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Background-field method versus normal field theory in explicit examples: One-loop divergences
in the 8 matrix and Green s functions for Yang-Mills and gravitational fields
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The gauge dependence in the background-field method of counterterms on and off the mass shell is

investigated in several gauges for Yang-Mills and gravitational fields, including the axial gauge. The results

agree with theorems of DeWitt and Kallosh, The relation between the quantum and classical gauge-fixing
terms is discussed. It is shown how to determine specific S-matrix elements in the background-field method.
A complete calculation using normal field theory of the one-loop divergences of scalar-scalar scattering
through graviton exchange is presented. The results agree with those obtained in the background-field method

by 't Hooft and Veltman.

I. INTRODUCTION

Whereas on the theoretical side several excellent
articles have been written on the relation between
the background-field method' ' and normal field
theory, there is a conspicuous absence of explicit
calculations verifying these theoretical results.
Now that the background-field method has been
proven useful in calculations ' which would have
been extremely difficult in normal field theory, it
is desirable to check and elucidate in explicit ex-
amples the relation between the two methods.

In this paper we exhibit in several examples the
gauge dependence off and on shell in the back-
ground-field method of counterterms for pure
gauge fields and for gauge fields interacting with
matter fields, thus verifying theorems of DeWitt'
and Kallosh. ' We also present a complete calcu-
lation of the one-loop divergences of scalar-scalar
scattering through graviton exchange using normal
field theory, thus verifying the background-field
results of 't Hooft and Veltman4 and the equality
of the S matrices in both formalisms.

Why does one use the background-field method,
for example in the calculations which dealt with
the renormalizability of quantum gravity?'~' In
this method one considers both classical and quan-
tum fields and as dictated by covariant quantiza-
tion, one breaks only the invarianee of the theory
under quantum gauge transformations. There re-
mains then the gauge invariance of the classical
fields, and it is this residual gauge invariance
which serves as a useful bookkeeping device,
thereby rendering the algebra manageable. An
even greater advantage of the background-field
method is the existence of a certain local gauge in-
variance, even present for nongauge theories,
which enabled 't Hooft' to derive a simple algo-
rithm for the one-loop divergences of most La-
grangian field theories. '

However, several questions arise. For one-
particle-irreducible diagrams, there is a dif-
ference between normal field theory and the back-
ground-field method insofar as the gauge-fixing
term (and hence the ghost term) may introduce
additional vertices in the latter method. Do these
additional vertices affect the S matrix and the
counterterms? DeWitt has proved that this is not
the case for the S matrix' (and hence for the coun-
terterms on the mass shell), whereas Kallosh has
shown' that for pure Yang-Mills fields the counter-
terms are independent of the quantum gauge-fixing
term even off the mass shell —a result which is
well known not to be true in normal field theory.
We will investigate whether her theorem can be
extended to pure gravitation, and check these
statements in explicit calculations involving both
Yang-Mills and gravitational fields.

In the background-field method one obtains the
Green's functions from the one-particle-irreduci-
ble diagrams by substituting for the background
fields suitable solutions of the classical field
equations. How does one extract from this result
the S matrix for a given process and does one re-
cover the results of normal field theory'? The
answer to the latter question has been given by
Kallosh, who stressed the pivotal role of the axial
gauge. ' Not only can the equivalence of canonical
and covariant quantization be proved in this
gauge, ' but the axial gauge is also the only gauge
in the background-field method which does not in-
troduce additional vertices. From this latter
property equality of the S matrices can be proved.
We will cheek these theorems by comparing the
counterterms for a given physical process cal-
culated both in the background-field method and in
normal field theory and establishing their equality
when the external lines are on the mass shell.

The paper is organized as follows. In the next
section we summarize some aspects of back-
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ground-field theory and extract the divergences
in the 8 matrix for gravitational scalar-scalar
scattering from the one-loop divergences of the
scalar-graviton system, as calculated in the back-
ground-field formalism by 't Hooft and Veltman. '
In Sec. III we investigate whether Kallosh's theo-
rem on the gauge independence of the counterterms
off the mass shell can be extended to pure gravita-
tion. We Men consider four different gauges in the
background-field method, including the axial gauge,
and calculate the corresponding counterterms for
Yang-Mills and gravitational fields. The calcula-
tions are very elaborate (which might explain their
absence in the literature), but since they proceed
along the same lines as in Refs. 4, 6-8, we give
only a few intermediate results. In Sec. IV the
complete calculation of the one-loop counterterms
in normal field theory for scalar-scalar scattering
through graviton exchange is presented. The cal-
culations are performed using a symbolic mani-
pulation program. " Several Ward identities, de-
rived in Appendix B, are used to check the two-
and three-point functions on and off the mass shell,
and the final result is compared with the result for
the same process in the background-field method
as derived in Sec. II.

We use the notation g„, for the flat-space met-
ric, which is (1, 1, 1, -1) throughout the paper.

II. COUNTERTERM S FOR A GIVEN PHYSICAL PROCESS

IN THE BACKGROUND-FIELD METHOD

For a nongauge theory the background-field
method is defined by the following steps. First,
replace in the original classical Lagrangian any
field Q by the sum V+ Q, where V is called the
background (or classical or external) field and &f&

the quantum (or internal) field. Expanding the La-
grangian in Q and discarding terms independent of

Q and linear in Q, the effective Lagrangian for
loop diagrams is given by

Z'"(V, y) =C(V+y) -Z(V) -y 52 V

If this is the case, then each single V line in the
background-field method corresponds in normal
field theory to the sum of all tree graphs which
have at the end points all possible in fields on the
mass shell and with physical polarizations. This
correspondence is sketched in Fig. 2.

For gauge theories some new features are pres-
ent. For clarity we consider the case of Yang-
Mills fields. The classical Yang-Mills action
Z(v„'+ Q„') is invariant under the gauge transfor-
mation

5(V„' + Q „') = 8~A' +ge'"(V„' + Q „')A'

This transformation can be realized in the follow-
ing two ways:

5V„'=O; 5y„'=(a A)'+g '"y'A'

(g A)a. 5~a g~nt, cd~Ac (5)

where the covariant derivative D is here (and also
in the gravitational case) always with respect to
the classical field V: (D„A)' = B„A'+go'"V„'A'.
Equation (4) describes the so-called quantum gauge
transformations. If Eq. (2) is satisfied, then also
2'"(V, Q) in Eq. (1) is invariant under these quan-
tum gauge transformations. We break this invari-
ance by adding, as usual, a gauge-fixing term
2 (V, Q). Many terms will do, e.g.,

Z'(V, y) = -a(&„y,')', -'-(D„yt', )', or ='(y', )'.

(6)

one-loop calculations. Any diagram with N exter-
nal V lines thus calculated is identical to the cor-
responding diagram in normal field theory (where
internal and external fields are both denoted by Q)
because the propagators and the vertices are the
same in both cases.

The second step in the background-field method
is to require that the classical fields V satisfy the
classical equation of motion

&Z(V)
6V

One-particle-irreducible loop diagrams are now

calculated by using the quantum fields Q inside
loops, while the classical fields V appear at the
external vertices (see Fig. 1). It follows that one
needs only the terms quadratic in Q in Eq. (1) for

The Lagrangian in Eq. (1) is invariant under the
background gauge transformations defined by Eq.
(5), whether or not Eq. (2) is satisfied. Under
these transformations V transforms as a Yang-
Mills field (or tensor in the gravitational case)

FIG. 1. A typical diagram in the background-field
method. Heavy lines denote external fields V, and

regular lines the quantum field Q.
FIG. 2. Tree-graph expansion corresponding to a

single external field V.
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22 = v'-g ~R (g) + ~ s„ps,gg "'

We introduce the background fields g„, and V by
the replacements

gylj - gP V
+ &&J V ~

0- V+0

(8)

(9)

and add the gauge-fixing term" (indices are con-
tracted by means of g„„)

2 (g, V; h, Q) =I g( D"h» +-,D, h"-„——;~ps, V)',

(10)

which leads in the well-known way to the ghost La-
grangian. Using this action 't Hooft and Veltman'
have calculated the divergences of the sum of all
one-particle-irreducible one-loop diagrams and
found for the counterterms"

and Q as an ordinary isovector (or again tensor
in the gravitational case). If we choose the gauge-
fixing term to be background gauge invariant, then
in all known cases the ghost Lagrangian can be
made background gauge invariant also by defining
suitable background gauge transformations for the
ghost fields. It follows that the Green's functions
and the counterterms will be invariant under Eq.
(5) as well. In particular, if one calculates one-
loop diagrams with the Lagrangian 2' (V, Q) +2~
+2 (where Z is the ghost term), then one obtains
for the divergent parts of the Green's functions,
when regularized by the dimensional regularization
scheme, "

(n —4) ' times local functions of V.
These objects are the counterterms, and they are
invariant when the fields V transform as in Eq. (5).

We note that in the examples of Eq. (6) the gauge-
fixing terms are not functions of V +Q alone. In
general 2 (V, Q) introduces new vertices into the
background field which are absent in normal field
theory. For example, the second term in Eq. (6)
contains a new vertex of the form VpP. Conse-
quently, the one-particle-irreducible graphs in
the background-field method no longer agree a
Priori with those in normal field theory. However,
DeWitt' and Kallosh' have shown that the S matrix
is independent of these new vertices and equal to
the S matrix of normal field theory, provided the
gauge-fixing term is invariant under the back-
ground gauge transformations.

Let us now turn to the example of massless sca-
lar-scalar scattering through two-graviton ex-
change and discuss in detail how to obtain the coun-
terterms for this given physical process in the
background-field method. The classical Lagrang-
ian is in this case"

Inserting, as discussed earlier, the classical field
equations

D~D" V=0,

K
R „,= —

4 (D„V)(a,V),

they found for the on-shell counterterms

4-g 203
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We will now discuss how to extract from this re-
sult the counterterm for gravitational scattering
of massless scalars.

The classical fields g„„and V are the solutions
of Eq. (12) with Feynman boundary conditions, as
discussed in Ref. 1. Solving these equations iter-
atively we get the perturbation expansion

g„,(x) = g„'", (x)

+IC D~P P
X-X' JPo g~"~, V'", &' d X'+

V(x) = V'"(x)

(14)

+ ~ n'(x —x')Z(g„'"„, V'", x')d4x'+ ~ ~ ~,

(15)

where g„'", and V'" are in fields on their mass shell
and with physical polarizations. If one wants to
obtain the counterterms for a given process with,

say, n external gravitons and nz external scalars,
then one must insert Eqs. (14) and (15) into

4Z(g„„, V) and collect from the resulting infinite
series all terms with the correct number of in
fields. In order to define the propagators D in
Eqs. (14) and (15), one must also introduce gauge-
fixing terms for the classical fields. The inser-
tion of the perturbation solution of Eqs. (14) and

(15) into the counterterms produces genuine tree
diagrams. That the resulting 8-matrix elements
are also independent of the gauge-fixing terms for
the classical fields can be understood in the fol-
lowing way. One can consider bZ(V) as a new lo-
cal interaction in a new Lagrangian 2'(V) which is
equal to the original unbroken Lagrangian 2(V) to
which we add a, classical gauge-fixing term gs(V)
and this new interaction ab.g(V). Since we know

v' g S, 43
bZ =,

( ) 7
R'+ R~SR +

8
(&qVBVg"')

2

——R(s„VB,Vg"")+~'(n,a"V)' .
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that the tree graphs corresponding to 2' =Z +2
+n4Z are independent of 2, the same holds for
all tree graphs linear in n, i.e., for the counter-
terms into which the classical tree graphs are in-
serted. The on-shell counterterms for a given
physical process are thus independent both of the
quantum and of the classical gauge-fixing terms,
and these two terms may be chosen differently.
For scalar-scalar scattering we should therefore
replace each field g„,(x) in R in Eq. (13) by the
expansion of Eq. (14), and collect all terms with
four U'" fields and no g„'", fields. However, in this
particular example we can simplify the algebra
somewhat. We first express R in terms of V by
means of Eq. (12) and thus find the equivalent re-
sult

/-g 203
8m'(n -4) 1280 (16)

III. GAUGE DEPENDENCE OF COUNTERTERMS IN

THE BACKGROUND-FIELD METHOD

DeWitt' has shown that the generating functional
for loop diagrams,

Z(V) = dQdydy*exp i t
d'x Z(V+/) -Z(v)

+2 +2
~v

(18)

is independent of 2e provided 5Z/5V = 0 and provid-
ed 2 is background gauge invariant. The proof
prpceeds as fpllpws. If pne replaces 2 by 2 +5@
in Eq. (18), then, introducing new integration vari-
ables Q', y', and X*' related to the old ones by a
quantum gauge transformation where the gauge
parameters are determined by 5Z, one recovers
the original expression in Eq. (18), provided that

That all expressions for AZ which are equal modu-
lo the classical field equations give the same S
matrix contributions after insertion of the iterative
solution of Eqs. (14) and (15) follows from the fact
that the classical field equations themselves can
be viewed as relations between infinite series of
tree graphs. ln Eq. (16) only the first term in the
expansion for V in Eq. (15) contributes to scalar-
scalar scattering. Using the kinematics of Fig. 3,
we conclude that the sum of the one-loop diver-
gences in the S matrix for gravitational massless
scalar-scalar scattering is given by

-iw4 203
8 '( —4) 640

In Sec. IV we will recalculate this same quantity
using normal field theory.

FIG. 3. Kinematics for scalar-scalar scattering.
Mandelstam variables are s =(p~+P2), t =(p&+p3), and
~ =(Pi+P4)'

5Z/5V =0 and 2 is background gauge invariant.
It is, however, interesting to ask what can be

said about the gauge dependence of Z(V) if these
requirements are not fulfilled. Kallosh has ob-
served that for pure Yang-Mills fields the counter-
terms are actually independent of the quantum
gauge-fixing term even off the mass shell, i.e.,
when 5Z /5V is not equal to zero. Her proof pro-
ceeds as follows. " Under the same change of
variables (Q„')' = Q„'+5/„' that DeWitt uses, it fol-
lows from Eq. (18) that, in an obvious notation,

Z,e„,e(V) Z,s(V) = i . (5y,')d'x,&z(v)
5p~

(19)

where (5P„') is the expectation value of the varia-
tion 5Q~ in the path-integral sense. For Yang-
Mills fields 52/5V„' =D, G„', and, since both Z
functionals in Eq. (19) are background gauge-in-
variant, so is the right-hand side of this equation.
In particular, since the counterterms 4Z are lo-
cal and background gauge-invariant functions of
dimension four, it follows that

ACreygr+ 6 CrB B(D p
G

g ) (20)

However, the right-hand side of this equation con-
tains terms with six external Yang-Mills fields,
and since one -particle -irreducible diagrams with
six external Yang-Mills fields are convergent, it
follows that e must be equal to zero, We note that
in the presence of matter fields this conclusion is
not valid, although Eq. (19) still holds. One ob-
tains terms proportional to the matter-field clas-
sical equations, and the change in the counter-
terms need not be zero in this case.

We will now investigate whether a similar theo-
rem holds for gravitation without matter fields.
For pure gravitation we have

(21)

where g„, is the classical gravitational field, and
the same arguments as before lead to the following
expression for the divergent part of the expectation
value of the variation of the quantum gravitational
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field in the one-loop approximation:

&&h„,) = 4(oR„, +Pg„„R) (22)

However, unlike the case of Yang-Mills theory, all
one-particle-irreducible loop diagrams with arbi-
trarily many external gravitons are equally diver-
gent; this is caused by the double-derivative cou-
plings of gravitons to each other. It follows that
the coefficients o.'and P in Eq. (22) need not be
zero, and the counterterms in pure gravitation
will, in general, be gauge dependent off the mass
shell. We have not verified this explicitly in an

example, because any gauge other than the har-
monic gauge in Eq. (10) leads to a complicated
propagator, involving momentum factors in the
numerator, thus excluding the applicability of the
algorithm of Ref. 5. However, in example 4 below
we show that for matter-gravity interactions the
counterterms are gauge dependent off shell.

W'e will now verify DeWitt's and Kallosh's theo-
rems in a series of four examples. The calcula-
tions are quite elaborate, but since there are no
difficulties of principle we merely record below
the answers.

ExmnPle 1: Pure Yang-Mills theory in a covari-
ant Paxamete~-dePendent gauge. The Lagrangian
is given in the Lorentz-type gauge by

2 = -~[G„'8(V„'+Q~)]' —g [G'8(V)]' Q,'[DqG„'p (—V)]

—pa(D„Qq)'. (23)

For n =1, 't Hooft has calculated the counterterms
and found

physical way. Absence of a counterterm (D&V~)'
implies that the Z factors for e and V„' are equal,
Z =Z, while renormalizability of massless Yang-
Mills fields implies that Z =Z~. Since, however,
the coupling-constant renormalization is given by

Z3/2

Zg
(27)

global isospin invariance still holds, hence a pxi-
O'YE

&Z -a, (G„'p)'+ a, (G„',e'"'V„"V',) +a, (V„xV, )'

+a, (eq V„')' +a,(V ~
V„')'. (29)

Since the propagators are still of the Feynman
form, we can apply 't Hooft's algorithm' and find,
after a tedious calculation,

2

~g g [s(G~ )5 sbcGs V&V ] (30)

Off the mass shell this is no longer of the form of
Eq. (24), hence Kallosh's theorem does not hold
for noncovariant gauges. On shell, however,
D„G„',=0, from which one readily derives

we see that in this example gauge independence of
the counterterms off the mass shell is equivalent
to the gauge independence of the coupling-constant
renormalization.

Example 2: Pure Yang-Mills fields in a nonco
variant gauge. In order to extend the results of
DeWitt to gauge-fixing terms which are not back-
ground gauge independent, we consider the quan-
tum gauge-fixing term

(28)

g' 11
Bn'(n -4) 6 (24) (G„',)' = -gt' 'G„',Vq V'„(on shell). (31)

which result incidentally proves the asymptotic
freedom of Yang-Mills fields. For ac 1 we can-
not use his algorithm since the propagator is not
of the Feynman form

Inserting Eq. (31) into Eq. (30) and comparing with
Eq. (24), we see that DeWitt's theorem still holds
for this particular noncovariant gauge. One might
have chosen, instead of Eq. (28),

P„"„(k)= i[r/„, —(o. —-1)k„k,/k']5"/k'. (25) (sq2gq + „Vq) . (32)

However, the only background gauge -invariant
counterterm is the one in Eq. (24). In order to
check that for a c 1 the same factor —", is found al-
so, we calculate the two-point function. The Vp@
vertex is given by

(1+o.) (s„y„')y'„],

while the ghost-ghost-V vertex is the usual ex-
pression, independent of n. Straightforward cal-
culation indeed also reproduces for arbitrary o.

the same coefficient ~, confirming Kallosh's theo-
rem. ' This result can be understood in a more

We still get the same off-shell counterterm of Eq.
(30), since the terms of Zs quadratic in &f& are the
same. The classical field equations still are
D„G„',=0; we stress that one should not simply
define them by requiring that all terms linear in

P vanish, but by M/5V =0 instead of 5(Z+Zs)/5V
=0. We conclude that in this particular example
even background noncovariant gauge -fixing terms
give a correct result. It is, however, more in
the spirit of the background-field method to use
background gauge -invariant quantum gauge -fixing
terms.

ExamPle 3: Yang Mills fields i-n the axial gauge
In order to verify that the counterterms are not
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only parameter independent but even independent
of the functional form of the gauge-fixing term,
we replace the Lorentz-type gauge-fixing term in
example 1 by the axial gauge-fixing term

we see that 4Z is indeed n independent on shell,
in agreement with DeWitt's theorem, but e depen-
dent off shell, in agreement with the conclusions
following Eq. (20).

gB Lp (ya)2 (33)

bZ =a[ G„',( V)]' +b[G„',(V)]' (34)

However, Eq. (34) can be absorbed into the orig-
inal action by rescaling of V'„V&, and g only if
b = 0. Hence, invoking renormalizability of Yang-
Mills theory, we conclude that b =0, and proceed
to calculate a in Eq. (34). Calculating the two-
point function (V',V', ), we find indeed the same co-
efficient —", , thus verifying DeWitt's and Kallosh's
theorems. Some details are given in Appendix A.

Example 4: Scalar-graviton interactions zoith a
Parameter-dePendent gauge. We return to the La-
grangian in Eq. (7), but supplement it this time
with the quantum gauge-fixing term

= v'-g ( D"hq, + 2D-,h~ 2n QB—„V),
where all operations such as covariant differentia-
tion and squaring are again taken with respect to
g&„. The propagators are still of Feynman form;
hence we apply the algorithm of Ref. 5. After a
lengthy calculation we find

Inserting the classical field equations of Eq. (12)

The Lagrangian is still background gauge invari-
ant, but no longer Lorentz invariant. (This gauge-
fixing term is not a mass term since only the com-
ponent p, =3 of Q„' appears. ) It follows that

IV. ONE-LOOP DIVERGENCES OF GRAVITATIONAL
SCALAR-SCALAR SCATTERING IN NORMAL FIELD

THEORY

In this section we give the results of our calcula-
tions for the ultraviolet divergences in gravita-
tional scattering of two identical massless scalar
particles in the one-loop approximation using nor-
mal field theory. The divergences show up as
poles at n =4 in the dimensional regularization
scheme" which we use throughout. The calcula-
tion is carried out in several steps. We first cal-
culate the two-point functions, i.e., self-energy
diagrams for graviton and scalar particles, then
gravitational corrections to the graviton-scalar-
scalar vertex, and finally the divergences in
scalar- scalar scattering.

At various steps we show that the results satis-
fy Ward identities. This serves two purposes:
(1) to show that the dimensional regularization
scheme indeed preserves the Ward identities and

(2) to use the Ward identities in checking our cal-
culations.

The Lagrangian of the system considered is
given by

+2 +Z +8,
where Z +2 (Einstein plus scalar) is given in

Eq. (7). Za and 2 are, respectively, the gauge-
fixing term and the ghost Lagrangian derived from
it. In the harmonic gauge

Z' =(h„, „--'.h„„„)', (38)

and 2 becomes, for a complex vector ghost field
Xp~

(b)

)-~--F&v&

I
+s s (d)

$4Ã

I

P) Pp

(e)

jMP
I

Ypi

X ~~„X
p2

FIG. 4. Feynman rules for the graviton-scalar system. Broken lines, solid lines, and wavy lines represent graviton,
scalar, and ghost fields, respectively.



12 BACKGROUND-FIELD METHOD VERSUS NORMAL F IELD. . . 3209

g 1
~p8~+~Ba, a~p +~pB, n~a+~pB +~pa 88n+~pn Ba ~8n, pen 2~ma, 8~p 2~nn, Bp XB (39)

The relevant Feynman rules can therefore be summarized as follows (see Fig. 4):
(a} graviton propagator,

P„„q,„(k) = (i/2k')(q„~g„,.+q„,q„I q—„,q1„);

(b) scalar propagator,

(c) ghost propagator,

P„(k) = iq„„/-k';

(d) three-graviton vertex,

(4o)

(41)

(42)

~( I~IPI& ~2~2 P2~ i"3 3P3
1

~
1

v3 3/2 $1V2 V1$3 2 3 P 1V3gV1$2 V2P 3 3/2 2V3

1 1 1
~2 P3~P 1v2~v1P 2 P 3V

' P1P 3P2v 0P 1v Ov&P &Plv P lP 39$ 1v1 OP2v3

1 1
~

1
~2$3P3v2~P &v1'Q~ v

+ 8P2 P3$P &V1PI(l2V3PV2P3 81 2 P3 1P &V10P2V2~$3 3
1 1
4 P2u3 P 2 II 3 l II Iv I9 II 2v2 2 P 2u3 P 2 11p II 2I3) Iv2vII)

+permutations among indices l, 2, and 3 and over-all symmetrization in p, and I;I3 (43)

(e) graviton-scalar-scalar vertex,

~IIu(PII P2) 2~1( 1lIIvPI P2 Pl|IP2u Pl uP2 )IIl

(f) two-graviton-two-scalar vertex,

(44)

~jlu, tK (PII P2) 4 I [()IIu iX OKIIX ivK 1IIK iuX)(PI P2) + 1uX(P11IP2K +PIKP2II) lIIK (Plkl 2u +PlvP2X)

+ 1IIX(PluP2K +PIKP2v ) + lvK (PI XP2II +PIIIP2 k) lou(J I IP2K PIKP2X) lI K (PIIIP2v PlvP2, )1

(g) graviton-ghost vertex,

X1Iv(PKlt P2,I P3) I~[7pk(P3KP 2v P3vP2K ) P2 P30yK 1uX PI I P3v l 11K
+ 2 PIXP3K lllvl

+symmetrization in p. and v." (46)

pu -' her

(0)

m~hNM ~~

(c) (e)
r~

g

I

(h)

FIG. 5. One-loop bvo-point functions.
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We have checked that the three-graviton vertex satisfies the two Ward identities

Pl|1 lp282P3p (p'l~lpl Ii 2~2P2I P3~'3P3)

and

(47)

(48)ply V(plPlpll $2V2P2I i23 3p3) =0,

where in Eq. (48) the gravitons with indices 2 and 8 are on the mass shell. These identities follow from

and

(T[(h„..( ) --'h..„( ))(h, , (y) --'h„, (y))(he„. ( ) --'h... ( ))])= o (49)

(T[(h„„(x)-2h „„„(x))h 3(y)h~3(z)]) =0, (50)

where the second and the third gravitons are on the mass shell in Eq. (50). One may easily derive these
Ward identities using the techniques of Refs. 16 18 (see Appendix 8).

We first calculate the divergences for the graviton self-energy diagrams (Fig. 5). In terms of the diver-
gent integral D,

1 " d"0 im" ' -i, I'(2 — n) =,
(
-) +finite terms, (51)

we find the contribution from the graviton loop

S(5(a)) = «'[r3p„p, pqp„+80 (P P)21I„„'r12., + ,",, (P P)—'(li„„qq„+li~q„„)

50 (p p) (pjlpV 1 kK PXPK lt'lV) 40 (p P)(p P0)KXV P2P'1 1KV plIPK O'A 8 PVP'k 7K/)k

and the contribution from the ghost loop

S(5(b))=«'[--,'P„P,P„P, ——,', (P P)'21„,17', ——,', (P. P)'(ll„„q1„+2l„,17„„)

+ (P'P)(PIJP 'qx +PxP nil )+ (P'P)(P—PP nx +P2pxn +t' P nx.tl+P Px'll fl)]o

The contribution from the scalar loop gives

S(5(c))=«'[,'lip„p, p~p„+,'ll(P ~ p)2q„„2)x„++ll (P p)'(9„N„„+lt,„l,x)

(52)

80 (P P)(Pllpv ILK PXPK I flv) 480 (P P)(pllPK)Xv P8PX iKv PIIPK 7X2 Pvpk IK8)P

Tadpole diagrams [i.e., Figs. 5(d), 5(e), 5(f), 5(g), and 5(h)] vanish in the dimensional regularization
scheme.

According to the Ward identity"

(T[(h„„,(x) — h„, (x))(h„„„(y)—';h„(y))])= -5„5'(x —y)

(54)

(55)

I
~lq

p4, q
II 2

I
I
I

t

(b) (c)
I
I

i+ghQsf
IQQP

(g)

FIG. 6. Gravitational corrections to the graviton-scalar-scalar vertex.
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the contribution T»q, (p} =S(5(a))+ S(5(b)) to the
graviton self-energy diagrams should satisfy

P.P,T,.,~.(P) = o (56)

S(6(a)) = «'(';q'p„p, —,'q'q„q, +-,'q—'rl„„)D,

This holds, as may be easily verified from Eqs.
(52) and (53). Similarly, S(5(c)) satisfies the same
identity. The divergence for the massless scalar
self-energy diagram, Fig. 5(i), is found to be zero
zero. Tadpole diagrams [i.e., Figs. 5(j), 5(k),
5(l}, and 5(m)j again vanish.

There are seven diagrams, as shown in Fig. 6,
for the gravitational corrections to the graviton-
scalar-scalar vertex. We list the results for the
divergences of each diagram:

t:2t) y t) 3 and u: 2P'y P4

~4
(403s ' + 403u' —197t')D. (60)

S(7(a)) = —,', «'s'D,

S(7(b)) = ~6«'u'D,

S(7(c))= —,'«'(2s'+ 2u' t')D- ,

S(7(d)) = —,', «'(-2s' —2u'+ t'}D,

S(7(e)) = ——,', «'(2s'+ 2u'+ t')D,

S(7(f))= „'2,«'(123s'+ 123u' —37]')D.

Summing these contributions we get the diver-
gence for the t -channel diagrams

S(6(b)) = «'( —q'P„P, + ,', q'q„q„—-,', q4q—„„)D,

S(6(c))= «'(-sq'P„P, ——,', q'q „q,+~4q'q~, )D,

S(6(d)) =«'( q'p„p, + —,', q'q„q„)D,

S(6(e)) = 0,

S(6(g)) = «'(,'„q'p„p, +k—q'q„q,-~q'R„,)D

(57)

640 «(s +t +u )D, (61)

By interchanging f and s and t and u in Eq. (60)
we get the contributions for the s channel and u
channel, respectively. Adding the s-, t-, and u-
channel contributions we obtain the one-loop ultra-
violet divergence for gravitational scalar-scalar
scattering:

Here we have a Ward identity (for a derivation
see Appendix B).

(T[(a„„„(x)--'. i„„„(«))y(1)y(z)]}=0, (58)

where the scalars are on the mass shell. It fol-
lows that multiplying the sum of S(6(a)) +

+S(6(g)) by q, yields zero [see Eq. (B8)). Using
the above results, we can show that this identity
is valid.

Finally we calculate the divergences for scalar-
scalar scattering (Fig. 7) and find, using s=2P, P„

which agrees with the result obtained in Sec. II.

V. CONCLUSIONS

In this article we have verified in several exam-
ples involving Yang-Mills and gravitational fields
that in the background-field method counterterms
are independent of the choice of quantum gauge,
provided the gauge-fixing term is background
gauge invariant and provided the classical fields
satisfy the classical field equations. The classical
field equations are solved by adding a classical

P2
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FIG. 7. Gravitational scalar-scalar scattering. ~ in (e) denotes the su~ of Figs. (6a), (6b), (6c), (6d), and (6e). ~
in (f) denotes the suan of graviton, scalar, and ghost one-loop contributions.
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gauge-fixing term to the classical action. For the
counterterms (but presumably not for the whole
S matrix) the classical and quantum gauge-fixing
terms may differ. In particular, we have checked
the on-shell gauge independence and off-shell
gauge dependence of the graviton-scalar system.
These results are in agreement with theorems by
DeWitt' and Kallosh. '

The counterterms of pure Yang-Mills theory are
found to be gauge independent even off shell, in
agreement with a theorem by Kallosh. ' We have
shown that the proof of this theorem is not valid
for pure gravitation, and verified that it does not
hold for gauge fields coupled to matter either.

Finally, we have calculated using normal field
theory the one-loop eounterterms for gravitational
scalar-scalar scattering. The results agree with
the corresponding counterterms in the background-
field method, which we have extracted from the
results of 't Hooft and Veltman. '

We conclude that there is complete agreement
between the background-field method and normal
field theory and note that for certain calculations
the background-field method is vastly superior.
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APPENDIX A

6i(V;)', 2p, ' (p+k),. (p+k),. p,p,
(2p) p

(p +k)2p2 "'~
(p +k p I&J

p 2 (A2)

Integrals of this type have been discussed in Ref. 19, and following the methods of that reference we find,
defining

that for

1 d'PX
(2~)' (p+k)'p' ' (A4)

(p +k )" (P + k )'P, ' '
(P +k )'P, ' '

(P +k )" (P +k ) 'P,"P,
'

the results are

(A6)

f(X) = (—,'„-1,-1, —,', 2, 1)x (A6)

With Eqs. (A2) —(A6) the results of example 3 in Sec. III can be reproduced.

APPENDIX B

Wa~d identities. The generating functional for the graviton-scalar system is given by

Z(j~„j)= tdh„, dQdy dletx (i p~td'x[Zs +2 +(B„h„,)'+y„*M Bys+j&„h„„+jp]),

where Z and 2 are the Einstein and scalar Lagrangians, h„,= h„, —&g„,hzz with g~„=g„,+ Kh„„and
M„s = a5(&„h„„)/6$ where v '( are the dimensionless gauge parameters. The classical actions are in-
variant under the gauge transformations

«&p. =&,~~nv+&, .gj +& g~v, n

Only the gauge-fixing term and the two source terms in Eq. (Bl) are not invariant under Eqs. (B2) and

(B2)

(»)




