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The possibility of a model with a massive fermion, axial-vector and scalar mesons, and a massless vector
meson originating as a dynamical consequence of a chiral U(1) X U(1) gauge-invariant model with a massless

fermion and vector and axial-vector mesons is explored. A recent approach due to Cornwall which makes use

of an effective Lagrangian combined with the Callan-Symanzik equations, and its extension, are used with an

assumption similar to that of the Baker-Johnson finite quantum electrodynamics. The physical quartic scalar

coupling constant and the ratios of physical masses of axial-vector and scalar mesons with respect to that of
fermions are expressed in terms of the vector and axial-vector gauge coupling constants.

I. INTRODUCTION

At the present time there are two ways of in-
ducing spontaneous symmetry breakdown in gauge
theories. One way is to introduce elementary
Higgs scalar fields' with negative mass squared
which lead to nonzero vacuum expectation values
for scalar fields and generation of mass for vec-
tor mesons; such theories have been shown to be
renormalizable and unitary. ' %'e shall term this
mechanism Higgs symmetry breaking (HSB) for
brevity. ' The other w'ay is dynamical symmetry
breaking' (DSB) which envisages the possibility
of existence of nonperturbative solutions (with
massive vector mesons) to the field equations of
a symmetric theory without elementary scalar
fields. DSB is attractive because it does not
necessitate the existence of elementary scalar
particles which do not seem to have been observed
experimentally and which, in general, spoil the
asymptotic freedom of non -Abe lian gauge theor ie s.
The main hurdle one faces in any investigation
of DSB is that it involves solutions to homogeneous
integral equations for which conventional perturba-
tion theory fails. Recently Cornwall' (JMC) has
elucidated a novel method to deal with DSB without
any scalar bound states. He starts out with an

G(2) xO(2) gauge-invariant model consisting of a
doublet of fermions with the same mass and two
massless vector mesons. Each of the vector
mesons corresponds to a separate 0(2) symmetry.
One of the symmetries is spontaneously broken
giving a mass to the associated vector meson and
mass difference between fermions. In order to
show how the latter originates, JMC writes an
effective Lagrangian which has the required mass
spectrum and which is gauge-invariant (in a re-
stricted sense) and renormalizable but nonlocal
and nonpolynomial. Using the Callan-Symanzik
(CS) equations with P coefficients for gauge cou-
plings equal to zero, he shows that the bare mass

terms in the effective Lagrangian vanish in the
limit of infinite cutoff even though the correspond-
ing renormalized masses are finite, and thus he
demonstrates that the effective Lagrangian is a
phenomenological representation of the nonper-
turbative solution with relevant finite physical
masses of the original symmetric theory. Note
that having zero P coefficients in the CS equations
is analogous to the Baker-Johnson" approach to
finite quantum electrodynamics.

In this paper we investigate the possibility of
having a scalar meson as a bound state in t;he

framework of a dynamical symmetry broken model
using the approach of JMC outlined above and its
extension. We start out with a chiral U(1)xU(l)
gauge-invariant model with a fermion and vector
and axial-vector mesons all of which are mass-
less. (The triangle anomaly in this model can be
removed by increasing the number of fermions. )
The desired physical mass spectrum after DSB
consists of a massless vector meson in addition
to a fermion and scalar and axial-vector mesons
all of which are massive. We assume that P co-
efficients for gauge couplings and quartic scalar
coupling in the CS equations are zero. Using
methods analogous to that of JMC, we demonstrate
that, in a Lagrangian which has the desired mass
spectrum, under certain conditions various bare
masses and other symmetry-breaking terms
vanish in the limit of infinite cutoff, even t:hough
the corresponding physical masses and coupling
constants are finite. %'e use the vanishing of the
wave-function renormalization constant (Z, ,),
the vertex renormalization constant (Z») of
quartic coupling of the scalar meson, and the
ratio Z, ~/Z.„as criteria for compositeness. ' ' '
Our analyses lead to expressions for the fermion-
axial-vector-meson mass ratio, the fermion-
scalar-meson mass ratio, and the value of the
renormalized quartic scalar coupling constant
in terms of vector and axial-vector coupling con-
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stants.
In the next section we describe symmetric mod-

els with and without scalar fields and give an ex-
pression for the symmetry-broken Lagrangian
in the unitary gauge due to the Higgs mechanism.
Guided by this, in Sec. III we construct the effec-
tive Lagrangian and give a discussion of masses
and renormalization constants. The CS equations
for the effective Lagrangian are written in Sec.
IV. After calculating the coefficients in the CS
equations, asymptotic expressions for various
quantities and constraints for DSB are obtained.
The effective Lagrangian is compared with the
symmetric Lagrangian without scalars in Sec. V.
Section VI contains remarks on the relevance of
symmetry-breaking terms in establishing the
compositeness criteria for the scalar meson and
their relevance in non-Abelian theories.

= 8& V, —9, V„and G„,= B„A„—B„A„. We assume
P,'&0 and A &0. Equations (1) and (2) are in-
variant under infinitesimal gauge transformations:

1Vector: 64 = in@, ~V„=— 8&n,
g'vo

M =-i@a, BA„=O, 5
~

=0;(z
&rr

Axial vector: 54 =iPy,C, 5V& =0

(Z) ( 11)
(II) 4-Zi

Note that if P is finite, the transformation on Z
and II can be expressed as

Il. SYMMETRIC MODELS AND HSB

We begin by considering chiral U(l) xU(1)
gauge-invariant models with and without scalar
mesons. ' The corresponding Lagrangian den-
sities are

—exp(2io, P)
(Z
&11 11&

(4)

where v, is a Pauli matrix. %'e take the spontane-
ous symmetry-breaking solution of (2) to corre-
spond to

and

-gyo+r„+V" -g~o+r r @A"

Z„=Z, +-,'B„IIB"11+-.'B„ZB"Z --,'P,'(Z'+ll')

—4' (Z' + Il')' —2g„,(ZB"II —IIB"Z)A„

(Oi Zio)=z, eo.
Vfe make the following change of variables:

(Z ) . 11(x) Z, ') (Z(x))[=exp io, ' [+
(II) — ' OJ Cot

Note that under a finite gauge transformation

ri(x) —11(x) +2Z,P

(5)

(6)

+ 2g„,'(Z'+ ll')A' —Cp(z+ i~,ii)e, (2)

where 4, V„, and A„are massless spinor, vec-
tor, and axial-vector fields, and Z and II are
massive scalar and pseudoscalar fields, I'„,

and Z(x) does not change. We can choose the
gauge parameter P to be -Il(x)/2Z, for which
Il(x)-0. Then, indicating the transformed 4' and
A„by the same symbols, the Lagrangian becomes

+ r~B
p ZB

"Z —2(2iioz0 )Z' —~ozoz —
4

Z —g vo@y~@V" —g„o+yqy5'kA" —Go@ Z4' + 2g~o'(Z' + 2ZOZ)A' .

(8)

This symmetry-broken Lagrangian density describes massive Fermi, scalar, and axial-vector fields in
addition to a massless vector field. The massless pseudoscalar Goldstone meson which results due to
(5) has completely decoupled from the system. Note that (1) is renormalizable. Because the symmetric
Lagrangian (2) is renormalizable, the theory described by (8) is also renormalizable. '

III. EFFECTIVE LAGRANGIAN

Now we specify our massive model by an effective Lagrangian which has massive Fermi, axial-vector,
and scalar fields and which is U(1) xU(1) gauge-invariant and renormalizable. Such a Lagrangian is not
unique and could contain many parameters (masses and coupling constants). We construct a Lagrangian"
which is similar to (8) but U(1) xU(1) gauge-invariant, and for which the gauge-independent P coefficients
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for vector and axial-vector couplings are the same as for symmetric theory given by (1). (In this latter
aspect we are guided by the desire to have asymptotic freedom in the presence of scalars in non-Abelian
cases. ) Such a Lagrangian is analogous to that of JMC but more complicated:

8„,= l!,-4'm, (l + 2g„,a/i1, ) exp(2iy, g„,p)4'

+ —2'8" aB „a—(iaido'/4g«o )a —(~o po/2g~o)a' —«~oa + (2go + 2g«ogoa+2ggo a')(+ S"0) I «,=o 1a A

(9)

The infinitesimal gauge transformations on 11, V&, and A„are the same as in (3) but for the scalar we
have now ha=0 for both the vector and axial-vector cases. Note that (9) is invariant under this gauge
transformation in a. restricted sense, i.e., as long as p«10. The implications of such a restriction are
discussed in JMC. Note that if we choose the gauge in which S&A" =0, (9) formally seems to become the
same as (8) on identifying a with Z and having

Ao
—— 1o, Go ——(2g„orna/Po), Z, o= (&o/2g„o) . (10)

But we would like to emphasize that the theories described by (8) and (9) are physically different as would
be apparent from the Feynman rules for the axial-vector propagator (see below). In our work we are
concerned only with (9). We shall call the terms in (2,« —Z2) of (9) "symmetry-breaking terms. " The
nonlocality of Lagrangian (9) can be removed by adding to (9) a Lagrange multiplier term

-x( 0 —s &)

In order to arrive at Feynman rules we must add gauge-breaking terms to (9). The final effective La-
grangian is

2„,=2, -@ma(1+2g„oa/i1O) exp(2iy, g~op)@ + 2S"ae„a —(Aoi1O'/4g„o)a' —(Xopo/2g„o)a'

——«'Aoa + (—,
' po'+2g„oi1oa+2g„o'a')(A" —S"p)' —X( p —S A) ——[(S ~ V)2+ (S A)2],

2n

where g is the gauge parameter. %'e take the
gauge-invariant field 0 to be normal-ordered.
The free propagators are

iG =i(P —m, ) ', Da (k2 M 2)-1

Mao ~0l 0 /2gAo

iD„„= i[go„—-(1 —g)k„k, k ']k ',
iD"„„=-i[( g, 2—k„k, k ')(k' —go') '+gk„k, k «],

sa ~ =- iq&-'.

(12)

&"I'"(f1 P+1f) =y, & '(P+q)+& '(p)y„ (13)

'+iZ(P). To the first order in g«,
I ~

= 2P Il P5 + 2ZQ5PPl gg' ~
Q' (14)

which satisfies (13). One can verify that it is
satisfied in higher orders also. We define the
necessary renormalization constants:

%le note that the source of the axial-vector field
in (9) is conserved. Also we can formally derive
the Ward-Takahashi (WT) identities for proper
axial-vector vertices. The proper vertex for
axial-vector-fermion coupling, g„F~, obeys the
same WT identity as given by (1):

4 =Z2p 4 ~, V~ =Z2v 'V~Il, A]1 —Z2~ 'A~„,
1/2 1 -I /2O=Z va Rvo=Z vZz Z v gv

gAO 1.A 2F Z2& g~ & 0 l QZ2o ~ ~

Because of the WT identities Z2~, Z, „, and Z»
have the same cutoff dependence. There are
many more contributions to the axial-vector-
meson self-energy than to that of the vector me-
son. But the divergences that come in are log-
arithmic and can be removed by mass renormal-
ization, and Z, v and Z» differ by finite factors
from the corresponding ones for the symmetric
theory. This is not true of Z2~, Z, v, and Z» and

we shall comment on this aspect later. Only Z,
and Z, z have no analogs in the symmetric theory
given by (1).

Our object is to show that (9) is a representa-
tion of spontaneous-symmetry-broken solutions
of (1). For this purpose the necessary conditions
seem to be (in the limit of infinite cutoff) as
follows: (a) m„ I1O, and M„are zero even though
the renormalized counterparts m, p, , and M,
are nonzero, and (b) Z, and Z, 1 are zero. Note
that the latter condition is understood to be the
criterion for compositeness in field theory. ' Vfe
could require in addition that Z,~Z„' vanish. '
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In order to see whether these conditions are sat-
isfied we use the CS equations.

IV. CALLAN-SYMANZIK EQUATIONS

AND ASYMPTOTIC SOLUTIONS

%'e have three coupling constants and two masses
in (9). The CS equation" for a renormalized one-
particle irreducible, amputated vertex I" is

Because of the comments after (15), P», P„, y„,
and y„are the same as in the symmetric theory.
y& is not the same, but as we shall see, in the
lowest-order perturbation calculation, it is
gauge-dependent as is its counterpart in sym-
metric theory. This does not matter for us be-
cause we are interested in comparing symmetry-
violating terms with symmetric terms and this
does not involve yz.

In our model we assume

P, =o (i=U, A, X) (22)

K=SR, +%,+N, +%,+%, + N, ,

where

(17)

SR, = 4 m, exp(2iy~»P)4,

SR, = —2 yo'(A„—8
q
P)',

SR, = (2g„,m, / po)C o exp(2iy, g„,y)+,

2g~o Woo (+p

SRo = (~opo /4g~o )o ~

SRo (Xo 9o/2g„o) o

(18)

where P = '8 ~ A. DSR can be expressed in terms
of two functions 6, and 5, defined by

(16)

where I' describes a process with N; fields of
type i each having anomalous dimension y,.
(i = F, U, A, o). P», P„, Po, and y, are dimension-
less functions of renormalized coupling constants
and mass ratios: D =m(8/Bm)+ p(8/8 p) (with re-
normalized coupling constants fixed). The right-
hand side involves the operation of D =m(8/Bm)
+ p, (8/8 p, ) (with unrenormalized coupling constants
fixed} acting on the unrenormalized vertex I'„
expressed in terms of bare masses and coupling
constants. %'e refer the reader to JMC for de-
tails. In our ease the right-hand side of the CS
equation is given in terms of D3p with

to mimic a situation in which there is an ultra-
violet-stable fixed point. This assumption leads to

y~=o=yv P„=o (23)

the latter following from il„= -»iy„». Hence our
model takes after the Baker-Johnson finite quan-
tum electrodynamics. '' Also, assumption (22)
brings us closer to what happens in non-Abelian
gauge theories. We do know that P»=O=P„corre-
sponds to the approximation of neglecting self-
energy corrections to internal vector and axial-
vector lines. '' It would be interesting to investi-
gate whether our assumption of P~ =0 could follow
as a consequence of this approximation when one
treats the bound-state problem using the Bethe-
Salpeter equation.

Z, (p) - O(SR,),
Z, (P) —O(SR,SR,') .

(24b)

A. Expressions for masses in the asymptotic limit

Making use of the CS equation for the fermion
proper self-energy Z(P) which receives contribu-
tions of O(SR, ) and O(SR,SR,'), we can arrive at
its asymptotic form. Let

(24a)

where

D lnmp 1+5y,

Ding = 1+52.

Then we get

(19)
The CS equation for Z(P} reads

(D —2r&)~(p) = (1+5,)~,(p)

+ (1+35,—25,)Z, (p) . (25)

DSR, = (1+5,)SR, , DJR, = 2(l+ 5,}SR2,

DSR, = (5, —5,)SR, , DSR, = (1+5, )SR, ,

DSRo = 2(l + 52)SRo, DSRo = (1+52)SRo,

the sum of which is D5$. Also we have

y; = D lnZ„'I' (i = F, U, A, o),
P»= g»Dln(Z, »Z, »'I'Z, » '),

Pg
——XDin(Z2o'Z, q '}.

(21)

(1+5,) =(1+35,—25,),
which implies

5 =5~ = 52.

Then we have

(D-2r )~(p) =(1+5)~(p),

(26a)

(27)

Because there is no physical significance to
separating Z(p) into two parts and because we
have one equation involving Z(p) only, we can
arrive at an expression for it if
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which gives the asymptotic form for large space-
like p

Landau gauge (7) =0) is much simpler and obtains
the same answer. The result is

~(P) -m&( P'/M-') '~ (28)

where B is a dimensionless function of mass
ratios and coupling constants (DFMC). M' is any
combina. tion with dimension 2 of masses in the
theory. The anomalous dimension of the fermion
field, y~, can be calculated in a general gauge
using (21) in the lowest order:

This gives

x a.„L,(g~„—k„k, k ') .

2
2&AQ mp 3&AQ=pp 1+ 2 L

7T P, p 7T

11~ (k) = ( &~orna —3&gpp, o
—gckgok )

7T

(36)

yp = —(D~ + D y)'g + —Qg(m /p, ),1 1

47T 27T

where o. , =g,.'/4m (i =A, V). It is to be noted that

(—P'/M') ~r factors out of the full inverse propa-
gator. Hence the ratio of the symmetry-violating
term with the symmetric term does not involve

yz and is gauge-invariant. If 5 &0, Z(P) vanishes
with respect to the P part.

Now we turn our attention to the symmetry-
violating part of the axial-vector polarization
II»„„which is that part of polarization which
vanishes when p, p and mp are zero. This receives
contributions of O(K,'), O(K, ), and O(SR,'). De-
fining II» as

II",s„„(k)= (k'g„„—k„k)II",~

and using (26), we get the CS equation for Il~s,

(3o)

(D —2y„)II& = 2(l+ 5)ii~s .
Hence the asymptotic solution is

11„(k}- i 'C(-P'/M') -&~-', (32)

IQ vp 3 QAQ 3 mp
m mp 1 + +Ap

47T 47l' 27l' P p

where C is a DFMC. In our model y„=0. II»
vanishes in the limit of large spacelike p for 5 &0.

%'e calculate 5, and 52 in the lowest-order per-
turbation theory. This involves the evaluation of
self-energy diagrams for the fermion and the
axial-vector meson. We emphasize that for fer-
mion self-energy, the contact term from
-2g»'m, 44( '8 A)' is essential for a gauge-
invariant answer (Note t. hat a, similar situation
arises in the scalar quantum electrodynamics. )
In a general gauge there are eight fermion self-
energy diagrams. Ignoring finite terms we find

Use of (19) gives

2QA m 3QA
7l' P, 7T

Combining (26), (34), and (37) we get

(38)

We have already seen that in order to satisfy the
conditions for DSB, we must have 6&0. With
(26), (34), and (37) this implies

——1 &2—2 &3) (39)

which is consistent with (38)." Integration of (19)
gives

m, = m D (A'/M')

E(A'/M').
(40)

where D and E are DMFC. Hence m, and p., van-
ish in the limit of infinite cutoff even though their
ratio is finite.

(D —2y, ~)Z, ~ =o, (41)

where y, ), = D lnZ, ~' '. The lowest-order diagrams
which contribute to Z, ), are shown in Fig. 1. We
have ignored the diagrams of O(X,') because the
bare o mass M, o of (12) should not become infinite
in the limit g„,-0, and this requires A, -O(g„,').
They give

B. Asymptotic expressions for Z, ~ and Z,

The renormalization-group equation for Z, ~ can
be easily obtained by operating D on both sides
of Z» 'Z, „=1and using the chain rule. As P's
are zero we get

where L—= ln)A'/M'). Using (19) we find

3 3 m'
6 = —(o. —n ) ——o.1 2~ V A

7T
A ~2

(33)

(34)

L
Z, ~ =1+ —,['—,,'Z+g„'Z '(3 —4m'p, ')],

which gives

1y„=-,[4z+4g„'A '(3 —4m'p ')].1 4+2 4

(42)

We have computed the axial-vector polarization
in a general gauge. It involves 21 diagrams, and
it is gauge-invariant. The computation in the

Now (41) yields

Z, q ~ H(A /M') &», (44)
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(0)

/
p'

/

(b) (c)

which can be expressed in terms of only o.~ and
o. v using (38). It is easy to see that

(54)

Expressing (53) in terms of o„and n„we have
F E RMIQN: , SCALAR:---, AXIAL-VECTOR: ~
FIG. 1. One diagram from each of the cl.asses of dia-

grams which contribute to vertex renormalization con-
stant Z && in the lowest order, There are five more
diagrams in class {a), and two more in each of the rest.

where H is a DFMC. In order to satisfy the DSB
condition Z, ~-O and hence we require y» &0.
Combining this with (43), we get

(55)

»
Z~~

(56)

Because of (54), (45) is automatically satisfied by
(55). For the value of A. given in (55)

where

(45) where K is a. finite DFMC. Prom (44} and (50)
it follows that

(46)
]x 0

Z2a
(57)

(D —2y.)Z, .= 0. (47)

In the computa. tion of y, we ignore the self-energy
diagram of O(X') as it would be of O(g„') by the
above consideration. In a general gauge there are
12 self-energy diagrams of O(g„') but only the
fe rmion loop contribute s to Z„:

This tells us that X can at most be of O(g„') which
is consistent with neglecting the diagrams of
O(XO') mentioned above.

The renormalization-group equation for Z„ is

Z2/ ~ N(A'/M') ~F,
(g2-+ ao

(58)

where N is a DFMC. The renormalization con-
stants, Z» and Z», are independent of cutoff
as yv=0=y„.

in the limit of infinite cutoff. Thus all of the
compositeness criteria are satisfied by Z, and

Z»I
The asymptotic expression for Z» could be

obtained by solving the corresponding renormal-
ization-group equation. We get

2

7T

This gives

2QA m
7T

Thus the asymptotic solution for Z, is

(48)

(49)

V. RELATIONSHIP BETWEEN Z~ AND 2( ff

At the end of Sec. III we gave the necessary con-
ditions for spontaneous dynamical symmetry
brea. king. The only condition we have not dealt
with so far is the vanishing of M„given in (12).
In terms of renormalized quantities we have

Z2 ~ J(A'/M')
P2~ oo

(50) Z» A'
M~0 =M F.

2G
(59)

where J is a DFMC. As y, &0, Zo-0 as A'-
thus satisfying one of the compositeness conditions
for v trivially.

Because P~ =0 in our model, we infer from (21)
that the ratio (Z„'/Z, ~) must be cutoff-indepen-
dent. Hence we must have

where

M,' = A. p, '/2g„' . (60)

Using (56), we see that M,o vanishes in the limit
of infinite cutoff. Combining (38) and (60) we get

2yg —y (51}
m 12m &v+ &w

M~ 5 A.
(61)

This condition yields

A. =A2,

where

8 2 m m4

(52)

(53)

where h. is given by (55}.
Now let us look at each term in the effective

Lagrangian (9). We compare the symmetry-
violating terms having 4+ with the corresponding
symmetric term. Because (y —5) &0,
mo(1+2g„a/go)- mo-0 asymptotically. Thus
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these symmetry-violating terms vanish with re-
spect to the P part of the symmetric term. It is
trivial to see that all other symmetry-breaking
terms in (9) vanish. For example, consider the
u' term. The renormalized coupling is (Ag/2g„)
which is finite, and the cutoff dependence of the
corresponding vertex renormalization constant
is given by Z, ~Z„'"Z,„'"(A/M) ~ which vanishes
because (y, ~ ——,

' y, + 5) & 0 as 5 & 0 and y, z & 2 y,
from (51).

VI. CONCLUSION

We have deduced a set of conditions (38), (39),
and (55) at the fixed point in order to have dy-
namical symmetry breaking with a scalar meson
as a. bound state. This necessary set does not
form a sufficient one any more than the necessary
condition that a bound-state Schrodinger wave
function behave like exp(-~K~ r) at infinite r en-
sures the existence of the bound state. The scalar
meson is a bound state in the sense that Z, z, Z2~,
and Z, „/Z, , vanish asymptotically. " This is due
to the symmetry-breaking Yukawa term corres-
ponding to Ã, of (18) which is proportional to the
gauge coupling constant g~, . Thus this symmetry-

breaking term of the Yukawa type seems essential
for the composite character of the scalar meson.

We can generalize our treatment to non-Abelian
gauge theories. The method consists of (a) con-
structing an effective gauge-invariant Lagrangian
(in a restricted sense) and (b) showing that the
symmetry-breaking terms vanish asymptotically
and scalars satisfy the compositeness criteria.
Note that in this case there is no need to assume
J3 coefficients vanish because of the possibility
of the existence of the ultraviolet-stable fixed
point at the origin. In our preliminary investiga-
tion we find that the symmetry-breaking terms
similar to the Yukawa term mentioned above play
an essential role in satisfying the compositeness
conditions mainly because they are proportional
to the gauge coupling constant, and hence their
contributions survive in the asymptotic limit.
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