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SU(4)-symmetric strong-coupling theory
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SU(4)-symmetric strong-coupling theory is investigated using the method of induced representations. Isobar
content is discussed for various choices of the little group. For a particularly interesting case, the unitarity
condition is solved.

I. INTRODUCTION (4/)

It appears that SU(4) symmetry may have appli-
cation in classifying hadronic states. Since SU(3)-
symmetric strong-coupling theory had some
success in classifying isobar states, ' in relating
meson-baryon coupling constants, and in deducing
properties of the electromagnetic current, ' it
seems reasonable to consider the SU(4)-symmetric
model.

Cook, Goebel, and Sakita' formulated the static
strong-coupling model in algebraic language,
which permits the techniques of representation
theory to be used to obtain solutions. This alge-
braic formulation of the strong-coupling model
leads to the following equations:

6=+x T.
The Lie algebra structure is given by Eqs. (1),
(4), (4'), and

(6)

(7)

(6)

Thus the SU(4) strong-coupling theory has a group
structure, 6, defined by the semidirect product
of K = SU(4) && SU~ (2) and a 45-dimensional Abelian
group T„, that is,

[AS, A ]=0,
AB~ =AayAy„,

(1)

(2)

The E„are chosen so that f„s& are odd under
permutation of any two indices (see Appendix).
We consider mass operators of the form

ctR -A+2 +.~2 (10)
where

[E„,Aa] =if ByAr (4)

[E, stt] =O.

Since in this paper we are concerned with P-wave
mesons forming a 15-dimensional representation
of SU(4) (the adjoint representation), we attach
a vector index on A8 and have

and gris the mass operator. These operators
are to be considered as operators acting in isobar
space. The Aa are proportional to the meson cur-
rents, and thus their matrix elements in isobar
space are proportional to meson-isobar-isobar
coupling constants. Equation (1) is referred to as
the strong-coupling condition, and Eq. (2) is the
unitarity condition. The imposition of an internal-
symmetry group comes from two requirements;
namely, A transform in a particular way with
respect to the group, and It' be an invariant. That
is, for internal-symmetry generators E

where E' =P„EE„, the quadratic Casimir operator
of SU(4), and J'=+&

J&Z& .
We will investigate various unitary irreducible

representations (UIR's) of G by the induced repre
sentation technique. 3 With a mass operator of the
form given by G, if the unitarity condition, Eq.
(2), is satisfied at one point of the orbit it will
be satisfied identically.

Because the various SU(2) subgroups of SU(4),
modulo conjugation, are of particular interest in
this problem, the nature of these SU(2) subgroups
is discussed in Sec. II. In Sec. DI we investigate
the various possibilities for little groups and
their general implications for isobar content.
In Sec. IV we consider in more detail the isobar
content when the little group contains an SU(2)
group. The mass operators that satisfy Eq. (2)
are given for the most physically interesting
case. Some concluding remarks are given in
Sec. V.

II. SU(2) SUBGROUPS OF SU(4)

In this section we study two questions concerning
the SU(2) subgroups of SU(4), namely, what are
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L, =E, +4 3 F, + (
—')'i'3E,

=F~+~ Y+2Z,

L, =&SF, +2E, +v 3F„,
L, =USE, +2F, +WaE„.

Consideration of the eigenvalues of L, in the 15-
dimensional UIR of SU(4) shows that this SU(2)'s
representation content is

15 =7 5 3.

Case (b): The SU(2) generators are

(12)

Ls =+s+~~F8=F3+21'

L, =W~F, +&2E„

L, =v2E, +v2E, ,

(13)

and the reduction of the 15 UIR with respect to
this SU(2) is

15 =5 3 3 3+ 1.

Case (c): The SU(2) generators are

L, =F, +(2)~hE —(—')'/'F =E + —'Z ——'Y'

L, -E~+F4

L, =F, +E, ,

(14)

(15)

and the reduction of the 15 UIR with respect to
this SU(2) is

15 =3 3 3 3 1 1 1.
Case (d): The SU(2) generators are

the different SU(2) subgroups and what are their
representation contents in the 15-dimensional
representation of SU(4}?

To determine the classes of conjugate SU(2)
subgroups of SU(4) we merely note that there are
four unitary, nontrivial, nonequivalent 4-dimen-
sional representations of SU(2): (a) 4, (b) 3
+ 1, (c) 2+ 2, and (d) 2 1+ 1. The third com-
ponent, L„of the generator of the SU(2) sub-
group can always be chosen from the maximal
Abelian subalgebra of the SU(4) algebra; that is,
L3 can be chosen to be a linea r combination of
E„E„and F„(Se.e Appendix. ) A knowledge
of the eigenvalues of L, for any representation
of SU(4) permits one to deduce the SU(2) repre-
sentation content. In the following Y is the usual
hypercharge, a generator of SU(3), and
Z = (zp~'F» agrees with the definition in Ref. 4.
E» (and thus Z) commutes with all SU(3) genera-
tors.

Case (a): The generators of the SU(2) sub-
group can be chosen to be

L, =F, ,

The SU(2) subgroup is isospin. The reduction of
the 15 UIR with respect to this SU(2) is

15 =3 2 2 2 2 1 1 1 1. (IS)

III. REPRESENTATIONS AND THEIR ISOBAR CONTENT

We have seen in Sec. I that we must consider
UIR's of 4 =K& T. Cook and Sakita' have inves-
tigated the representation of such groups by the
method of induced representations. We will
indicate their results.

A representation g of G is determined by specify-
ing an orbit, and thus a little group R,CK for one
point on the orbit, and a representation kp of Kp.
The induced UIR, g, of 4, when reduced with
respect to K, will contain any UIB of K, k, that
has in it a representation k, of Kp The UIR of
A, k, will occur as many times as ko is in k.
Thus, to investigate the possible isobar content
of the UIR's of G we merely have to investigate
the possible little groups and their representa-
tions.

Let us first consider the implications of the
content of K, with respect to SU~(2). Suppose
K,&SU(4); then in the UIR, g, of G, there is
no connection between the isobar's spin and its
SU(4) content. Thus, all spins have the same
SU(4) content. We will not consider this case.

Recall that the A.„; transform like a vector with
respect to SU+(2). The little group K,C:K is that
group which at a particular point on the orbit of
characters of T leaves the point unchanged. For
instance, if the only nonzero characters at a
point in the orbit are those of A„„ then K, &U(1)
with U(1) generated by J, . Then again all spins
that occur in the induced UIR of t have the same
SU(4) content. Another possibility would be that
the U(l)&K, may have as a generator a linear
combination of J, with a generator of SU(4). In
this case if a given spin, J„has a given SU(4)
multiplet, then all higher spins have at least
the same SU(4) multiplet present. We will con-
sider these cases no further.

The cases to be considered have been reduced
to include only those such that Eo contains an
SU„(2) generated by fo,. =L; +8, where L; are
generators of a SU(2)C:SU(4). As shown in Sec.
II there are four distinct conjugate SU(2) sub-
groups. Let (b,)8;F be the generator L; for
a particular point on the orbit with character
(a,), ; then
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(ao)~a =C(bo)na (20)

is the condition that the point transforms like a
scalar under SUI (2). One possibility for (a,)~,
is

TABLE I. Low-dimensional representation content of
K contained in the UIR of G for particular choices of Kp
and representations of Kp. (a) Kp =SUzp(2) (b) Xp
=SUI (2) x U(1)z. For this case a UIR of SU(4) containsIp
only integer representations of SU(2). We must then
consider half-integer representations of SUI (2), (c) Kp

(2) x SU'(2). (d Kp SUIp(2) xSU'(2) x U(1)r+2z/3 ~

with C some arbitrary constant.
For the cases (a) and (d) of Sec. II, since the

reduction of the 15 UIR of SU(4) with respect to
SU(2) contains only one triplet, condition (20) is
the only possibility. We will consider only cases
for which Eq. (20) is satisfied. Furthermore, Eq.
(20) fixes a point in the orbit and thus determines
the complete little group. The isobar content of
UIR's of C for this little group is discussed in the
next section.

IV, UIR FOR WHICH K(pSUI (2)

From the discussion of the previous section it
is clear that the interesting little groups to con-
sider are those containing an SU&, (2). Additional
generators of the little group must transform
like scalars with respect to the SU(2) subgroup of
SU(4). Thus, from the knowledge of the SU(2) con-
tent of the 15-dimensional UIR of SU(4), Eqs.
(12), (14), (16), and (18), for case (a) K, =SU+(2);
for case (b) Z, =SU&,(2) xU(1)~ where U(1)~ is
generated by Z; for case (c) Ko =ST (2) x SU'(2)
where SU'(2) has for generators

I 3 + 2 4

2 2

Hep. of Kp

Ep =0

Ip=—
2

Z=-=1

SU(4) rep.

(a)

20

20

20

20I

20/

201

20

20

20

20I

20

20

20'

Spin

5
2

7
2

7
2

3
2

5
2

3
2

5
2

i
2

3
2

Multiplicity

and

—(~Z+ Y');

Ep =0

L'=—
2PI

20

(c)

3
2

i
2

and for case (d) K, =SU+(2) xU(1)r, »&, xSU'(2)
where SU'(2) is generated by

A, +A4
2

~3 ~4

and

—
q Y+3Z.1 2

Ip =0

L' =0

F+-Z=—2 =3
3 2

2PI

2p

20'

36

56

i
2

i
2

We will now note the low-dimensional representa-
tion content of K contained in the UIH of 6 for
particular choices of K, and representations of

Generally, we consider the smallest-di-
mensional representation of the little group,
consistent with half-integer-spin multiplets,

since this implies the smallest multiplicity of
isobar representation. Vfe list in Table I the
isobar content for such cases. The notation des-
ignating the SU(4) representation is that of Ref. 4.
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Cases (a)-(d) refer to the classification of the
SU(2) subgroups of Sec. II.

V. MASS OPERATORS FOR CASE (d)

and thus

2 2= c( +fgy(fc(((+c( b&; 8(&;„( ~ (22)

The unitarity condition, Eq. (2), then determines
the allowed values of a and b. A particularly
simple way of solving this condition is to consider
the fq,&, for j =1, 2, 2, as a set of SU(2) operators
in a 15-dimensional space. Let (J, )8, =f8„. J has
a reduction as noted by Eq. (18}. Also let (j, )8,
=e((„, i.e., they are SU(2) generators in this 15-
dimensional space which has a reduction to one
spin 1 and 12 scalars. Now the unitarity condition
is

Q (c('((J J, +c(('bj)j, )(c('a J, J~+c('bj(j(, )

Thus

~4a2J J2J +2Q4a&j j ~ JJ +~4/2 j j 2j

a JJ J„+o. bj j~ .

=u aJj J~+n bj] jq .

Since the j; acting on any part of the space ex-
cept the spin-part-1 give zero we must have

n a'Jj J'J~ =a'aJj J~

for J'=0 and —,'(-,'+1)= —,
' and thus

A a=4& a (22)

For the spin-1 part of the space J'=j J=j'=2
we must have

2(/@a +4/ ay /2~ (24)

It is clear from the previous section that the
most interesting representation occurs for case
(d), for which the little group is SU& (2) && U(1)
&&SU'(2). For case (c) the spin-p, 20', and 20'
representations are degenerate since the quadratic
Casimir operator has the same value for conjugate
representations. For the mass operator given by
Eq. (10) in general

As~ ((( ='af((a(fa 'prAo( Ap( +begn(&(m(A((((+u(((

(21}

Defining

u =34]~A.]„2

for one point on the orbit, for case (d)

Equations (22) and (24) have four solutions'.

a'a

(I)

(11)

(111)

0 0

VI. DISCUSSION

We have seen that in the SU(4) strong-coupling
theory the requirements that the low-lying spin-~
states contains only one octet and no decuplet and
that the low-lying spin--,'states contain only one
decuplet and no octet leads to a unique little group,
case (d}, and a unique representation of this little
group. It appears to be the least degenerate
representation of the strong-coupling group pos-
sible —the little group is the largest. The unitarity
condition was solved for this case, with the result
that the (20', -', ) has a higher mass than the (20',
—,'). It is premature to investigate the mass rela-
tionships of solution IV further than this. It was

It should be noted that for any SU(N) strong-
coupling model using as a little group K,
= SU,, (2) && U(1)&& SU(1V —2) the above arguments
apply and the same four solutions for the mass
matrix result.

Goebel, ' using a Hamiltonian formulation of
the static strong-coupling model, argues that
the physical solutions are such that the projection
operator A (note A' =A) should project at each
point on the orbit onto a space whose dimension
should be the dimension of K minus the dimension
of K„ the little group. For case (d) this is
18 —7 =11.

From Eq . (22)

T1A = Q'Qfs(, fa(, +c('be;8( I;(((
—~2a TrJ2 +~2/ Trj 2

= ~'~ I5+ (4)(2)(-,')(-.' + I)] +~'b t51

= 12m'a+6m'5 .

Trp ~ = 3 Trp&&& —8 and Trp&'((' —] 1 implying
that IV is the solution that would result from a
Hamiltonian formulation. Again it is easy to see
that this trace condition holds for A~ for the
SU(N) strong-coupling model.

For SU(4) E' has value ~3 for the 20 UIR of SU(4)
and ~9 for 20', the smallest UIB present in case
(d). Thus, for solutions II, III, and IV the (~20
J=-', ) states have larger mass than the (20', J = —,')
states.
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noted that the resulting mass operator in fact
solves any SU(N) strong-coupling model.

It is also interesting to note that the electro-
magnetic current is uniquely defined in the sense
of Ref. 2 if one assumes that the current trans-
forms like the 15-dimensional UIR of SU(4).

Also for this case the charge operator, Q, must
be of the form

E, = —,'i (A,' —A.', ), E, = (1jv 3 )(-,'A. ,'+-,'A', -A', ),

Q =I +-'Y+P(-'Z —-'gy)

if the decuplet and octet are to have the correct
charge assignments. This charge operator is
that defined by Ref. 7 for P = 1, and is that of
Ref. 8 for P = —2.
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APPENDIX

The 16 generators of U(4), A'„(i, A;= 1, 2, 3,
or 4), satisfy the commutation relation

E„, (n = 1, . . . , 8) are the generators of SU(3).
E, =-,'v3 Y, where Yis the usual hypercharge,
and Z = (-', )'~'F». E~'s satisfy commutation rela-
tions

[E E]—jf E

where the structure constants, f„8&, are anti-
symmetric under the interchange of any two
indices.

The quadratic Casimir operator of SU(4), F',
is given by

The generators, E (n =1, 2, . . . , 15), of SU(4)
are defined by

v P

for all U(4) representations for which A~&=0.

~T. Cook, C. J. Qoebel, and H. Sakita, Phys. Rev. Lett.
15, 35 (1965).

~S. K. Hose and W. D. McGlinn, Phys. Rev. 163, 1772
(1967).

3T. Cook and B. Sakita, J. Math. Phys. 8, 708 (1967).
D. Axnati, H. Bacry, J, Nuyts, and J. Prentki, Nuovo
Cimento 34, 1732 (1964).

~C. J. Qoebel, Phys. Rev. Lett. 16, 1130 (1966).

C. J. Qoebel, in Quanta, edited by P. Q. O. Freund,
C. J. Goebel, and Y. Nambu (Univ. of Chicago Press,
Chicago, 1970).

T. Das, P. P. Divakaran, L. K. Pandit, and Virendra
Singh, Phys. Rev. Lett. 34, 770 (1975).

S. L. Qlashow, J. lliopoulos, and L. Maiani, Phys. Rev.
D 2, 1285 (1972).


