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Solutions for the motion of an electron in electromagnetic fields
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New exact solutions of the Lorentz, Hamilton-Jacobi, Klein-Gordon, and Dirac equations for an electron
moving in the field of a plane wave and in electric and magnetic fields have been found. The electric and
magnetic fields are parallel to the direction of propagation of the plane wave. The magnetic field is constant
and the electric field is an arbitrary function of the combination ct-z.

New exact solutions of the Lorentz, Hamilton-
Jacobi, Klein-Gordon, and Dirac equations in the
electromagnetic field configurations, including a
plane wave, and uniform magnetic and electric
fields, are presented in this paper. The directions
of magnetic and electric fields are chosen to be
parallel to the direction of the plane-wave propa-
gation. The solutions are possible for the case
when the electric field is constant as well as when
it is an arbitrary function of the combination
gt-g. However, the case of a constant electric
field is of special interest as the fields satisfy the
Maxwell equations without charges and currents.
If one excludes the electric field from the solu-
tions obtained, one has the Redmond solutions. '

The configuration of the electromagnetic field
under consideration will be defined by means of
the potentials A.

&
as

A, =A, = eke 'f,($),
A, =Hy+che 'f, ($),

A, =-cke 'f, ($) .

selected so that classical first integrals should
have analogs in the quantum theory.

After subtraction of Eq. (2) for &=0 from the
equation for i =3 one can find the first integral of
motion A, ,

Ko)+2fo =2k. , Ko =mck '. (3)

From the form of the potentials (1) and (3) we have

2c& = 8 —cp,

where $ is the total energy, p, is the z component
of the generalized momentum. From Eq. (2) for
i=1 one can find another first integral k,

K,x —eyy- f, =k,

e = sgneII, y =
I
eH

I (ck) ', (4)

and taking into account Eq. (1), hk =p„can be found
from (4). In order to find the suitable third inte-
gral of motion, let the real functions y, ($) and

y, ($) which are defined from the set of equations be
introduced as

Such a choice of potentials corresponds to the
above- mentioned fields

2RXi'+2yX2 —&2yf. =0,

2RX, ' —2yy, + e~y(k+f, ) =0, R =2(A. fo). —
(5)

E„=a, =eke 'f, '((),

E, =-R„=-eke 'f, '($), -

F.,=2che 'f '($),

I. CLASSICAL EQUATIONS OF MOTION

Let the Lorentz equations be written in the stan-
dard form'

The set of Eqs. (5) may be solved conveniently by
using the complex function y($) =y, + iy, (naturally
2y, =y+y*, 2iy, =y —y*), which satisfies

2iRy '+ 2yx —42y [e(k +f, ) + i f 2] = 0 .
The solutions of this equation may be easily found
to be

Wy(() =My exp[i'(()]

mc'x ' = eg "F,.„x', x' = dx'/ds,
(2)

x exp[ —iy((')] d(',
One can easily find from E qs. (2) the three first
obvious integrals of motion and the general solu-
tion of the classical problem in quadratures. How-
ever, the system of classical first integrals may
be chosen in different ways. Here they are .

(6)

The variable q can be determined by using the re-
lation
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= ~Y y+2xi ~ (7)

Taking into account the identity g,&g'~ =1 we ob-
tain xo and z as functions of g:

Then the third integral of motion Q can be found
from Eq. (2) for i =2 and from Eqs. (3)-(5):

2x' —$ =2z+(

&0'q'+r'q' =y'Q'. (8)
l&o'+ I ~r Q exp[i'(4')] -i~y x(t')

It should be noted that the interval s = c7 (r is the
proper time) is determined from (8) as a function
of f:

s =If,y-'y(~) .
Using (5) and (7) one will get from (4)

O'C, &yx =yq —WK,X, . (9)

eMyx =i(x —x*)—WQ cos Q

= —2X, —~Q cosp,
V'2y y = W Q Sing —

X
—X*

= vYQ sing —2X, .

(10)

Then from (7)—(9) x and y as functions of $ can be
found

Thus, the formulas (10) and (11) determine the
classical motion in a parametric form. If fo =0
(so R =2X), then from (10) and (11) one has the
classical parametric equations of motion for an
electron in a constant magnetic field and a plane
wave which were discovered first in Ref. 3.

If the solution of the classical Hamilton-Jacobi
equation

g'~(cB,S+eA, )(cB,.S+ eA~) = m'c', s, = 8/Bx'

is defined in the form S =-SfSo+E(q)], where the
function $0 is determined by the expression

4S, = 4A, (x'+ z) —4@x+2iVX q(X —X*)+ i(X*' —X')

+ l2Ifo'+2rQ'-r Ix(5') I'+ l~e[&+f ((')]+i~f (5') - ~rx((') I'}[R((')] 'dh', (12)

then E(q) is the classical action function for a
harmonic oscillator (&')' = Q' —q'. The equations
of motion derived from the action function natural-
ly coincide with (10) and (11).

II, RELATIVISTIC WAVE EQUATIONS

(y"6'„—mc)4' = 0

can be defined in the "block" form

%D=NR 'exp(-iS, )I
' l y(q t)

((rC, R)o, + (o$))-
The solution of the Klein-Gordon equation

((P —m c )4s =0, 6'„=ibex' —ec 'A„

is found in the form (N being the normalization fac-
tor)

= e,(u + cry+ f,) —e, (f, —sly X, + i&,)

= e,(k+1, —e~y X, + eqv y )

—e (f —&2r x +i~re, )

(15)

4z =NR '~'exp(-iS, )4(q, $).

For C(q, $} one gets the equation

(Q'+ s, ' —q'+ 2iRy 's, )C (q, () = 0.

(13)

(14)

where 5, and e, are the unit vectors along the x
and y axes, o are the Pauli matrices, and g is a
two-component spinor satisfying the equation

(2iRy 's, + Q'+ s„'—q'+ eo, )q = 0.

As a solution of this equation one can take the C

function independent of $, that is 4 = U(q). Then
from (14) one has U= U„(q) (n =0, 1, 2, . . . ). U„(q)
are the Hermite functions which are connected
with the Hermite polynomials by the relation

U„(q) =(2"n!Ww) '~'exp(- —,'q'}H„(q).

In this case the integral of motion Q is quantized,
Q =2pg+ 1.

The solution of the Dirac equation

The solution of this equation may be found by two
methods. g can be considered as the function of
q only, and then two independent equations are ob-
tained for the components of g. The solutions of
these equations may be easily found. However,
we shall use another method. If one assumes

y = —,'((1+a,)exp[-,'icy(])]
+ (1 —o,)exp[ --,'icy(()]}C,

then the equation (14) for 4 will be obtained. The
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2K, = iN(' 'p, U„'(q )d'x,

solution of this equation can be written in the form

C = U„(q)3, Q
' = 2n + I

where 3 is an arbitrary constant two-component
spinor. The existence of this spinor shows that
for the Dirac equation the wave function is not de-
fined uniquely by the three integrals of motion
A. , k, Q. For its definition a fourth spin integral of
motion is necessary I.f H =fo=0, then such an
integral is known from Ref. 4. For f &

=0
(i =0, 1, 2), H g 0, such integrals are also known. '
However, in a general case of nonzero f, and H.

we failed to find the spin integral.
By normalization of the functions (13) by the

charge density one gets

be obtained, if one proceeds from the well-known
invariant expressions for scalar products of the
Klein-Gordon and Dirac fields on an arbitrary
spacelike surface. " The surface $ = const is not
spacelike but may be considered as a limit of a
spacelike surface o.x' —x' =const (~ &1) as n -1.
Making use of these considerations one gets

(((, y), = dxdydi)[g*(t ks„—ec 'A„)y

2A „=A.o+ A.,
-p(iks„+ec 'A„)p*], (16)

(p, Q)t = dxdydq( P( )p, 2P( l
=1 —y y'.

for the scalar product of Klein-Gordon fields on
the null plane, and for the Dirac fields on the null
plane one obtains

It is seen from the above that, if for some $ = $,
it is possible that H(]0) =0, the integrand may have
a, nonintegrable singularity and the functions (13)
are non-normalizable in the general sense. In the
same way, the normalization condition for the
functions (15) can also be impossible in a general
sense,

'(p, —eyr, ) U„'(q)d'x,

However, if one takes a new definition of the
scalar product following from the formulation of
quantum field theory on the null plane, then it is
possible to have the normalized solutions (13) and
(15) and to prove the orthogonality and complete-
ness relations for them. The main results and
bibliography are given in Reft. 6-11. The idea is
that the quantum field theory is formulated with
the use of a curvilinear coordinate system
($, x, y, g), where )=x' —x', x=x', y=x', q=x'
+x', and the coordinate $ is taken to be time so
that the scalar product of the fields is defined on
the null plane $ =const. A new scalar product can

It is not difficult to prove that if g and P satisfy
the corresponding wave equations and behave cor-
rectly on the boundaries of a three-dimensional
region x, y, q, then (16) and (17) are independent of

Choosing 2N =m '~' in the function (13), from
(16) one finds (m=1K, , k, n))

(4 e, 4e) )= 5(A. —A. ')5(k —k')5„„,
while the completeness condition has the form

(ich8 „—eA „)g4'e($, x, y, q)4~*($, x', y', q')

Choosing 4N = m
'~' and 6 = 3& (f = +I) for the Dirac

function (15) one can get in the same way

(q n, 4'o) t =5(A. —X')5(k —k')5„„5~~

(m=(Z, k, n, g)),

=P( )5(i) —q')5(x —x')5(y —y') ~
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