'(ln's —2si lns) ——s-,' ln's .

Therefore,

K ' + 3g ~' ——2 ' g p@ 's 5 ~ 5,.(3I ' I~' ) wi lns

2 2

x f[(k» —r~)'+X'] '+[(k,g+k2~)'+z'] (8 2)

(8 3)

Feynman diagrams 5 and 6 are Feynman diagrams 3 and 4 turned upside down. Therefore, the sum is
obtained from (6.2} by the replacement 1 —2 everywhere, and we find

K "+m "-SK(" +5K "
5 6 3 4

VII. FEYNMAN DIAGRAM 7

Feynman Diagram 7 is given in Fig. 9. The amplitude is given by

( ) i '
6 d k, d k, D

2 (2s)4 (2s)'

where

('7. 1)
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and

N, = [u(r, +r, ) y„7,' (p', —ti, —k', +m) y, T, ' (y', —k', +m) year, ' u(r, —r,)]
X[u(r, —r, ) y, T~ (y, +g, +m) y),T, u(r, +r, )]

xe,~„[g„,(-2k, —k, —2r, ), +g„(k, —k, +r, )~ +g~(2k, +k, +r,),]

D, =[(r, —k,)'-m'+ie] [(r, —k, —k,)'-m'+i@]

x[(k, —r )' —)P +is] (k, ' —A.'+ i&) [(k, +k, +r )' —A.'+ie] [(k, +r )' —X'+i&] [(r, +k,)' —m'+iE]

(7.2)

(7.3)

We use (2.13) to approximate D, as

D, D, =-[(-2(u+k,+) k, —k, ~' —m'+i@] [(-2(u+k„+k2+) (k, +k, ) —(k»+k, ~)'-m'+ie]

x[k„k, —(k, ~ —F,~)' —X'+ie] [k„k, —k, ~' —A'+is]

x[(k„+k„)(k, +k, ) —(k, ~+k,~+F~)' —A.'+ie]

x[k„k, —(k»+F, )' —)('+ie][(2&v+k, ) k„—k, ~' —m'+is].
We carry out the k,+ and k,+ integrals by closing on the poles

k„=C,(2&v+k, )
'

(7 4)

(7.5)

k,+= C,k,

where

(7.6)

and

C, =k,~'+m' —ie

C6=k,~'+~ —ie .

(7.7a)

(V.Vb)

Define this time

q, = —k, —k, (7.8a}

q, =k, (7.8b}

Then the integral over k„and k„gives zero unless (3.8) holds, and we obtain

2 ' ' 2(2n)' 2(2)()' (7.9)

where

D, =q, [(k,~ —F~)'+)('] [(k» +F~)'+A.'] [2+(q, +q, ) —k»' —m'+is] [2u&q, —(k»+k»)' -m'+ ie]

x[-q, C, q, ' —(k» k»+F,)+' )'+ie] . —

We next approximate N, . First we note that

'2' '2'=-Te Ty Tc C~y ig Tc — S ig Tc Tg Tc

2i(3 1(1)1(2) 2~(l),~(2))

(7.10)

(7.11)

Then we approximate y', —k, +m by y, and anticommute y', to the left; approximate r', —g, —g, +m by ), and
anticommute )", to the left; and approximate g, +k, +m by y', and anticommute y', to the left. Therefore, if
we also use (3.19) we obtain

(7.12)

with

g =2~'(-k, -2k, ) =2&v'(q, -q2) . (V.13)
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Using (7.12) and (7.10) in (7.9), we find that the only region which contributes the maximum number of
logarithms is 0 g, «q2 «2m. Therefore, we obtain

3g~sl-+2 6g~m 2 6 6 p (3 I~~lI't2l 2r~~l ~ r~2l)

2 2

Xs~(ln's —2nilns) ', ', [(k,~ —r~)'+iP] '[(k,~ +r~)' +A.'] '(k, ~'+A.') ' . (7.14)

VIII, FEYNMAN DIAGRAMS 8—14

Feynman diagram 8 is obtained from diagram 7 by s —u. We thus obtain the amplitude for diagram 8
from (7.14) by the replacements

7(1).~(2) ~(1).~T(2)

and (6.1).
Feynman diagrams 9 and 10 are just diagrams 7 and 8 reversed right for left and hence

% "-SR(" 3R("-9R'"
7 9 8 10

In addition, diagrams 11-14are equal to diagrams 7-10, respectively. Therefore, we find

(8 1)

(8.2)

g SR ' -2 'g'm '& i 6 i 4[svilns(3I ' I ')+s(ln's —silns)(2r ' r ' )]
&=7

2 2

(2 2), [(k,~ —r~)'+A.'] '[(k,„+r~)'+A.'](k,~'+X') ' . (8.3)

IX. SUMMATION OF FEYNMAN DIAGRAMS 1—14

None of the integrals appearing in the asymptotic expansions of Feynman diagrams 1-14 converge when

k& „-. However, when all 14 are added together the cutoff may in fact be removed.
Consider first 3g~'l+3R~i'l given by (6.2). The integral over k,~ diverges logarithmically. Therefore, in

the second term we let

g,~+& ~ k1~ —r~ (9.1)

to obtain

3R(6l+3g(6l 2-6g 6 -2sg 6 (3 I(1)i(2l)

d'k,
x2wi lns

2 ), [(k»+r~)'+A. '] '[(k,j —r~)'+A. '] '[(k,~ —r~)'+A. '] (9.2)

Thus we find from (9.2), (6.3), and (8.3) that
14

+3gs'l- —2 'g'm 's5, ,id»~4[silns 6I ' I "+(ln's — ilss)n2r ' r ' ]
4=3

(9.3)

The isospin factor in front of the integral is now the same as that in (4.3). Therefore, we add (4.3) and
(9.3) to obtain

14

g It; l--2 g' m ' »6~ »6. s[wilns6I 'lI ' +(ln's —milns) 2r ' r '
]

&=1
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X. FEYNMAN DIAGRAM 15

The amplitude for Feynman diagram 15, given by Fig. 10 is

where

2 (2w)' (2w)'
(10.1)

and

N» = [u(r, —r, ) y q T,' (g, +H, —f, —Ii, +m) y& T,' (p', +r, —i'i, +m) y„T,' u(r, +r, )]

x[u(r, +r, ) yqT, ' (y', —p', +ii, +f, +m}y, T, (y, -y', +$3+m) y„T~' u(r, -r,)]

D» = [(r, +r, —k,)' —m'+is] [(r, +r, —k, —k,)' - m' i+]e(k,' —X'+i e) (k,' - x'+i&)

&&[(k, +k, +2r,)' —&'+i&] [(r, —r, +k,)'-m'+is) [(r, r, +-k, +k,)'-m'+is] .

(10.2)

(10.3)

We use (2.13) to approximate D» as

D»-D»=[(-2++k„)k, -(r~-k»)'-m'+is] [(-2~+k„+k,+)(k, +k, ) —(r„-k»-k»)'- m' +i e]

&&(k,+k, —k»'- X'+is) [(k,++k,+) (k, +k, ) —(k»+k, ~+2r~)'- X'+is]

x[(2~+k, ) k„—(r~ -k»)'-m'+is] [(2~+k, +k, ) (k„+k,+) —(r~ -k» -k,~)'- m'+i ]e. (10.4)

The integrals over k,+, k,+ will be zero unless C7 =k2j +A, —sg

or

k, &0, k, &0, and k, +k, & —2+ (10.5a}

C, = (k» +k» —r~)' +m ' —i e,
(10.'la)

k, &0, -2~&k, +k, &0.

When (10.5a) holds we close on the poles

k,+=C, k,

k,++k,+=C,(2&v+k, +k, ) ',

(10.5b)

(10.6a)

and

k,+=C»(2(o+k, ) ',
(10.6b)

where

and when (10.5b) holds we close on the poles

k„+k„=C,(k, +k, ) '

where
CQ =(k,g+k, ~+2r~)'+X' -ie,
C» (kgb rJ) +m ie

(10.7b)

r2-kI r2-kI-k2 r2+ rI

In this latter case the contribution from the pole
at

-r -k -k
I I 2

k-r
I I

rg+ I'i —ki r&+ ri -ki-k&

a

-k -r
I I

- k, - k2,-2ri

r3- ri i'3- r
i

+k p I'3 ri+k ( +kg

a

r3+r,

FIG. 9. Feynman diagram V. FIG. 10. Feiinman diagram 15.
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k„+k„—2(o=[(r~ -k» -k,~)'+m' —ie](k, +k, )
'

is suppressed by the numerator.
For both regions (10.5) we may approximate the numerator by first using

T(1) r(1) T(1) T(2) T(2) T(2) r(1) r(2)/2 I(1)i(2)+ 2T(1) r{2)}7g 7y T~ Tg T~ Ty =Tg 7g ~b ~b

~& &&.~7&2& .

Then, dropping g„k'„g„and m compared with P, or g, we obtain

N» -N» = (6I ' I(' —r (') v'(') ) [u(r, —r, ) y ),g, y„p', y, u(r, +x,)] [u(r, +r, ) y), f', y„y', y„u(r, —r, ) j

16(2 2)4s ~ -26,6, (6I(l)i(2) «(~).«(2))

(10.8)

(10.9)

(10.10)

Since no k-dependent factors appear in the numerator the rest of this calculation is identical with the
sixth-order electrodynamic calculation. In particular,

(10.11)

where

with

d k~x d'k~g
dk dk D

2(27()3 2(27])~
(10.12a)

D, =(2&v)' [(k,g+k, g+2rg)'+X'] (k, C, k, '-k, ~'- A.') C,

x[-2+k, —(r~-k, ~)' -m'+if] [-2&L)(k, +k, ) —(r~-k»k»)'-m' i+]e,
and the k, , k, integral is over (10.5a), and where

dkg dkg
2(2 7/)3 2(2 7f)3

with

D(, =(2{d)'(k, +k,)[k,~'+A.'] [k, C~(k, +k, ) '-k, ~' —A.']C9

(10.13a)

(10.12b)

x[-2u&k, -(r&-k»)'-m'+is] [-2&v(k, +k, ) -(r~ —k, ~ —k,~)'-m'+is] .
In I, we use

&ja = —k&-, &2a = —k2

(10.18b)

(10.14a)

The only region which contributes is 0 g„«q„«2~, and hence

2 2

I, =-(2&v) —,'[ln's -2silns] ',
2 2', (k,~'+&') '(k»'+)P) ' [(k»+k,~+2r~)'+)(.'] (10.15a)

Similarly, in I& we use

k] @2~ = —k~ —k, (10.141))

The only contributing region is 0&py&«&2g «2' and hence

2 d2
I» =(2&L)) '

2 ln's
(

'),
(

'), (k,~'+){') '(k»'+)), ') '[(k» k»+2r+~)' '+]))

Therefore,

SR ' -2 'g'm '& ~ 6 ski lns(6I"I' —r'".T")

(10.15b)

2 2

x '~
( )3

(k»2+X2) '(k2~ +){.) '[(k»+k2~+2r~) +X j

The cutoff k& „is not needed here.

(10.16)
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XI. FEYNMAN DIAGRAMS 16—18

Feynman diagram 16 is obtained from diagram 15 by a right-left reversal, and it is easily verified that

gg (6) gg (6) (11.1)

Moreover, Feynman diagrams 17 and 18 are the s —u crossed diagrams obtained from 15 and 16 and these
amplitudes are obtained from (10.16) by the replacements

«7(&) .«7(2) «&(&) .~&(2)

Therefore,
18

p 3Rj"-2 'g'm '& &. ..swilns 6I'"I"
&= 15

(11.2}

2 2

x ' ' k, +A.
' k 2+A, ' k, +k +2r +%2

(2w)' (2w ' (11.3)

XII. FEYNMAN DIAGRAMS 19 AND 20

Feynman diagram 19, Fig. 11, gives the amplitude

~(6) i 6~, d k, d k
2 (2w)' (2w)' (12.1)

where the denominator D» is obtained from D, of (3.3}by using M as the mass of the scalar particle of
momentum k, —k, and

N» = [u(r, —r) yz v', ' (l, —g, +m) y& 7', ' u(r, +r) 3 [u(r, +r) yz r,' (P, + jV, +m) y& 7 ~' u(r, +r)],
which is approximated as

(12.2)

r2'( r2-k( 2 rl

k(+r( r-k
I (

k(-k2
FIG. 11. Feynman diagram 19.

k2+r( rl-k2

r~+k2
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4(2~2) ~ sm-25 5,(2 I& &I&2& 2/&i&. ~/&2&)

T»s numerator does not contain any 0-dependent factors, and hence we find

5R'"--2 'g'm '5 5. ..s-.'(ln's —2~iins) &&'(SI&'&I'"-2r&" r&2&)

d2 2

x
(

') ', [(k» —r~)'+A, '] '[(k,~+r~)'+iP] '[(k,j —r~)'+&&.'] '[(k,j +r~)'+A. '] ' . (12.4)

Here again the cutoff 4'~ „is not needed.
Feynman diagram 20 is obtained from Feynman diagram 19 by s —u crossing. Therefore,

SR ' +K -2 'g m '5 5 ~ s[ &i&i ns( SI ' I ' )+(ln's —wilns) 27 ' 7 '
]

2 2
&&&&' ',

2
', [(k» —r~)'+&&'] ' [(k» +rj)'+A.'] ' [(k» —r~)'+ A.'] ' [(k,j +r~)'+ A.']

(12.5)

The final result (1.1) is obtained by combining (9.4), (11.3), and (12 5).
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