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A four-particle dual model is constructed with two diAerent Regge trajectories in both the s and t channels.
The amplitude is crossing-symmetric, has residues that are polynomial of correct order, and has full Regge
behavior. In a certain limit it becomes the Euler B function. The multiparticle generalization of the present
model will be relevant to construction of hadron models with realistic mass spectra.

I. INTRODUCTION AND MOTIVATION

All attempts to construct dual resonance models
have, so far, made the simplifying assumption that
there is only one parent Regge trajectory per chan-
nel, accompanied by its infinite family of unit-
spaced daughter trajectories. In nature, however,
the situation is more complicated; for example,
in a three-pion channel both the m trajectory [in-
tercept n(0) = 0] and the &v trajectory [n(0) = —', ]
couple. Thus, we need a model that allows for
this possibility.

The situation becomes particularly acute when
we try to formulate a realistic meson model which
includes strangeness, for even if we are prepared
to tolerate the m-co trajectory degeneracy and have
only p [n(0) =-'. ] and x [n(0) =0] parent trajectories
(in different channels), when we attempt to include
K [a(0) = ——,'] and K* [a(0)= —,'] then in the channel
Kmm-Km@ both parent trajectories occur in the
same channel.

The existing philosophy among dual-model pro-
ponents seems to be that one should accommodate
two different parent trajectories in the same chan-
nel by sum@ning different terms. This was sug-
gested, for example, many years ago by Olive and
Zakrzewski' and by Rittenberg and Rubinstein. '
The difficulty, known to these authors, of this ap-
proach is the proliferation of terms in the N-par-
ticle amplitude (the exact number is [(2N-4)! /
(N l)!(N 2)!] 2" '---8" for large N), and the con-
sequent loss of factorization on the daughter tra-
jectories.

An interesting attempt to overcome the v-m tra-
jectory degeneracy in the Neveu-Schwarz six-pion
amplitude was made by Brower and Chu'; their
modification is made in a phenomenological spirit,
without attempting to set up a factorizing system
of N -pion amplitudes.

In the present paper we attempt to make the first
step toward setting up a dual model with two (or
possibly more) different parent trajectories in the
same channel. The most interesting case phenom-

But our objective here is to write an integral rep-
resentation where the different parent trajectories
are accommodated in a more essential way; the
hope is then that a multiparticle extension will
have more favorable factorization properties.

The outline of the present paper is as follows:
In Sec. II we make some general considerations
about the amplitude; in Sec. III we give our spe-
cific proposal. Polynomial residues and Regge
behavior are discussed respectively in Secs. IV
and V. Finally in Sec. VI there is some discus-
sion.

II. GENERAL CONSIDERATIONS

We want our amplitude to have resonance poles
corresponding to e„a„a„a,so it is natural to
write a general form

dx,dxPxPx, V (x,x,x,x,)
P P 0 0

ns-1 ns-1 -n&-1 -n&-1
X &1 g2 s

x '"'5(f,.(x,.)), (2)

where the upper integration limits are, for the
moment, left unspecified (see below) and there
are three 6 functions, since anything less is in-
compatible with the requirement of polynomial
residues. Now the integrand should be crossing-

enologically is the six-point function, where the
3m- 3m andKmm-Kmm situations occur, but for the
purposes of mathematical simplicity we here con-
centrate on the four-particle amplitude. The ob-
jective is to set up a four-particle amplitude A(s, t)
with two different parent trajectories o.„n, in
the s channel, and correspondingly nt, n, in the
t channel. The simplest prescription, following
the philosophy of summing terms, is to write

A(s, t) =B( n„-n, )-+B( n„-n—,)

+B(-n„—n, ) +B( n„—n, ).-
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symmetric under the permutation 1234- 3412 and
it follows that, solving in terms of x„

x,(x,(x,)) =x,

and hence a possible solution is

X~ =C —Xg,

&4 =C —X2,

(4)

(6)

where c is a constant so that the amplitude simpli-
fies to

A~= dxdpV xp x ~ y

&(c —x) ' '(c —y) "' '

x 6(f (x, y)). (6) FIG. 1. Integration contour in the x-y plane.

The requirement of polynomial residues further
imposes the conditions that

f(0, c ——)=0, eral consideration of the preceding section. The
model is

and symmetry under 1234- 2143 dictates that

f (x, y) = f (y, x) .
The simplest possibility consistent with these

requirements is to inscribe an ellipse inside the
square 0(x, y ~c. This gives

f(x, y) =(c'-1)(x+y -c)'+(y -x)'-(c'-1).
(10)

We shall further require that when n, —0, ,
n, —e„c—1 the amplitude reduces precisely to
the Euler B function; we see that f(x, y) of Eq.
(10) is consistent with this requirement since when
c-1, f(x, y) =O~x=y.

Our proposed model is not simply the substitu-
tion of Eq. (10) into Eq. (6) (this violates Regge
behavior) but a modification of this substitution
procedure as described in the subsequent section.

III. THE PROPOSED MODEL

dx(y —x)x "' 'y I' '(c -x) ~' '(c -y) "' '
r

where the line integral is over the closed contour
I' = I", + I', + I', + I', depicted in Fig. 1.

The segments I', and I'4 correspond to the ellipse
of Eq. (10) and can be solved to give

1 2y, , = —,fc (c' —1) +x(2 -c')+ 2[x(c -x)(c' —1)]'~'],

(12)

or

x, , = —,(c(c' —1) +y(2 -c')+ 2[y(c -y)(c' —1)]')"[.1

(12)

The segment 1, corresponds to the reflection of
the ellipse, Eq. (10), in the line x+y =c —1/c, that
is,

2 2

(x -)0'+(c' —))(x c) -c +— —(c' —)) =0,
C

We are now ready to write down our proposed
model, which is obviously motivated by the gen- which gives

(14)

y, = —, (c' —2) c ——+ x(2-c')+2(c' —1) x+ — c ———x
C C C C

(16)

or

x, = —, (c' —2) c ——+y(2 —c')+2 (c' —1) y+ — c ——-y
C C C C

(16)
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gimilarly the segment I', is the reflection of Eq. (10) in the line x+y =c +1/c giving

2 '
(x -))'+(c' —l)(r+y -c —— —(c' —1) =0

C

corresponding to1, 1, , 1 1
y, = —, (c'+2) c —— +x(2-c') —2 (c' —1) c+—-x x-—

C C C C
(18)

or 1, 1, , 1 1
x, = —, (c'+2) c ——+y(2-c') —2 (c' —1) c+—-y y ——

C C C C
(19)

This completely specifies the amplitude. After straightforward algebra, one deduces that

] 1/c
A, =, dx 1+—[x(c —x)(c'-1)] i' x "' '(c -x) ' 'y "' '(c -y, )

2C p GX

1 " d 1 1
dx 1+—x+— c ——-x (c' —1) x ~ '(c x)-«-'y — -'(c y

)-"t-'

2 -n -1 -n -1 -n -1 -n -1dx 1 ——x- — c+—-x (c' —1) . x "~ '(c -x) "t 'y, ~ '(c -y, ) "& '
2C 1' dX C C

+(Q~ o(~; (Xg Q().

Here we have defined

(2o)

1 1A= —+———
2 2 c (21)

c 1 1g= ———+—
2 2

as the coordinates of the points A, B in Fig. 1.
Note that in the limit c-1, then A. -O, B-l, and y, -x (i =1, 2, 3, 4) so we obtain

1
dxx-&s-&s-2(1 x)-«-™t-2

C~1 p

(22)

corresponding to an Euler 9 function with effective trajectories

Q =CV +H +1

o. 't =et+a. t+1.cff

(24)

(25)

Note, in particular, that the (equal) Regge slopes of a„a, must be equal to —', n." for consistency; this
will be important in the later development.

IV. I OLVXOMIAL RESIDUES

Because of the symmetry properties built into the amplitude we need study in detail only one of the four
singular points. We choose to study the poles in n, which arise for x -0 (y-c —1/c). The contributions
are from two terms in Eq. (20), namely

& /c
(AX 1+—XC —X C2 1 1/2 X ns 1C —X t y

ns 1C ~
-at-1

0

dx 1+—x+— c ———x (c' —1) x ~ '(c -x) "t 'y, "~ '(c -y, ) "& '. (28)
2C p dX C C
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We deal with the first term first. Using the formula for y, in Eq. (12) we find that
OO

tt "' '(c —X, ) "' '=(c —— c *' g P !P'1(—a —l)P t( —a —l)x "'
g=p b=p

(27)

where

ns -&
exp+1 p ( 1 @n /2

n=p

P"'( a)=.(&) (c ——
) (—,—1) P [1"(2-c') 'f( , c),1

f=p
(29)

P',"(a)= — c —— —,—1 Q (-I)'~ ~2 (2-c') '(c' —I)'f(&, t), (3o)

P„( a, —-1)= Q P['~„(-a, —1)P[„2](-a,—1),
r=p

(31)

f( t)= aQ(-1)' )&"(&-c') "(c' —1)'.
r a —i —8'

(32)

Further, we need the power expansions

( ~) txg 1 ' 0
C t)tt 1 n( 1)n~

~-n -1
n=p

and

—[x(c —x)(c' —1)]'t'=[(c' —1)]' 'P[ )(
—1) (mx —')c't' x" 't'.

dx mnp m

(34)

Combining these results, we find that if we define then we can rewrite this term as
[0/23

R, (ti= P (-1)"
[

' )P, , (-a, —1),
mnp ( m

C+ 2
[nt[n]+ 1/2 S„(t)

C g-HS (41)

1

2c
i/c s

dxx "' ' c —— c MS (t) "/' '/'
c n

nnp

(37)

where

S (t) =R,'(t) =-', [c(c' —1)]'/',

S„(t)=R„'(t) +R„,(t), n - 1

(36)

(39)

ns —es ~

In particular, S„(t) is a polynomial of degree n int.
Therefore, if we define as the actual trajectory

a(s) =2a, +1, (4o)

[n/2] I/t2
R„'(t) = P R„(t) (-1) (m+-')c' ' [(c' —1)]' ',

m=p m
(36)

then the first term in expression (26) is equal to

Concerning the second term in (26), it is straight-
forward to show that it may be rewritten as

-[tn fn )+ &]/2 at q (t)
C ~ 2n+ 1 -a(s)'

where Q„(t) is a polynomial of degree n in t
Thus this second term contributes residues of

lower degree than the first, and does not contrib-
ute to the parent resonances, only to low-lying
daughters.

What is worth emphasizing is the identification,
Eq. (40), which is precisely that implied by the
limit c-1 discussed in the preceding section [see,
in particular, Eq. (24)]. To see this, note that if
on taking the limit c-1 we also take b, -0 (~ a, -a,)
then Eq. (24) coincides with Eq. (40). This is a
happy event since it ties together the original
choice of the quadhat/c form in Eq. (10) with the
existence of the Euler-8-function limit; thus the
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insistence on this limit removes any arbitrariness
in the choice of the integration contour.

V REGGE BEHAVMR

Our proof that the residues are polynomials of
the correct degree is a necessary, but eat suffi-
cient, condition for the amplitude to possess cor-
rect Regge behavior. This is because of the extra
s dependence implied by the factor y ' ' in the
expansions made in the preceding section. Be-
cause of this there is the danger that the ampli-
tude, although meromorphic, may not be com-

pletely expressed in terms of its poles (with en-
ergy-independent residues at constant momentum
transfer) and that there could be, in addition, an
entire function. Such an entire function would,
in general, lead to violation of Regge behavior
because it is dictated by the Phragmen-Lindelof
theorem that an entire function must increase in
at least some directions of complex plane. "

In order to investigate this question we use the
Laplace-Watson approach to the asymptotic ex-
pansion of integrals. ' We may rewrite Eq. (20)
in the form

dx(xy, ) ' '[(c -x)(c -y, )] "t '[x(c -x)] —x+ x+— c ——x (c' 1)

1/e

+2, dx(xy, ) & '[(c —x)(c -y, )] & '[x(c —x)]~—fx+[x(c -x)(c' 1)]'i']
&O

dx(xy, ) ' '[(c -x)(c -y, )] "' '[x(c -x)]~—x — x- — c+—-x (c' —1)

+ ((X~ ~ %~~ lY~ (Vt). (43)

The Regge asymptotic behavior of each of the three terms in (43) will now be examined. Let us define

(44)

(45)

then the first term in (43) is equal, without approximation, to

A2
ns-1

2 1/2 -ng 1

(4c )
[ (1 lf 2)]l~zl 3-—,+z, —2 z, + 1 —~

2-1/2 1/2
X C — 3 ——

2 2 Zl+ ~ 2 + C —~ C — I —2& —2Z + 1 —1P ) 2 ~ 46
C ]

Now, since''& 1 (provided c & 2), this term vanishes exponentially as Reo, ——~.
Concerning the second term in (43),. define

V2' = &X2~

whereupon this term becomes

(47)

1

fv v 2&s--(1 v ) 2ng 2(4c2) 6[ca —(1 2v +](c~ 1)[c2 (1 —2v )2]l I 2)2]
C

(48)

and when Reo.', ——~ the dominant contribution is from v2- &. The final factor has the Taylor expansion

[c' -(1 —2v, + ((c' —1)[c' —(1 —2v, )']] '~') '] = Q o.„(1 v, )",
n= 0

(49)

where„ for example,
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a, = [4(c' —1)]~,

a, = -8b.(c' 1)[4(c' —l)]~ ',

a, = 166[2(b —1)(c' —2)'+c' —6c +4][4(c' —1)]~ '.
Making the change of variables

(50)

(»)
(52)

V2 =e

we obtain the Laplace transform

1
(4 2)-6 d~ w 2tx 1 (1 w/) 2R) 2+fl

n=p C p

~(c ' —1) (1 —2a, )'"&+ 'I'(- 2a, —1) + (correction terms - 1/s). (54)
2c c

For the third term we change variables to

(55)

(56)

and rewrite this term as

1 pI

S/2
x g 1 —+2 z3 —1+~ — g' 1 t."' 1+2 g2 —2 z —1+1 g ' 2 ) (5V)

The dominant contribution in the limit that we are considering is from z, - 1, so we write
(58)

and find that the leading term as Rea, —~ is (B=c/2 —2+1/c&1),

—,(c' 1)
p -1n+2

Jp

~ (-a s)1n( &/B 2)

dm e""'[(c—1)to] "' '= ——,(c' —1) (c —1) ' (-a )
4 2

1

„C op

(59)

To summarize and collect together the results of this section, we have shown that for Re~, — ~ 3t fixed

t
1&

A. ,———,(c' —1) (1 —2a,)'""'I'(-2a, —1)

qb,
+——,(c' —1) (c —1) ' '(-a, ) "'I'(-a, )+(a,—a„a,—a, ; &- —&).

This result agrees precisely with our expecta-
tions from the discussions of the preceding sec-
tions; since if we define the actual trajectory
again as a(t) =2a, +1 then the leading Regge be-
havior in

nt;t} +S +~~~

limit Re n, —-~ and we now must discuss the
Regge behavior in the right-half s plane
(Rea, -+~). To do this we exploit Watson's
lemma which, in the present context, may most
usefully be stated as follows: Given that

as required.
Of course, we have derived Eq. (60) only in the

p OO

A(a„a,) =
~ dye'~'g(e ', a, )

Jp
(62)
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and that g(e ', a, ) ha. s the asymptotic expansion

then for A(o.„o.,) the asymptotic expansion

(64)

is valid for all larg( —a, ) l
& npr'ovided that

(i) g(e ') is analytic for Hey &0, and
(ii) for every value of arg(y) between --', m and

-', m there exists a positive M such that for lyl &0,
la(e ')l&M.

In the present case, we can confirm that for
each of the terms in Eq. (43) the integrand has the
required analyticity properties and that rotation
of the contour is allowed.

VI. DISCUSSION

It has been shown here how to construct a four-
particle dual model with two different parent
trajectories per channel; the amplitude has the
correct polynomial residues and Regge behavior
for lo.', l-~ at fixed t, ln, l-~ at fixeds. Its con-
struction is strongly constrained by the require-
ment that when the parameter c-1 it becomes the
Euler B function.

The parameters 4 and c are free and indepen-
dent in all considerations we have made. %'e note

only that if c =&2 the integration contour becomes
especially symmetric; and if b = —,

' there is a
square-root branch point rather than a more com-
plicated sheet structure. Neither choice is yet
compelling, and the absolute value of the inter-
cepts is still unconstrained.

The present study leads naturally to several
further consistency questions:

(i) What is the behavior of this amplitude when
8-~, t- —~ at fixed u?

(ii) What is the fixed-angle behavior?
(iii) Are the partial-wave projections of the

residues positive?
Concerning question (iii) we expect that for some

finite range of c and 6, in the vicinity of c= 1 and
6=0, and for intercept values near one, there
must be positivity since for these precise values
it is known to be true.

In addition we may ask:
(iv) How does the answer to question (iii) de-

pend not only on c, &, and the absolute intercept
values but also on the space-time dimensionality?

If acceptable answers to these questions can be
proved, then the next step is to generalize to a
many-particle amplitude. After all, the original
motivation as discussed in the Introduction was to
study the channels 3n'-37t andKmm-Km@ occurring
in the six-pseudoscalar amplitude.

These questions are under investigation, and we
hope to report on their answers on a future occa-
sion.
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