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We derive and investigate an exact integral representation of the scattering amplitude that results from the
description of scattering in parabolic coordinates. The spectral function a(s,v) of this representation turns out to
be an entire function of order 1 in the v variable provided that the partial-wave amplitude A, —l '"e '~, g & 0
for l large. We also briefly discuss the counterpart of the partial-wave series.

I. INTRODUCTION

The usual derivation of the scattering amplitude
using spherical coordinates leads to the partial-
wave expansion and, by means of a Sommerfeld-
Watson transformation, to the Regge representa-
tion and Regge poles. Khuri' investigated cross-
ing-symmetric power-series expansions and the
related Sommerfeld-Watson representations of
the scattering amplitude and found, in addition
to Regge poles, "satellite" poles. He remarked'
that any expansion in a set of polynomials Q„(z)
which are such that g„(z)-z" as z-~ would give
rise to at least the set of Regge poles; thus, under
this assumption the angular momentum L is the
variable in which we have the least number of
poles.

In this paper' we derive rigorously and inves-
tigate an exact representation of the scattering
amplitude that results from the description of
scattering in parabolic coordinates. This in-
vestigation was suggested by the facts that scat-
tering by a central potential is axially symmetric,
that Coulomb scattering is most naturally de-
scribed using parabolic coordinates, and that
at high energy the Yukawa potential becomes
Coulomb-like. We deduce an integral represen-
tation [Eq. (1)] and a corresponding series ex-
pansion [Eq. (32)] related by a Sommerfeld-Watson
transformation.

Unlike the Regge representation and the Som-
merfeld-Watson representations of Khuri, ' our
integral representation (1) has no associated poles
or cuts. In fact, we show that the spectral function
a(s, v) is entire in the v plane. This does not
contradict Khuri's remark, ' since our expansion
turns out to be not in terms of polynomials, but
rather a power series in the variable T = (1 -z)/
(I+z). In addition, we show that a(s, v)- g',
therefore, the integral in (1) converges rapidly

(exponentially). Finally, the angular dependence
is simple and explicit. For these reasons we
believe that representation (1) is a useful alter-
native, valid at g$) angles, to the various impact-
parameter representations. '

In Sec. II we first give a derivation of the in-
tegral representation without the use of parabolic
coordinates. Then we prove that a(s, v) is an
entire function in the variable v, provided that
the partial-wave amplitude A, has the asymp-
totic behavior as t-~, A, - t 'e '', $&0. We
also show that as v-~, a(s, v)-g'; that is, a
is of order 1. Hence, we can use Hadamard's
factorization theorem to write representation
(22). Finally, we derive elastic unitarity in terms
of a(s, v).

In Sec. III we obtain the series expansion of the
scattering amplitude by performing the inverse
of a Sommerfeld-Watson transformation.

The connection of representation (1) and the
description of scattering in terms of parabolic
coordinates is discussed in Sec. IV. Here we also
discuss, as an example, the Coulomb potential.

In Appendix A we derive an asymptotic repre-
sentation for the Bateman functions I', that ap-
pear in some of our equations for a(s, v). Al-
though we have made no use of this asymptotic
representation, we give it because we are not
aware of its existence in the published literature.

Appendixes B and C reproduce some useful
definitions and relations regarding Bateman and
Buchholz functions, respectively.

II. INTEGRAL REPRESENTATION OF

THE SCATTERING AMPLITUDE

A. Derivation of the representation

We begin by deriving the following integral rep-
resentation for the scattering amplitude A: '
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where

)
i ~"'" T'a(s, v)dv
2 g, ,„sin(77v)

We shall make use of the following two bounds:
Bound I.

~ 1 for all real y.cosh( —,'77y)

a(s, v) =g (2i +1)A, (s)F, (-2v —1),
l=o

(2) Proof. We have the representation'

and the functions F, (-2v —1) are Bateman poly-
nomials for integer l.' We can obtain (1) by sub-
stituting the representation'

P, = (1+&)—1 —7 i " ~2""
7 "F((-2v —1)dv

1+7 2 . v, ;„sin(77v)

P, (tanhx) dx.
cosh( —', ny) 77 „coshx

Therefore,

IF7(iy) I
1 t'" IP((tanhx) I

cosh(2 77y) 17 3 coshx

(6)

for the Legendre functions I', in the partial-wave
series and interchanging the order of summation
and integration. We wish to show now that this
interchange is rigorously permitted. We begin
by rewriting (1) for convenience as a Fourier
transform using the change of variable
v= ——,'(1+7y); thus,

(1+ T) ~" T "'p~( 2i+1) A(F 7(i y) dy

cosh(2 17y)

According to a well-known theorem, ' the inter-
change of the order of summation and integration
is permitted if

1 ~" dx
=1,

m „coshx

where we used the fact that for x real -1~ tanhx
~+1, and, consequently,

~ P, (tanhx) ~

~ 1 (i integer).
Bound II.

for all real ycosh(-,'77y) y'

where P(i) =2i'++ i + —,.
Proof. Our first step is to integrate by parts

representation (6) twice. Making use of the re-
lation'

1=o
(2i+ 1)A, (s)T "2 '', dy& ~.I&i

cos h(-,' 77y)

we get

—i tanhxP7(tanhx) + i P, , (tanhx)
1 —tan h~x

F, (tat —t ',.„,
(( ). . .

)
P, (taaha) a(.& t, (t aah)a,

(t t)
t', (taaha)I a

As above,
~
tanhx( ~1, and

~ P, (tanhx) ~
~l, so that

J F((iy)~ 1 I'" (l+1)'+l'+2l i+1
d p(l)

scho( 17y~) 17y' ~ ~ cosllx cosll'x

Now we proceed with the proof of (5). Since'

F,(-~) =(-1)'F((~),

the integrand in (5) is even; thus we consider the convergence of

Qo OQ Oag (2i+ 1)]A7 (
'

t dy = g(2i +1))A(j J
'

t dy+ ', dy (a&0).
l=o Cosll 277y 1=()

(8)

Substituting bound I and bound II, respectively, in the first and second integrals of the right-hand side of
Eq. (8), we have
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g(2t. l)l~, l
t '('»I- d,

1=o 2 cosh(2')

& P(2l +1)IA, I a+ p()l
l=o a

assuming, as usual, that for large l (Ref. 10)

A, (s) h(s-)l ~2e '1 ($&0). (9)

B. Properties of a(s, v)

A remarkable feature of the integral representa-
tion (1) is that, if (9) holds, the spectral function
a(s, v) is an entire function on the vPlane To.

prove this statement we will use the following
theorem

Theorem Supp. ose that the functions

(w1(v)ll =o, 1, 2, .

are analytic in a fixed domain D, and suPPose
that the series

se, v—= tv
E,=o

converges uniformly in any compact subset of
D; then W (v)is analytic in D, excePt Possibly
at v =~if ~ belongs to D. The series may be
differentiated term by term as often as we please
The p-times-differentiated series converges to
W2 (v) uniformly on comPact sets.

Thus, we have to prove that series (2) converges
uniformly everywhere on the finite v plane; to do
this we will. apply the Weierstrass M test.

It was shown by Rice' that for l: a positive in-
teger, and l »max( I, I vl j,
E,(-2v —I) =- sin(11 v)

jr

I'(- v),„(,I'(v+1)
r(v+1)l'" -1' r( v)

l

uniformly in D. Since we can repeat these argu-
ments for arbitrary circular domains D with
boundary I vl =r& ~, we have fulfilled the con-
ditions of our theorem, and under assumption
(9) a(s, v) is entire in v.

A very important property that characterizes
an entire function is its rate of growth for large
values of its variable. To deduce the asymptotic
behavior of a(s, v) as I

Vl-~, we shall make use
of a number of known results, which we present
below for the sake of completeness.

(a) For l positive integer (or zero)'

E, (w)&0 if w&0. (12)

(b) Bateman' found that the coefficients in the
power series for F,„(w) and —E2„„(w)are all
positive. Thus, we write

E, (u ) = (- 1)'(a, +a,w+ ~ +a, w'), a,. &0.

Furthermore, Eq. (7) implies that for even l we
have only even powers and a constant, while for
odd l we have only odd powers and no constant.
If we let w = —(2v+ 1), we have

F,(- 2 v —I) = b2+ b, v+ ~ + b, v', b, & 0.

Let v =re', then

I E,(- 2 v —1) I
=. g b„r"e'"8 &P b„r" .

n =o n=o

Note that the equality holds for 6}=0; therefore,

max IE,(-2v —1)I = IF ( 2r —1)I. -
I~|=~

(c) Again from Bateman' we have

1 p —1 (tf)+1)/2

Q (2l p l)q, (p)E, (w) = I,(14)
l=o p —1 p+1

1+0 —, (10)

7/ I V+1

Let us consider for simplicity a circular domain
D on the v plane centered about v=0; then, using
the maximum modulus theorem, we see that from
some l onwards

(2l +1)l/I, I IF,(-2v —1)l &M„ for all vwD,

where

valid for all w and p& —1, +1.
(d) For l large and positive the Legendre func-

tion of the second kind is given by'

1/2 [Z+ (Z2 1)1/2) 1/2 8-l 1

("-I)" ~i

x [ I+ O(l -')], (15)

uniformly for l&z&~, where ( =ln[z+(z' —1) '];
the domain of validity of (15) can, of course, be
extended to complex z and t .

It follows from (15) that for sufficiently large l,

and I VI =r is the circular boundary of D. Now,
as long as (9) holds, it is evident that P,=,M,
converges, and therefore series (2) converges

01(Z)&0.

To derive an asymptotic bound for la(s, v) I as
I vl-, we use (2) and write
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ja(s, v)j = g (2l + 1)A, (s)F,(-2v- 1)
l=p

+1 i I

ja(s, v)j (B(s)—
go i

(21)

= g (2l+I)l&(Fil
l.—0

+ Q(2i+ I)I&, E, I. (»)
1=L

l&, (s) I
- q(s)Q, (l ~.l ), (18)

where we made use of (16), and q(s) is some
positive function of s. Substituting (18) in (17),
provided that L is sufficiently large, we obtain

L-
la(s, v) I

( (2l + I)j&P', I

E=p

+ q(s) Q(21+ I)eg(j~, j ) IF, I

l=L

Let us assume for the moment that the nearest
z-plane singularity of the scattering amplitude
is ~p. Then for sufficiently large l, and s physi-
cal, we have"

where R(s) is a positive function of s."
Since a(s, v) is an entire function of v of order

1, it follows from Hadamard's factorization the-
orem" that a(s, v) can be represented as

a(s, v) =a(s, 0)e'l"P—
n

(22)

where P(v/v„) is a canonical product of order
p (1 (if c = 0, then p = 1) formed with the v plane
zeros v„of a(s, v)." We would expect the exact
a(s, v) to have an infinite number of v plane zeros,
some of which will be functions of s.' The con-
tribution of Regge amplitudes to a(s, v) was dis-
cussed in Ref. 3, where it was found that a I;-
channel Regge pole gave rise in a(s, v) to the left
real axis set of zeros of 1/I'(v+1), while a u-
channel Regge pole gave rise to the right real
axis set of zeros of 1/I'(- v).

C. Elastic unitarity

Before closing this section we shall discuss
briefly unitarity in terms of a(s, v). We use again
the change of variable v = ——,'(1+ iy), which gives
E,(-2v —1)=F,(iy); thus

L-1
= P (2 l + I) I I &, I

—q(s) 0, ( I ~, I)] I Eg I

l=p a(s, ——,'(1+iy)) =g (2l +1)A,(s)F,(iy).
1=0

(23)

+ q(s) Q (2i +1)Qi(j &,I) I E,(-»-I) I.
1=0

(19)

From the discussion leading to Eq. (13) we have
that E, (iy) is real for even l and pure imaginary
for odd 3; therefore,

The first sum in (19) is a polynomial in v of degree
I —1. Consider the last sum in (19) and let v)0;
then from (12) and (14) we have that

g (2l + I)9 ( I ~.I) I
F&(- » —1) I

1=0

= g (21+1)Q,(ls, j)F,(-2v-1)
l=p

and

F*i(-iy) =F~(iy),

a*(s, ——,'(1 —iy)) = P(2l + 1)A*,E*, (-i y)
l=o

= Q(21+1)A*,F,(iy).
J=p

(24)

(25)

ls, j+I '
(20)

It follows from (13) and (20) that for v-~ along
any ray from the origin on the v plane,

Bateman" obtained the orthogonality relation

E&(i ) y(Eiy)dy 46&„
cosh'( —,

'
ay) m(2n+ 1) '

therefore, using (25) and (26), we have

(26)

"a(s, ——,'(1+i y))a (s, ——,'(1 —iy))dy g~ „""F,(iy)E„(iy)dy~ ~ ~

cosh (2 7Ty) i=a n 0 co cosh (p7fy)

= —Q(2l+1)I&g(s)j',4
7T l=o

(27)
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or, in terms of the variable v,

" ~"'" a(s, v)a*(s, —v —1)dv
sin'(vv)~~]/2 ~ i oo

a (s„0)=P (2l + 1)A, (s, ),
l=p

(29)

where s, =ski e. From (28) and (29) we can now
express elastic s-channel. unitarity in terms of
a(s, v) by the relation

~ 0()

= —Q (2l + 1)(A, (s) ~'. (28)
1=0

Since E,(-1)=1, we write

A(s, v) =-(1+~) Q (- v)"a„(s)
ll= -].

= a, + Q (—1)"(a„,—a„)~",
n= -J,

(35)

with a„(v) given again by (33). In this case we can
make use of (7) to transform the E, in (35) so that
(34) is still applicable. [In (32) and (35), a, and

a, are respectively the forward and backward
scattering amplitudes. ] Bateman' and Pasternack"'
give the relation

E, (w —2) —F, (w)

= l(l +1),F,( —/ +1, I + 2, —,'(a+ I); 2, 2; 1}, (36)

a(s„0)-a(s, 0}

dv.
vk ~"'"a(s, v)a*(s, —v —1)

Ms ~, ,„sin'(v v)

(3o)

which is good also for noninteger I, , and in that
case converges for Rem &1. We can use this to
rewrite (a„—a„,) in (32) and (35).

Series (32) may also be obtained by substituting'

P,
1

= 1+1 —v'"E, —2n —1, 7&1

a (s, v) -f(s)[ g (s)] '. (31)

Then, if Tg&1, we close the contour on the right
and obtain

III. SERIES EXPANSION OF THE SCATTERING AMPLITUDE

From the asymptotic behavior of a(s, v) [Ep.
(21)] we see that we can close the contour of rep-
resentation (1) to the left or to the right, thus

obtaining essentially a power-series expansion
in 7 for the scattering amplitude.

Let us suppose that for
~
v~-~,"

(37)

in the partial-wave series and interchanging the
order of the two summations, keeping in mind
the two cases Tg &~1; [although series (37) does
not converge at 7'=1, series (32) does converge
there if )&1, while (35) converges there if f&l].

IV. CONNECTION WITH POTENTIAL SCATTERING IN

PARABOLIC COORDINATES

The scattering solutions of the Schrodinger
equation for a spherically symmetric potential
are required to have the following asymptotic
behavior at infinity:

A (s, 7 ) = (1 + 7') Q (- w)" a„(s)
n=p

e i&rg-~'"'+ f(k', cos&), (38)

where

=a, + Q (- 1)"(a„—a„,)T",
n=g

(32)
where f(k', cos8) is the scattering amplitude.

We introduce the parabolic coordinates defined
by the formulas

& =r+z, q=r —z, /=tan '(y/x); (39)

a„(s)= g (2i + 1)A, (s)F,(- 2n —1),
L=0

and'

n i(l+I)
F&( — )= +

1 (-, )2

n (I —1)l(I +1)(l +2)
(2l)'

Similarly, if 7$&1, we close the contour on the
left and obtain

(33)

(34)

$ and q take values from 0 to ~, and Q from 0 to
27r.

In a rigorous treatment of the scattering problem
in parabolic coordinates, it is natural to assume
an expansion of the wave function P(F„q)'9 in terms
of combinations of Buchholz functions 0 (see Ap-
pendix C) of the type u (-i k))ua( ikq), whe-re

u& stands for any of the two functions m& and I&.
Since, however, we are mainly interested in the
form of the scattering amplitude, we can make
the following heuristic arguments.

Let
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&ik( i —n)/2

f
~''" a(k2 v)

~,(-i k$)w„~, ( i-kq)d v,
sin wv

(40)
—1& 0&0.

We have chosen the combination
w, g,(- ik$)w „~,(- iki)) because it is the only
simple combination which leads to the asymp-
totic condition (38). In other words, although rep-
resentation (40) may not be valid for all q and (,
if other terms are present they must tend to zero
faster than I/r

Using the asymptotic expansions (C4), we have

(41)

where w = (q/$) = (1 —cos8)/(I+ cos0). Substituting
(41) in (40), we obtain

—1&0&0,

(42)

which is essentially representation (1). The
sin(iiv) appearing in the denominator in (40) and
(42) was introduced by comparison with (C5); in
this way if the function a is independent of v, then

f is independent of v.
As an example, we now evaluate a(s, v) for the

case of the Coulomb potential. We consider an
attractive Coulomb potential and let s —= k,
[ l = —2k '(1 —cos 8) as usual]; then

(43)

where

and n = —1+1+ v 4s' 524 s

Series (2) does not converge for the Coulomb case,
so we shall obtain a(s, v) by inverting (42). We
thus obtain the Mellin transform

a(s, v)=-,+i', —1&Rev&0.
sin(iiv)

" f (s, 7)d~n, 7""(I+~) '

(44)

Substituting (43) in (44), we note that the integral
does not converge, so we have to introduce a
suitable convergence parameter. We let
Rex = —1+ & such that Ben+ 1&Ben -Bev&0.
Performing the integration, we obtain

This is exact, and if substituted in (42), it will
give us back (with the use of a convergence param-
eter) Eq. (43).

Unlike the short-range interaction case for which
relation (9) holds, in the Coulomb ease a(s, v) is
meromorphic in the v plane with poles a, t v=n+n,
~ =0, 1, 2, . . . . These correspond to the set of
Begge poles. It is interesting to note that the
zeros of a(s, v) coming from the 1/I"(- v) factor
are the same as the zeros coming from a, u-chan-
nel Regge-pole contribution to a(s, v). ' This
seems to confirm our bel. ief' that right-hand zeros
of a(s, v) are associated with backward (large
momentum transfer) scattering, while left-hand
zeros are associated with forward (small momen-
tum transfer) scattering.

In conclusion, we emphasize that in this paper
our intention has been to derive rigorously rep-
resentations (1), (32), (35), and the main proper-
ties of a(s, v). More needs to be learned about
a(s, v), for example, the distribution and move-
ment of the zeros in the v plane. To this end a
number of theorems deal. ing with the zeros of
entire functions can be found in the mathematics
literature. Also much can be learned from spe-
cific examples such as the Begge-pole cases of
Bef. 3. From such studies phenomenological
representations of a(s, v) can be written and tested
with the high-energy data.
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APPENDIX A: AN ASYMPTOTIC REPRESENTATION
FOR THE BATEMAN FUNCTION F

We shal. l derive here an asymptotic represen-
tation of F,(-2v —1) for large

~
v~.

The representation

F,(- 2v —1)=~F,(- l, l + 1, —v; 1, 1; 1), (A1)

where, E2 is the generalized hypergeometric func-
tion, was given by Bateman' and is valid for ar-
bitrary l, but Rev&- I (unless l is integer). Using
a, generalization of Dixon's theorem, "we obtain
the following relation:

I'(v+ 1)
I'(- l )I'(v+ l + 2)

x,F,(l +1, l +1, v+1; v+ l +2, 1; 1),

(A2)

i I'(- a) I (o. —v)
2v s [I'(o. +I)]' I'(- v)

' (45)
and we must have Bev& —1 and Bet &0 in order
that the series be convergent. Thus
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1(v+1) ~ I'(l +n+1) ' 1 (v+1)(v+2) ~ (v+n)
I'(-I)I'(v+I 2) 2, I'(!+I) (n!)' (v ~ I+2)(v+I+3) (v+I+n+1)I ' (A3)

Clearly, for t v(»[ l ) and Rev+2&-Rel (a con-
dition which is satisfied as ~

v~-~ along a ray
from the origin), the factors in the curly brackets
are O(1), while

1(l +n+1) 1

( ) ( !), -F(l +1, l +1, 1, 1),

for ) v!»( l ), Rev& —1, Rel & ——,'.
Combining (A5) and (A7), we can write

I'(2l + 1)F!(-2v —1)
[ ( ))2

v

1(-2l -1)
[r(- l)j' (As)

and

F(l +1, l+ 1; 1; 1)=,—,Rel
I'(- 2l —1)

Hence, we can write

(A4)

APPENDIX B: RELATIONS INVOLVING
THE BATEMAN FUNCTION F,

r(-2l —1)
[r(- l)]2 (A5)

«r I vl I l I, Rev& —1, Re« ——,'.
The same relation (Dixon's theorem)" that gave

us (A2) can be used to obtain

(A7)

x,F,(-l, —l, v+1; 1, v —l +1; 1),

(A6)

where now we must require Rev& —1, Rel & —1,
in order that the series be convergent. Following
the steps leading to (A5), we obtain this time

In this appendix we summarize for easy access
a number of useful results involving the Bateman
functions.

First, in addition to (A1), we have representa-
tions (Bl) and (82).

F (-2v-1) = . il (1 —t) ' 'P ——1 —,
1 2 n'z t

(81)
Rev& —1,

where the contour L may be any contour starting
and terminating at infinity that can be deformed
into the straight line joining 2 —i ~ and —,+ i ~
without passing over the, points t =0 and t =1.'
This representation can be shown to be valid for
all l.

If l is integer [cf. Eq. (34)] we have'

l (l + 1) w + 1 (l —1)l (l + 1)(l + 2) (w + 1)(w + 3)
(1!)' 2 (2!)2 2x4

(l —2)(l —1)l (l + 1)(l + 2) (l + 3) (w + 1)(w + 3)(w + 5)
(3!)' 2x4x6 (82)

Carlitz" has given a simple connection between
the Bateman polynomials and some polynomials
of Touchard 4 related to the Bernoulli numbers.
Next we list a number of series involving F,
which, like (14), can be summed exact!y.

Rice' gives

2~ u'2
e'" 4 (- v, 1; —2ir)

= Q(2l + 1)i ' J„v,(r)F2( 2v —1), (83)-
1=0

where 4 is the confluent hypergeometric function. '

Series (83) appears to hold for al! r and v, a!-
though its proof required either Rev&0 or Rev& —1.
Bateman" gives

u —v u —v u -v

= g(2l + l)Q, (u)P, (v)F, (-2v —1). (84)
l=o

Equation (84) holds for u&1, u&v& —1, but these
are not necessary conditions. '

We give only one more series, '
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—e"' ""sin(n v) coshx

= P (2l + 1)P,(tanhx)E, (- 2 v —1),
(B5)

two confluent hypergeometric functions (4 =,E&)

as follows:

(~) z ~'My, p/s(z)
1(1+P)

—1&v&0 —~&x&~

Finally, we give one of several recurrence re-
lations, '

(f + 1)sE„,(w) = i'E, , (w) —(2l + 1)wF, (w). (B6)

APPENDIX C: THE BUCHHOLZ FUNCTIONS

The Buchholz functions" mz~'(z) and wz~'(z) are
a system of linearly independent solutions of the
differential equation

and

~ -~/2zP /2

)

wlz~'(z) =z '
Wz ~/, (z)

~-~/2 u/P g p
P+1

m~" -=m M"' -=u
Y~ y Y'

(C2a)

(C2b)

d'u 1 du 1 y p'
2+ + — + ~ u=0.dz2 z dz 4 z z~ (C1)

These functions are simply related to the Whit-
taker functions M& s/s(z) and W& ~/, (z) and to the

Equation (Cl) results from the separation of the
Schrodinger equation for a Coulomb potential in

parabolic coordinates. '
The asymptotic expansions of the Buchholz func-

tions for
~
z

~

-~ are

v'e'/' p+1 1 —p 1 z& 'e " „., l& &„~~/, i 1+p 1-p
~"(') N(1+p)/2-y) ~ ~ 2

"'
2
" ~ 'r((1+p)/2+r) '

(C3)

where we take the upper sign for —&n&argz&2m

and the lower sign for —2v&argz& —,'m, and
going spherical wave in terms of Buchholz func-
tions"

was'(z)-z~ "'e ' ' F-u2 -z/2 1+p 1 —p 1
y 2 0 2

j/ t

(C4a)
I argz )& ss~, -

w (0) (ze %l 'IF

) (ze tl 7l)/ vse 8/s
y or

, g, (-i k$) wg, (-i kq)d v

sin(w v)

—1&0&0,
(C5)

1+P 1-p 1x,F,
2 2 z

~
argzz s (&sw.

(C4b)
etkr

= —2i k Q(-1)"w „v,(-i k$)w„,g, (-i kryo),
pl=0

(c6)

We also give two representations for an out- 0 ~q&$.
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